Building a Library of

Mechanized Mathematical Proots
Why do it?
And what is it like to do?

Rob Arthan

Lemma 1 Ltd. / Queen Mary, University of London

KICMS 2010 14th September, 209

/A Hypothetical Question. \

What would Newton or the Bernoullis or Gauss or Delaunay or
Hilbert or ...your list goes here ... have done with one of these:

l [

What would you like to prove today?

FET01 s @BHBBHB
D@E

IR (= KE%EEE
@EBE‘@“ =
ﬁ@ J e =

H@HM@@M@@E@@E
T B

=

/Formalised Mathematics ca. 1910: 1 +1 = hmmm?

“The properties of 2 are largely analogous to those of 1, while the

properties of 2, are more analogous to those of 2.7

-p. 375
A .N. Whitehead and B. Russell Principia Mathematica *56 - 1910

What about properties of e or m or (1) or m13(5°) or ...?
e The immense symbolic processing tasks defy human capabilities.
e But 100 years on we have machines to do all that.
e Machines don’t know what symbols to process.

e Synergy between human and computer is what’s called for.

o /

/Pure Mathematician: Why bother? I \

e Mathematical arguments do contain errors!

e How many in the classification of finite simple groups?

e Even Aigner & Ziegler’s “Proofs from THE BOOK” (ed. 1).

See Bill Casselman. The Difficulties of Kissing in Three Dimensions.

e Avoid controversies about use of computers:
— 4 colour theorem

— Kepler sphere packing conjecture

e Eliminate circle-squarers, cube-doublers, angle-trisectors!

...or even serious, but misguided “provers” of P = NP

/Engz'neer: Why bother? I \

x,y)

\B

A simple example: calculating bearings

® SpeCIﬁCatIOH take /8<£E,’y) chosen in the appropriate quadrant WheI‘e

Y
tan 6(90,3;) — E

e Design: calculate the bearing using: 3 = tan™1(y/x)

e Code: beta = atan(y/x)

o BUT 6(1,1) = 7T/4 % 57'('/4 = 6(_1,_1)

Testing tends not to find subtle errors. I

/Computer scientist: Why bother? I

Computer scientists. . .
e ...prove theorems

e ...specify, design and code programs

‘ See above! '

/Proposal I

We should use computers to support mathematical endeavours.

e | will describe one approach that offers:
— high assurance (1 # 2)
— extensiblity and programmability

— access to a large library of existing results

e In the rest of the talk I hope to:
— Show how the LCF paradigm offers high assurance

— Give a flavour of what it is like to develop a theory like the
calculus in an LCF-style system

_

/A Deductive System. \

Judgments: m Dn, m,n € Z (intended meaning: m divides n)
- : axiom, m # 0
Rules: | 1, Dn . mDn; mDny
mD —n m D ny + no
. ‘ m :.aflom
A deduction: | 1D 1 ~®°™ 1D -1 n

1DO

e Robin Milner’s LCF method implements a deductive system as a

data type.

e Strongly typed programming language enforces the rules.

- /

The Deductive System in ML I
Demo 1

local

datatype THEOREM = D of (int * int);
in

type THEOREM = THEOREM;

infix D; infix ++;

exception NOT_ALLOWED;

fun axiom m = if m <> O then m D m else raise NOT_ALLOWED;
fun -=- (M D n) =m D “n;
fun (m1 D n1) ++ (m2 D n2) =

if m1 = m2 then m1 D (n1 + n2) else raise NOT_ALLOWED;
end;

o

/A Decision Procedure '
Demo 1 concluded.

Given m and n, the function decide tries to prove that m divides n:

fun decide m n =
if n < 0 then ——-(decide m ("n))
else if n <= m then axiom m

else decide m (n-m) ++ axiom m;

Logical kernel will not allow invalid deductions:

> decide 2 6;
val it = 2 D 6 : THEOREM
> decide 2 7;
val it = 2 D 8 : THEOREM
> decide O O;

Exception- NOT_ALLOWED raised

o

~

10

~

A Real System: ProofPower-HOL I

Member of the HOL family implemented for industrial use.
Cf. Classic HOL (Gordon), HOL IV (Slind, Norrish), HOL Light (Harrison).

