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Abstract

This paper proposes a possible axiomatisation for mutually recursive free types for the draft Z standard.

1 Introduction

Tan Toyn has provided an excellent summary of his current thinking on the Z language as a whole in a recent
paper [3]. This includes a description of the semantics of free types using the transformation rules (due to Ian
and Sam Valentine). The axiomatisation given for the global variables introduced by a free type definition
ingeniously avoids many of the dependencies on the toolkit that make the description in Spivey [2] unsuitable
for use in the standard.

The present paper describes how the treatment in [3] may be generalised to provide an axiomatisation for
mutually recursive free types — a language feature not currently supported in Z but widely considered to be
highly desirable (e.g., for modelling the abstract syntax of programming languages). En passant, I describe a
reworking of the axiomatisation that is slightly more economical of abstract syntax; this may help to address
a concern mentioned in the list of known problems in [3].

*Author’s reference: rda/file/30.tex; Z document reference: D-225; Issued: 17/6/97; Revised: 1/7/97



2 Review of Proposed Axiomatisation
With a few slight adjustments! to the notation, Ian Toyn’s proposed axiomatisation is as follows:

Given a free type paragraph:

T:=Cy|...|Cn | D1 <er>|...| Dp K en >

where at least one of m and n is non-zero, the transformations derive the declarations:

[T]
C;: T 1<j<m
Dk:P(ekXT) 1<k<n

and the axioms:

Vu:ep,ediy:Dpeyl=u 1<k<n (Fnc)
Yu,v:e | Dyu=Drveu=uv 1<k<n (Inj)
Yyi1,y2 : (1,C1) ...(m, Cp) | 1.2 = y2.2 0 y1.1 = 2.2 (single axiom) (Dsj1
Yu:ep o Dpu=Cj 1<j<m;1<k<n (Dsj2)
Vu:eg;v:e @ -Dyu=Dv 1<kl<n (Dsj3)
VA :PT (single axiom) (Ind)

| CreAN...ANCpr € AN
(Ve : (uWI'==Aee;)eDiz e A)A

Ve : (Wl ==Aeey)eDypz e A)
. A=T

Here, (Fnc) together with the declarations say that each Dy is a function with domain e; (Inj) says that
each function Dy, is an injection; (Dsjl), (Dsj2) and (Dsj3) together say that the sets {Ci},...,{Cm},
ran Dy, ... ,ran D,, are pairwise disjoint; and (Ind) gives a principle of proof by induction.

For free types with many nullary constructors (large m) and many non-nullary constructors (large n), the
axiomatisation has the disadvantage that (Dsj2) will produce a very large number (m x n) of individual
axioms. This can be ameliorated by replacing (Dsjl), (Dsj2) and (Dsj3) with a portmanteau axiom along the
lines of (Dsj1). Following the idea behind (Dsjl), what one would like to write is:

Yyi,y2 : (1,C1) ...(m,C)U{z:Dye(m+1,22)}U...U{z:Dye(m+n,22)} |y1.2 =y2.20y;.1 =y5.2

IFor clarity and and to simplify the subscripts later on, I have distinguished various names, in particular, the names of the
nullary and non-nullary constructors and numbered the two sorts of constructor in separate sequences.



But, alas, the union operator is not available to us. The following axiom? (Dsj) isn’t very pretty but does
keep the size of the axioms linear in m + n:

Yy, y2 : {i: Nyt : T | (Ds;j)
i=1At=C1V...Vi=mAt=CpV
i=m+1Ate{d:Died2}V...Vi=m+nAte{d: D,ed2}}

Y12 =y2.20y;.1 =1y5.2

3 Mutual Recursion

The mutually recursive definitions to be considered simply comprise two or more “simultaneous” free type
definitions. The concrete syntax used for these is not important here, but for definiteness, I will adopt the
use of an ‘&’ to join together the constituent free type definitions. The general case will therefore have the
following form:

T, :=C11 | - | Cim, | D1 K e >>| cooDin, K €1y, >
&

&
TT::: r1|---|Crmr|Dr1<<€r1 >>|---D7'nr<<67'nr>>
The type rules must arrange for the T; to be in scope in each of the expressions e;;. The semantics (via the
transformation rules) must then require the T; to provide a minimal solution to the above viewed as a system

of simultaneous fixed point equations (in an appropriate sense of finding fixed points modulo a bijection, as
discussed in [1]).

