
Now f is continuous (exercise!)

Rob Arthan

Lemma 1 Ltd. / Queen Mary, University of London

ETAPS/AIPA 2012 1st April, 2012

1

Background

• Goal is ITP for doing day-to-day mathematics.

• Proof obligations like the following are very common:

– f is continuous

– f is a homomorphism

– f is a linear transformation

– . . .

where f is defined by some complex expression.

• Can be very tedious to do manually.

• Obvious candidate for proof automation.

• Want a unified framework to solve these problems.

2

Overview

1. Implementing the categories of day-to-day maths in type theory.

2. Comparison with Set, ScottDom etc. Products (and sums).

3. Proving morphismhood in finitely presented categories:

(a) Algorithms;

(b) Implementation issues;

(c) Additional features.

• Prototyped using the ProofPower-HOL Mathematical Case

Studies.

• Slides available on line. URL on the last slide.

3

1. Concrete categories (I)

• Recall that a concrete category is one in which:

– each object X has an underlying set U(X);

– morphisms X → Y are functions f : U(X) → U(Y);

– g ◦ f = λx • g(f(x))).

• Represents a common mathematical scenario dealing with:

– sets equipped with some extra structure;

– functions between the sets that “respect” the structure.

4

1. Concrete categories (II)

• Examples:

Name Objects Morphisms

Set All sets Arbitrary functions

Grp Groups Group homomorphisms

R−Vec Real vector spaces Linear maps

Top Topological spaces Continuous functions

and many, many more.

• Non-examples:

Name Objects Morphisms

Rel All sets Arbitrary relations

Toph Topological spaces Top(X,Y)/ ≃

where f ≃ g means f and g are homotopy equivalent.

5

1. Representing a concrete category in type theory

• E.g. Top: an object of Top is given by a topology:

Topology = {τ : ′a SET SET |

(∀ V • V ⊆ τ ⇒
S

V ∈ τ)

∧ (∀ A B• A ∈ τ ∧ B ∈ τ ⇒ A ∩ B ∈ τ)}

• We call the underlying set of an object its space: SpaceT τ =
S

τ

• The morphisms are the continuous functions:

(σ, τ) Continuous = {f : ′a → ′b |

(∀ x• x ∈ SpaceT σ ⇒ f x ∈ SpaceT τ)

∧ (∀ A• A ∈ τ ⇒ {x |x ∈ SpaceT σ ∧ f x ∈ A} ∈ σ)}

(Syntax: Continuous is a postfix operator on pairs of topologies.)

6

1. Proving morphismhood in (R; ◦, f1, f2, . . .)

• A specific topology: the interval topology on R:

OR = {A : R SET | ∀ t• t ∈ A ⇒ (∃ x y•

t ∈ OpenInterval x y ∧ OpenInterval x y ⊆ A)}

• Assume given the following facts:

⊢ Exp ∈ Cts; ⊢ Sin ∈ Cts; ⊢ Cos ∈ Cts; ⊢ Ic ∈ Cts;

⊢ ∀f g• f ∈ Cts ∧ g ∈ Cts ⇒ g o f ∈ Cts.

where Cts = (OR, OR) Continuous and Ic is the I combinator.

• To prove, say: (λx • Sin(Cos(Exp x))) ∈ Cts

– rewrite as (Sin o Cos o Exp) ∈ Cts

– then backchain with the facts.

(We could have written (g o f) = λx • g(f x) in the facts, but this is not a

linear pattern, so higher-order matching is not immediately helpful here.)

7

2. Comparison with Set (and ScottDom and . . .) (I)

• Concrete categories may have (finite) products, but need not.

• Say the product is standard if U(X × Y) = U(X) × U(Y).

• Many useful examples do have standard products. E.g.,

– Top;

– Any concrete category axiomatised by first-order Horn clauses.

∗ E.g., Grp, R−Vec, POGrp, . . .

∗ Not fields.

• Similar situation for sums. E.g.,

– Top has standard sums;

– R−Vec has (finite) products that are also sums: X + Y = X × Y .

• Focus on products in this talk.

8

2. Comparison with Set (and ScottDom and . . .) (II)

• Cartesian-closed concrete categories are rare.

• Top is not Cartesian-closed:

– lots of ways of topologising X → Y ;

– “pathological” cases defeat them all.

• Grp, R−Vec and . . . are not Cartesian-closed.

• Curry is off the menu!

λx • λy • t is:

– at best a second-class citizen (e.g., in Top);

– more often an outright outlaw (e.g., in Grp).

