Now f is continuous (exercise!)

Rob Arthan

Lemma 1 Ltd. / Queen Mary, University of London

ETAPS/AIPA 2012 st April, 2012

Background I

e Goal is ITP for doing day-to-day mathematics.

e Proof obligations like the following are very common:
— f is continuous
— f is a homomorphism
— f is a linear transformation

where f is defined by some complex expression.

e Can be very tedious to do manually.

e Obvious candidate for proof automation.

e Want a unified framework to solve these problems.

Overview '

1. Implementing the categories of day-to-day maths in type theory.
2. Comparison with Set, ScottDom etc. Products (and sums).

3. Proving morphismhood in finitely presented categories:
(a) Algorithms;
(b) Implementation issues;

(c) Additional features.

e Prototyped using the ProofPower-HOL Mathematical Case
Studies.

e Slides available on line. URL on the last slide.

1. Concrete categories (I)

e Recall that a concrete category is one in which:
— each object X has an underlying set U(X);
— morphisms X — Y are functions f: U(X) — U(Y);

— go f=Xzeg(f(x)).

e Represents a common mathematical scenario dealing with:

— sets equipped with some extra structure;

— functions between the sets that “respect” the structure.

1. Concrete categories (II)

e Examples:
Name Objects

Morphisms

All sets
Groups

R—Vec | Real vector spaces

Top Topological spaces
and many, many more.

e Non-examples:

Name | Objects

Arbitrary functions
Group homomorphisms

Linear maps

Continuous functions

Morphisms

Rel All sets
Toph | Topological spaces

Arbitrary relations

Top(X,Y)/ ~

where f ~ g means f and g are homotopy equivalent.

1. Representing a concrete category in type theory I

e E.g. Top: an object of Top is given by a topology:

Topology = {7 : 'a SET SET |
VVeVCr=JVenT
AN(VABeAetTANBerT=ANBecrT)}

e We call the underlying set of an object its space: Spacer 7 = |J 7

e The morphisms are the continuous functions:

(o, 7) Continuous = {f : "a — b |

(V ze © € Spacer 0 = f x € Spacer T)
AN (VY Ae A € 7 = {x|x € Spacer o N f x € A} € o)}

(Syntax: Continuous is a postfix operator on pairs of topologies.)

1. Proving morphismhood in (R;o, f1, fo,...

e A specific topology: the interval topology on R:
Or ={A:RSET |Vtetec A= (Jz ye
t € Openlnterval x y N\ OpenlInterval x y C A)}

e Assume given the following facts:

= Exp € Cts; = Sin € Cts; = Cos € Cts; F Ic € (ts;
FVf ge f e Cts N ge Cts = g o f € (Clts.

where Cts = (Opg, Opr) Continuous and Ic is the | combinator.
e To prove, say: (Az e Sin(Cos(Fxp x))) € Cts
— rewrite as (Sin o Cos o Exp) € Cts
— then backchain with the facts.
(We could have written (g o f) = Az e g(f x) in the facts, but this is not a

linear pattern, so higher-order matching is not immediately helpful here.)

2. Comparison with Set (and ScottDom and ...) (I)

e Concrete categories may have (finite) products, but need not.
e Say the product is standard if U(X x Y) =U(X) x U(Y).

e Many useful examples do have standard products. E.g.,
— Top;
— Any concrete category axiomatised by first-order Horn clauses.
x E.g., Grp, R—Vec, POGrp, ...
+ Not fields.
Similar situation for sums. E.g.,
— Top has standard sums;

— R—Vec has (finite) products that are also sums: X +Y = X x Y.

Focus on products in this talk.

2. Comparison with Set (and ScottDom and ...) (II)

Cartesian-closed concrete categories are rare.

Top is not Cartesian-closed:
— lots of ways of topologising X — Y’;

— “pathological” cases defeat them all.
Grp, R—Vec and .. .are not Cartesian-closed.

Curry is off the menu!
Ax e \y et is:

— at best a second-class citizen (e.g., in Top);

— more often an outright outlaw (e.g., in Grp).