But what do we expect the defining properties for the least fixed point of such a system of equations to
be? Clearly, we want the constructors, D;; to be injective functions and we want the sets {Ci1 },... ,{Cim;},
ran D;1,... ,ran D;,, to be pairwise disjoint subsets of T; for each i. So so far, there is no difference from
the case of r independent free type definitions and the axioms (Fnc), (Inj), and (Dsj) (or (Dsjl) (Dsj2) and
(Dsj3)) express our requirements nicely.

It is the induction axiom that fails to generalise so easily. Consider, for a concrete example, the following:

YIN ::=Yin <« YANG >
&
YANG ::= Yang < YIN >

It is not hard to see that any two sets of the same cardinality will provide a fixed point model for the above
definition (with the constructor functions corresponding to bijections between the two sets showing they
have the same cardinality). So, for example, a model might take YIN = 1..10 and YANG = 11..20 with
Yang(i) = ¢ + 10 and Yin(j) =5 — 10 (1 <14 <10, 11 < j < 20).

The least fixed point solution that we want actually has both YIN and YANG empty.> Unfortunately, the
appropriate instances of (Ind) do not characterise the desired minimal solution. Indeed, after simplifying the
p-term; the two axioms become:

2In this and other axiom schemata, formulae such as m + 1 and m + n are to be read as the numeric literals obtained by
carrying out the addition rather than as object language formulae.

3Depending on our views on whether given sets are allowed to be empty and on some other rather more obscure issues, we
might prefer to insist on non-empty solutions, in which case we would take two singleton sets for the preferred model.



VA :PYIN | (Vz : YANG o Yin(z) € A) o A = YIN
VA : PYANG | (V2 : YIN o Yang(z) € A) o A = YANG

Unfortunately, all that these axioms tell us is that the constructor functions are surjective; this is insufficient
to characterise the solution of interest. Indeed, it is not surprising that the induction principle (Ind) for a
single free type definition is too weak in this case, since when we view the two free type definitions separately,
they are not recursive.

The required axiom must correspond to a principle of proof by induction of a property of each of the component
free type definitions simultanously. Using the style of the proposed axiom for a single free type defintion (Ind),
we can capture this in the following axiom (MutInd):

VA, : PTy;...; A, : PT, (MutInd)
| Ch1 EAl/\.../\C’lm1 € A N

Cri € AiN...ANCrp, € Ar N
(‘v’x:(pTl ==A1;... ;Tr==A7-0611)0D11$€Al)/\...
ANV (T ==A;...;T.==A,ee1,,)0 D1y, x € A) A

(Vx:(NTIZZAl;--- QTr::Ar.erl).DrleAr)/\---
o ANNVo: (T ==A;...;T,==A,e¢e.,,)eD,., z€A,)
® A1=T1/\.../\AT=TT

For the YIN-and-YANG example, this gives us the following;:

VA; : PYIN; 4 : PYANG

| (Vo : (uYIN==A;;YANG == A, ¢ YANG) o Yinz € A1) A
(Vo : (WYIN==A;; YANG == A, o YIN) e Yang z € As)

o A =YINAAy,=YANG

It remains to assess whether the axioms proposed here and in [3] are the right ones to use. An evident economy
would be to simplify away the p-expressions. To check correctness of detail and fitness for purpose one can
consider examples and one can work through proofs of specific properties in particular cases and of general
meta-theoretic properties. This can perhaps wait until the general approach of [3] and of this paper has been
reviewed and the details agreed.



4 Summary

An induction principle (MutInd) has been proposed generalising the axiomatisation for free types in [3] to the
mutually recursive case. A minor variant to the treatment in [3] has also been proposed to make the complexity
of the axiomatisation linear, rather than quadratic, with respect to the size of the free type definition.
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