9

3(a). Proving morphismhood in (R,×; ◦, 〈〉, f1, f2, . . .) ⊆ Top (I)

• Product of two topologies:

σ ×T τ = {C : (′a × ′b) SET | ∀ x y• (x , y) ∈ C ⇒

(∃ A B• A ∈ σ ∧ B ∈ τ ∧ x ∈ A ∧ y ∈ B ∧ (A × B) ⊆ C)}

• Pairing functions on underlying sets:

Pair (f , g) = (λ x• (f x , g x))

• New facts: for ρ, σ, τ ∈ {OR, OR × T OR, ...}:

⊢ ∀f g• f ∈ (ρ, σ) Continuous ∧ g ∈ (ρ, τ) Continuous

⇒ Pair (f , g) ∈ (ρ, σ ×T τ) Continuous

⊢ ∀f g• f ∈ (ρ, σ) Continuous ∧ g ∈ (σ, τ) Continuous

⇒ g o f ∈ (ρ, τ) Continuous

10

3(a). Proving morphismhood in (R,×; ◦, 〈〉, f1, f2, . . .) ⊆ Top (II)

• To prove, say:

(λx•(Sin(Exp x), Cos (Exp x))) ∈ (OR, OR ×T OR) Continuous

– rewrite LHS as Pair (Sin o Exp , Cos o Exp)

– then backchain with the facts.

• What about binary operations? E.g.,

(λ(x , y) • Exp(x + y)) ∈ (OR × T OR, OR) Continuous

– rewrite LHS as Exp o Uncurry $ + o Pair (Fst , Snd)

– then backchain using a new fact:

⊢ Uncurry $+ ∈ (OR × T OR, OR) Continuous

(Syntax: the $ prevents + being treated as an infix operator.)

• Maybe defining + : R × R → R rather than + : R → R → R

would have been better after all?

11

3(a). Proving morphismhood in (R,×; ◦, 〈〉, f1, f2, . . .) ⊆ Top (III)

• What about constant operands? E.g.,

(λx • 2 .0 ∗ (x b 4)) ∈ (OR, OR) Continuous

– rewrite LHS as Uncurry $ ∗ o Pair (Kc 2 .0 , (λ x • x b 4))

where Kc is the K combinator.

– then backchain using new facts:

⊢ ∀c • Kc c ∈ (σ, τ) Continuous

⊢ ∀n • (λ x • x b n) ∈ (OR, OR) Continuous

• We are treating λ x • x b n as family of continuous functions

parametrized by n : N.

12

3(a). Continuity of f : R → C where f(x) = e2πix

• Let’s try a famous example:

(λx • Exp(RC 2 . ∗ RC π ∗ IC ∗ RC x)) ∈ (OR, OC) Continuous

– Expand definitions of the complex topology and complex operators:

(λ x• (Exp 0 . ∗ Cos (2 . ∗ π ∗ x), Exp 0 . ∗ Sin (2 . ∗ π ∗ x)))

∈ (OR, OR ×T OR) Continuous

– rewrite LHS as

Pair (Uncurry $∗ o Pair (Kc (Exp 0 .), Cos o Uncurry $∗ o

Pair (Kc 2 ., Uncurry $∗ o Pair (Kc π, Ic))),

Uncurry $∗ o Pair (Kc (Exp 0 .), Sin o Uncurry $∗ o

Pair (Kc 2 ., Uncurry $∗ o Pair (Kc π, Ic))))

∈ (OR, OR ×T OR) Continuous

– then backchain as usual.

• a one-liner for a user:

a(basic continuity tac[C exp def , RC def , C i def , C times def , open C def]);

13

3(a). The Rewrite System

(λV • x) ; πV
x x ∈ frees(V)

(λV • y) ; K y y 6∈ frees(V)

(λV • c) ; K c c ∈ Constant

(λV • (t1, t2)) ; 〈(λV • t1), (λV • t2)〉

(λV • f t) ; f ◦ (λV • t) f ∈ Unary

(λV • g t1 t2) ; Uncurry g ◦ 〈(λV • t1), (λV • t2)〉 g ∈ Binary

(λV • h t p) ; (λx • h x p) ◦ (λV • t) h ∈ Parametrized

Where V is a pattern made up from (distinct) variables using (,) and:

• We write 〈f, g〉 for Pair(f , g);

• If V is a pattern with a free occurrence of the variable x, we write πV
x for the

combination of projections which extracts x.

– E.g., writing π1 and π2 and for Fst and Snd , π
((z,x),y)
x is π2 ◦ π1.

– As a special case, πx
x = I, and we may simplify f ◦ I to f .

14

3(b). Implementation Notes (I)

• Miller-Nipkow higher-order matching is all we need.

• Don’t need to handle non-linear patterns or paired abstraction:

– A non-linear template theorem such as:

⊢ ∀f s t • (λx • f (s x) (t x)) = Uncurry f o Pair(s, t)

instantiates to linear form:

⊢ ∀s t • (λx • (s x) + (t x)) = Uncurry $ + o Pair(s, t).

– A paired abstraction in the goal such as (λ(x , y) • x + y) can be

preprocessed into λxy • Fst xy + Snd xy .

• Aside: I would still like an implementation of the Löchner-Fettig

algorithm. Pointers appreciated!