Expressions and predicates represented by the type T ERM,
entered using “Quine corners”: "1 4+ 27, "1 = 27
Abstract data type of theorems is the type T'"HM . Printed with

a turnstile: - -1 = 2.
Extensive facilities for programming with syntax.

Maintains a database of theories containing specifications (i.e.,

defining properties of types and constants) and theorems.

Powerful higher-level tools for automated and interactive proof

/

11

-~

Characteristics of the LCF Approach I

Logical kernel is small and simple to check

— possibly even formally verifiable.

Derived rules may fail to produce desired output but can’t

produce unsound results.
Can safely code very complex algorithms.

Potential for cross-checking using alternative compilers and/or

implementations.

There are other complementary approaches.

/

12

/Deﬁnitions In ProofPower-HOL ' \

e Syntax for defining new constants (including functions,
functionals etc.) with an arbitrary defining property:

<NAME> :<TYPE>

<DEFINING PROPERTY >

e Proof obligation to verify consistency (often discharged

automatically).
HOL Constant HOL Constant
Even : N SET Odd : N SET

Vne n € Even < (dmen = 2xm) Vne — 2xn € Odd N 2«n+1 € Odd

o /

13

/Calculus In ProofPower-HOL 1 '

or f’(x) = ¢ in the usual vernacular).

$Deriv: (R - R) - R —- R — BOOL

Vf ¢ xe (f Deriv ¢) x
& Vee (0. < e = dde 0. < d A
Vye Abs(y—z) < d N ~y=z = Abs((f y—f z)/(y—z) — ¢c) < e

e This definition is trivially consistent.

e All the usual theorems: product rule, chain rule, Rolle, IVT, MVT,

o

~

e Write (f Deriv ¢) z to mean function f has derivative c at = (i.e., df /dx = ¢

/

14

/Calculus In ProofPower-HOL 2 ' \

e Define the exponential function by the differential equation:

EFExp : R — R

Exp 0. = 1. N (Vze (Exzp Deriv Exp x) x)

e Prove the consistency via theory of power series and differentiation of limits.

Logarithm defined as left inverse of exponential.

e All the usual basic theorems, e.g.,

-V ze 0. < z = (Log Deriv z —1) xz : THM

e Similar treatment of trigonometric functions.

15

/Calculus In ProofPower-HOL 3 '
Demo 2 continued.

e A theorem from antiquity:

FVre 0. <r=
{(z, y)|Sqrt (zx = 2 4+y~ 2) < r} Area w*xr 2

e A theorem of Minkowski:

- VA ae
A € Convex N A € Bounded N —-A = {}
N (Vz yo (z,y) € A = (~zx, ~y) € A)
AN A Area a N a > 4.
= 3ij:Ze (ZR i, ZR j) € A A —(ZR 4, ZR j) = (0., 0.)

e de Bruijn factor. Formal / Informal. Typically 0.5 — 57

ko See Freek Wiedijk’s web site http://www.cs.ru.nl/"freek/

e Integration via the Kurzweil-Henstock gauge integral. FTC, areas, ...

16

~

KE:scaumple: A Combinatorics Problem.
Demo 2 concluded.

e (m+n)™ should give the number of ways of drawing m samples with

replacement out of a set of m + n elements.

e DistinctSamples n m should give the number of ways of drawing m samples

without replacement out of a set of m 4+ n elements.

DistinctSamples : N — N — N

(Vne DistinctSamples n 0 = 1)

A (Ym ne
DistinctSamples n (m+1) = (n+m+1) * DistinctSamples n m)

e Plan: give high assurance solution to a combinatorics problem by:

— 1) Proving that these functions do give the desired results.

k — 2) Symbolically executing them inside the theorem prover. /

17

-~

Final Remarks '

e Machine-checked proof has a part to play.
e Technology can help: critical bugs are not inevitable!
e Formalisation need not lead to combinatorial explosion.

e Lots of fascinating work to do.