3(a). Proving morphismhood in (R, x;o0, (), f1, f2,...) € Top (I)

e Product of two topologies:

oxrT={C:(ax'bd)SET |V zye (z,y) € C=
(FABeAconNnBerhNzeANye BAN(AXx B)C ()}

e Pairing functions on underlying sets:

Pair (f, g) = (A ze (f z, g))

e New facts: for p, o, 7 € {Or, Or X 17 Og, ..}

= Vf ge f € (p, o) Continuous A g € (p, 7) Continuous
= Pair (f, g) € (p, o x1 7) Continuous

= Vf ge f € (p, o) Continuous N g € (o, 7) Continuous
= g o f € (p, 7) Continuous

10

3(a). Proving morphismhood in (R, X;o0, (), f1, f2,...) € Top (II)

e To prove, say:

(Aze(Sin(Ezp x), Cos (Exp z))) € (Or, Or X7 Opr) Continuous

— rewrite LHS as Pair (Sin o Ezp , Cos o Fxp)
— then backchain with the facts.
e What about binary operations? E.g.,
(M, y)o Exp(z + y)) € (Or X 1 Or, Ogr) Continuous
— rewrite LHS as Fxp o Uncurry $+ o Pair (Fst, Snd)

— then backchain using a new fact:
= Uncurry $+ € (Or x ¢ Ogr, Or) Continuous

(Syntax: the $ prevents 4+ being treated as an infix operator.)

e Maybe defining + : R X R — Rratherthan+:R — R — R
would have been better after all?

11

3(a). Proving morphismhood in (R, x; o, (), f1, f2,...) € Top (III)

e What about constant operands? E.g.,
(Aze 2.0 x (z = 4)) € (Or, Or) Continuous

— rewrite LHS as Uncurry $* o Pair (Kc 2.0, (A ze x ~— 4))

where Kc is the K combinator.

— then backchain using new facts:
- Vce Kc c € (o, 1) Continuous
- Vne (Axe x = n) € (Ogr, Or) Continuous

e We are treating A x @ x ~— n as family of continuous functions

parametrized by n : N.

12

3(a). Continuity of f : R — C where f(x) = 2™

e Let’s try a famous example:
(Az e Ezp(RC 2. * RC 7 x I¢ * RC z)) € (Ogr, O¢) Continuous
— Expand definitions of the complex topology and complex operators:
(A ze (Exp 0. * Cos (2. x m x x), Exp 0. * Sin (2. * w * x)))
€ (Ogr, Or x7 Op) Continuous
— rewrite LHS as

Pair (Uncurry $*x o Pair (Kc (Exzp 0.), Cos o Uncurry $* o
Pair (Kc 2., Uncurry $x o Pair (Kc m, Ic))),
Uncurry $x o Pair (Kc (Exp 0.), Sin o Uncurry $* o
Pair (Kc 2., Uncurry $*% o Pair (Kc m, Ic))))
€ (Ogr, Or X7 Opr) Continuous

— then backchain as usual.
e a one-liner for a user:

a(basic_continuity_tac[C_exp_def, RC_def, C_i_def, C_times_def, open_C_def]);

13

3(a). The Rewrite System

(AWWezx) ~ aY x € frees(V)
Ky y & frees(V)
Ke c € Constant
(AV et1),(AV e t3))
fo(AV et) f € Unary
Uncurry g o ((AV et1), (AV et2)) g € Binary
(Axehxp)o (AV et) h € Parametrized

Where V' is a pattern made up from (distinct) variables using (_,_) and:
e We write (f, g) for Pair(f, g);

e If V is a pattern with a free occurrence of the variable x, we write 7'(';:/ for the
combination of projections which extracts x.

— E.g., writing m; and 72 and for F'st and Snd, Wg(,;(z’x)’y) is m9 0 1.

— As a special case, 7% = |, and we may simplify f ol to f.

14

3(b). Implementation Notes (I)

e Miller-Nipkow higher-order matching is all we need.

e Don’t need to handle non-linear patterns or paired abstraction:

— A non-linear template theorem such as:
- Vfste (Axef (sx)(tz)) = Uncurry f o Pair(s, t)
instantiates to linear form:
- Vs te (Aze(sxz) + (tz)) = Uncurry $+ o Pair(s, t).

— A paired abstraction in the goal such as (A(z, y)ex + y) can be
preprocessed into Axy e Fst xy + Snd zy.

e Aside: I would still like an implementation of the Lochner-Fettig

algorithm. Pointers appreciated!