15

3(b). Implementation Notes (II)

• Unary, Binary and Parametrized determine the basic homomorphisms of

the category.

• For (R,×; ◦, 〈〉, f1, f2, . . .) ⊆ Top

Unary Fst, Snd, ∼ , Exp, Sin, Cos, ...

Binary $+, $∗

Parametrized $ b

• For (R+, C+,×; ◦, 〈〉, f1, f2, . . .) ⊆ Grp

Unary Fst, Snd, ∼ , $ ∗ (c : R), $ ∗ (c : C), $: C → C

Binary $+ : R → R → R, $+ : C → C → C

Parametrized $∗ : R → R → R, $∗ : C → C → C

Because λ(x , y) • x ∗ y is not an additive homomorphism

while λx • c ∗ x and λx • x ∗ c are.

(Syntax: the postfix operator $ is complex conjugation.)

Defining ∗ : R → R → R is convenient here!

16

3(b). Implementation Notes (III)

• The infinite schemas like:

⊢ ∀f g• f ∈ (ρ, σ) Continuous ∧ g ∈ (σ, τ) Continuous

⇒ g o f ∈ (ρ, τ) Continuous

may be implemented using template theorems:

⊢ ∀ ρ σ τ f g • ρ ∈ Topology ∧ σ ∈ Topology ∧ τ ∈ Topology ∧

f ∈ (ρ, σ) Continuous ∧ g ∈ (σ, τ) Continuous

⇒ g o f ∈ (ρ, τ) Continuous

• But you need to find witnesses for intermediate objects like σ above.

• If we assume there is at most one object per type, can find witness

using type. E.g., (R × R)SET SET , gives witness OR × T OR.

• Easy to implement by matching types with types of the constructors,

OR, $ × T , ...

17

3(b). Proving morphismhood in (R, C,×; ◦, 〈〉, f1, f2, . . .) ⊆ Grp (I)

• Let’s try proving that f(x) = e2πix defines a group homomorphism:

(λx• Exp(RC 2 . ∗ RC π ∗ IC ∗ RC x)) ∈ Homomorphism (R+, C∗)

• rewrite LHS as

Exp o $∗ (RC 2 .) o $∗ (RC π) o $∗ IC o RC

• then backchain as usual using additional facts:

⊢ Exp ∈ Homomorphism (R+ ×G R+, C∗);

⊢ RC ∈ Homomorphism (R+, C∗);

⊢ ∀ c : C• $∗ c ∈ Homomorphism (R+ ×G R+, R+ ×G R+):

• But we were a little lucky . . .

18

3(b). Proving morphismhood in (R, C,×; ◦, 〈〉, f1, f2, . . .) ⊆ Grp (II)

• Let’s try another example of a group homomorphism:

(λx• Exp(x)) ∈ Homomorphism(R+ ×G R+, C∗)

– rewrite LHS as

$ o Exp

– then backchain as usual using additional fact:

⊢ $ ∈ Homomorphism (C∗, C∗)

– Fails with false subgoals:

?⊢ $ ∈ Homomorphism (R+ ×G R+, C∗)

?⊢ Exp ∈ Homomorphism (R+ ×G R+, R+ ×G R+)

– The one-object-per-type approach has chosen the wrong

intermediate group structure.

19

3(c). Improving the witnessing method

• The procedure found the wrong witness to the goal:

?⊢ ∃G• G ∈ Group

∧ $ ∈ Homomorphism (G, C∗)

∧ Exp ∈ Homomorphism (R+ ×G R+, G)

• Can find the right witness by matching goal conjuncts with facts.

• With G = C∗ all is well.

• May need a slightly deeper analysis, e.g., for chains of projections:

Fst o Snd o Fst

20

3(c). Other ways of making new morphisms from old

• Definition by cases is a common way of getting new functions from old.

• Here is a principle of definition by cases in Top:

⊢ ∀ c f g σ τ • σ ∈ Topology ∧ τ ∈ Topology

∧ c ∈ (σ, OpenR) Continuous

∧ f ∈ (σ, τ) Continuous ∧ g ∈ (σ, τ) Continuous

∧ (∀ x• x ∈ SpaceT σ ∧ c x = 0 . ⇒ f x = g x)

⇒ (λ x• if c x ≤ 0 . then f x else g x) ∈ (σ, τ) Continuous: THM

• The real-valued function c partitions SpaceT σ into two pieces.

• The new function agrees with f on one piece and with g on the other.

• f and g must agree where the pieces overlap.

• Fits into the framework as a new sort of fact . . .

• . . . provided users agree to make their definitions in the right style.

• Many other definitional principles worth investigating.

21

Final Remarks

• For the slides: http://www.lemma-one.com/papers/

• For ProofPower: http://www.lemma-one.com/ProofPower/

• Tools for proving morphismhood in the usual categories of

day-to-day maths are both:

– extremely useful &

– relatively simple to implement.

Thank you!

22