Thank youl! I

o

18

(T N

e For ProofPower
http://www.lemma-one.com/ProofPower/index/index.html

e Other implementations of HOL:
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/"jrh13/hol-1ight/

e The Flyspeck project:
http://code.google.com/p/flyspeck/

e Freek Wiedijk’s progress report on 100 theorems:
http://www.cs.ru.nl/"freek/100/index.html

e The Mizar project:

\\\\ http://mizar.uwb.edu.pl/ J///

19

The following is the Standard ML source of the demos:

Text dumped to file 82dedsys.ML

local

datatype THEOREM = D of (int =* int);
n

type THEOREM = THEOREM:

inficx D; infix +-+;

exception NOT_ALLOWED:;

fun ariom m = if m <> 0 then m D m else raise NOT_ALLOWED:;
fun —— (m D n) = m D ~mn;

fun (m1 D n1) ++ (m2 D n2) =
if m1 = m2 then mi1 D (nl + n2) else raise NOT_ALLOWED;

end;

Text dumped to file 82s1.ML

142;

fun fact n = if n <= 0 then 1 else n * fact(n—1);
fact 1s0;

map fact [1, 2, 3, 4, 5, 6, 7];

use "82dedsys.ML";

axtom 1;

1 D 1;

3 D b5;

val thml = axiom 1;

val thm2 = —— (axiom 1);

val thm8 = thml 4+ thm2;

fun decide m n =
if n < 0 then ——(decide m (~n))
else if n <= m then axiom m
else decide m (n—m) +-+ aziom m;

19-1

decide 1 1;
decide 1 ~1;
decide 2 6;
decide 13 1001;
decide 2 7;
decide 0 O0;
decide ~1 1;

Text dumped to file 82s2.ML

val
val
val
val
val
val
val
val

set _

tml = T0 = 17,

tyl = type_of tml;

(f1, argsl) = strip_app tml;

ty_f1 = type_of f1;

thml = get_spec f1;

thm2 = list_V_elim [717, T17] thml;

thm3 = A_left_elim thm2;

thm4 = rewrite_conv[] "(0+14+2438)*x(3+2+140)7;
goal([], TVm ¢ j : Ne m™ (¢ + j) = m™i * m j);

a(REPEAT strip_tac);

a(induction_tac Tj7);

a(rewrite_tac[N_exp_def]);

a(asm_rewrite_tac| plus_assoc_thm1 , N_exp_def]);
a(PC_T1 "lin_arith" prove_tac []);

val
val
val
val
val
val
val
val
val
val
val

thmb = pop_thm();

tm2 = T (Azex + 1)7;

ty2 = type_of tm2;

thm6 = rewrite_conv[]" (Azex + 1) 27
tm3 = T[z; y; 1]7;

ty8 = type_of tm3;

(f8, args3) = strip_app "[z; y; 2]
ty_f8 = type_of [3;

thm7 = rewrite_conv|[nth_def] " Nth [z; y; z] 27
thm8 = get_spec” MapT;

ty4 = type_ofT Map™;

19-2

val thm9 = rewrite_conv[map_def] " Map (Aze =z + 1) [1; 2; 3]

val tm4 = T2 € {1; 2; 3}

val (f4, args4) = strip_app tmi;

val ty_f4 = type_of f4;

val thm4 = get_spec f4;

val thm10 = prove_rule[] tm4;

val thm11l = pc_rulel "sets_extl"prove_rule[elems_def]
CElems [1; 2; 8] = {1; 2; 3}

get_spect m1;

get_specl Sin;

get_spec” $ Area;

get_spec” $Intp;

get_spec” Gauge;

get_spect TaggedPartition7;

get_spec” $ Fine;

get_spec” RiemannSum 7;

distinct_samples_def;

val thm12 = (print "\n\n"; conv_rule(MAP_C plus_conv)(pure_rewrite_conv
[distinct_samples_def
pc_rulel "lin_arith" prove_rule[]"Vmem=x1 = m7,

plus_assoc_thm1]