15

3(b). Implementation Notes (II)

e Unary, Binary and Parametrized determine the basic homomorphisms of

the category.

e For (R, x;0,(), f1, f2,...) C Top
Unary Fst, Snd, ~, FExp, Sin, Cos, ...
Binary $4, $=

Parametrized $

e For (R+,C+, X; 0O, <>, fl, f2, ..) C Grp
Unary Fst, Snd, ~, $*x (c:R), $x (¢c:C), $~ : C — C
Binary $+ : R - R - R, $+ : C —- C — C
Parametrized | $* : R — R — R, $x : C — C — C
Because A(z, y)e® = % vy is not an additive homomorphism

while Az e ¢c *x z and \x ez x ¢ are.

(Syntax: the postfix operator $- is complex conjugation.)

Defining *x : R — R — R is convenient here!

16

3(b). Implementation Notes (III)

e The infinite schemas like:

- Vf ge f € (p, o) Continuous N\ g € (o, 7) Continuous
= g o f € (p, 7) Continuous

may be implemented using template theorems:

Y poTf gepe& Topology N o € Topology N T € Topology N
f € (p, o) Continuous N g € (o, 7) Continuous
=g o f € (p, T) Continuous

e But you need to find witnesses for intermediate objects like o above.

e If we assume there is at most one object per type, can find witness
using type. E.g., (R x R)SET SET, gives witness Or X 7 Og.

e FEasy to implement by matching types with types of the constructors,
OR, $ x Ty eee

17

3(b). Proving morphismhood in (R, C, x;o0, (), f1, f2,...) C Grp (I)

Let’s try proving that f(x) = e’™* defines a group homomorphism:

(Aze Exzp(RC 2. x RC 7 x I¢ * RC z)) € Homomorphism (R4, C.)

rewrite LHS as

Exp o $x (RC 2.) 0 $x (RC 7) 0 $x I¢ o RC

then backchain as usual using additional facts:

= Exp € Homomorphism (Ry x¢g Ry, Cy);
= RC € Homomorphism (Ry, C.);
=V c: Ce $x ¢ € Homomorphism (Ry xg Ry, Ry x¢ Ry):

But we were a little lucky ...

18

3(b). Proving morphismhood in (R, C, x;o0, (), f1, f2,...) C Grp (II)

e Let’s try another example of a group homomorphism:
(Aze Ezp(x)~) € Homomorphism(Ry x¢ Ry, Cy)
— rewrite LHS as
$- o Exp
— then backchain as usual using additional fact:

= $- € Homomorphism (C., C,)

— Fails with false subgoals:

?F $- € Homomorphism (Ry x¢g Ry, Cy)
H Exp € Homomorphism (Ry X¢ R4, Ry xg Ry)

— The one-object-per-type approach has chosen the wrong

intermediate group structure.

19

3(c). Improving the witnessing method

e The procedure found the wrong witness to the goal:

7= dGe G € Group
A $- € Homomorphism (G, C.)
N Exp € Homomorphism (Ry xg Ry, G)

e Can find the right witness by matching goal conjuncts with facts.
e With G = C, all is well.

e May need a slightly deeper analysis, e.g., for chains of projections:

Fst o Snd o F'st

20

3(c). Other ways of making new morphisms from old

Definition by cases is a common way of getting new functions from old.
Here is a principle of definition by cases in Top:

FY cfgoTeo & Topology N ™ € Topology

A ¢ € (o, Openg) Continuous

N f € (o,) Continuous A g € (o, 7) Continuous

AN (Y ze x € Spacer o N cxz = 0. = f x =g x)

= (A ze if cx < 0. then f z else g z) € (o, 7) Continuous: THM

The real-valued function c¢ partitions Spacer o into two pieces.

The new function agrees with f on one piece and with g on the other.
f and g must agree where the pieces overlap.

Fits into the framework as a new sort of fact ...

... provided users agree to make their definitions in the right style.

Many other definitional principles worth investigating.

21

Final Remarks '

e For the slides: http://www.lemma-one.com/papers/
e For ProofPower: http://www.lemma-one.com/ProofPower/

e Tools for proving morphismhood in the usual categories of
day-to-day maths are both:

— extremely useful &

— relatively simple to implement.

Thank you! I

22