™ DistinctSamples 10 (0+141+1)7));
val thm13 = rewrite_rule[] thm12;
distinct_samples_finite_size_thm;
samples_finite_size_thm;
(* and then x)
use_file"82demo2proof . ML";
val thm14 = pop_thm();
get_spect Elems T,
get_spect Distinct1;
get_spect Finite

Text dumped to file 82demo2proof. ML
set_goal([], © (* Try mot to show from HERE ... %)

19-3

< i ANi< 865} AN# L= 23}

let S = {L | Elems | 1
—L € Distinct}

L
inlet X = {L | L €
in S € Finite
N —#H#HS =0
AN X CS
N #X /) #S > 1/2

s
a(rewrite_tac[let_def]);
a(strip_asm_tac(V_elim™ 3657 range_finite_size_thm1));
a(lemma_tac™ 28 < #{i | 1 < i AN 1 < 865} THEN1 asm_rewrite_tacl]);
a(all_fc_tac[distinct_samples_finite_size_thm]);
a(all_fc_tac[samples_finite_size_thm]);
a(REPEAT_N 2 (POP_ASM_T (ante_tac o V_elim"287)));
a(POP_ASM_T discard_tac THEN strip_tac THEN strip_tac);
a(pure_asm_rewrite_tac[conv_rule(ONCE_MAP_C eq_sym_conv)NR_one_one_thm,
NR_N_exp_thm,
R_frac_def]);
a(asm_tac(rewrite_conv[][FNR 365 = 237));
a(PC_T1"predicates" rewrite_tac[] THEN strip_tac
THEN1 (pure_asm_rewrite_tac[NR_one_one_thm]
THEN PC_T1 "lin_arith" prove_tacl]));
a(REPEAT strip_tac THEN1 PC_T1 "sets_extl" prove_tac[]);
a(pure_rewrite_tac[NR_one_one_thm]);
a(LEMMA_TT{L | (Blems L C {i | 1 < i A i < 365} A # L = 23)
A =L € Distinct}
= {L | Elems L C {7 | 1 < 1 AN i < L =
{L| Elems L C {i | 1<iAi<365AN#L =23
AN L € Distinct} ™
pure_rewrite_thm_tac
THEN1 PC_T1 "sets_extl" prove_tacl]);
a(lemma_tac™{L | Elems L C {i¢ | 1 < i N1 < 365}y N # L = 23 A
L € Distinct} C
{L|ElemsLC{'L|1 < i ANi < 865 N # L = 2317
THEN1 PC_T1 "sets_extl" prove_tacl]);
a(ALL_FC_T (MAP_EVERY (ante_tac o
once_rewrite_rule[conv_rule(ONCE_MAP_C eq_sym_conv)NR_one_one_thm]))

c {i
S A

19-4

[size_C _diff _thm]);
a(pure_rewrite_tac[NR_plus_homomorphism_thm,

pc_rulel "R_lin_arith" prove_rule]

"Va b c:Rea = b 4+ ¢ & b = a — c¢7]

THEN STRIP_T pure_rewrite_thm_tac);
a(LIST_DROP_NTH_ASM_T [3, 6, 9] pure_rewrite_tac);
a(LEMMA_T "Va b c d:ReNR 0 < b A NR 0 < d A axd < bxc = a/b < c¢/d"

bec_thm_tac

THEN1 (REPEAT strip_tac

THEN1 ALL_FC_T1 fc_<_canon asm_rewrite_tac[R_cross_mult_less_thm]));

a(pure_asm_rewrite_tac[NR_N_exp_thm,

pc_rulel "R_lin_arith" prove_rule]]

"Va b c:cRea < NR 2 % (b — ¢) < a + NR 2 x ¢ < NR 2 % b7,

REPEAT_C (once_rewrite_conv|distinct_samples_rw_thm]

THEN _C rewrite_conv[])

M DistinctSamples (365—23) 237]);
a(pure_rewrite_tac[NR_plus_homomorphism_thm1,

NR_times_homomorphism_thml1 ,

NR_less_thm]);
a(rewrite_tac[]) (* ... down to HERE! x);

19-5

