
'

&

$

%

Building a Library of

Mechanized Mathematical Proofs

Why do it?

And what is it like to do?

Rob Arthan

Lemma 1 Ltd. / Queen Mary, University of London

ICMS 2010 14th September, 2010

1

'

&

$

%

A Hypothetical Question

What would Newton or the Bernoullis or Gauss or Delaunay or

Hilbert or . . . your list goes here . . . have done with one of these:

What would you like to prove today?

?

2

'

&

$

%

Formalised Mathematics ca. 1910: 1 + 1 = hmmm?

“The properties of 2̇ are largely analogous to those of 1, while the

properties of 2r are more analogous to those of 2.”

A.N. Whitehead and B. Russell Principia Mathematica *56
p. 375

1910

What about properties of e or π or ζ(1) or π13(S
5) or . . . ?

• The immense symbolic processing tasks defy human capabilities.

• But 100 years on we have machines to do all that.

• Machines don’t know what symbols to process.

• Synergy between human and computer is what’s called for.

3

'

&

$

%

Pure Mathematician: Why bother?

• Mathematical arguments do contain errors!

• How many in the classification of finite simple groups?

• Even Aigner & Ziegler’s “Proofs from THE BOOK” (ed. 1).

See Bill Casselman. The Difficulties of Kissing in Three Dimensions.

• Avoid controversies about use of computers:

– 4 colour theorem

– Kepler sphere packing conjecture

• Eliminate circle-squarers, cube-doublers, angle-trisectors!

. . . or even serious, but misguided “provers” of P = NP

4

'

&

$

%

Engineer: Why bother?

A simple example: calculating bearings

(x, y)

β

• Specification: take β(x,y) chosen in the appropriate quadrant where:

tan β(x,y) =
y

x

• Design: calculate the bearing using: β = tan−1(y/x)

• Code: beta = atan(y/x)

• BUT: β(1,1) = π/4 6= 5π/4 = β(−1,−1)

Testing tends not to find subtle errors.

5

'

&

$

%

Computer scientist: Why bother?

Computer scientists. . .

• . . . prove theorems

• . . . specify, design and code programs

See above!

6

'

&

$

%

Proposal

We should use computers to support mathematical endeavours.

• I will describe one approach that offers:

– high assurance (1 6= 2)

– extensiblity and programmability

– access to a large library of existing results

• In the rest of the talk I hope to:

– Show how the LCF paradigm offers high assurance

– Give a flavour of what it is like to develop a theory like the

calculus in an LCF-style system

7

'

&

$

%

A Deductive System

Judgments: m D n, m, n ∈ Z (intended meaning: m divides n)

Rules:

�
�

�
�

m D m
: axiom, m 6= 0

m D n
m D −n

: −
m D n1 m D n2

m D n1 + n2
: +

A deduction:

�
�

�
�

1 D 1
: axiom

1 D 1
: axiom

1 D −1
: −

1 D 0
: +

• Robin Milner’s LCF method implements a deductive system as a

data type.

• Strongly typed programming language enforces the rules.

8

'

&

$

%

The Deductive System in ML
Demo 1

local

datatype THEOREM = D of (int * int);

in

type THEOREM = THEOREM;

infix D; infix ++;

exception NOT_ALLOWED;

fun axiom m = if m <> 0 then m D m else raise NOT_ALLOWED;

fun -- (m D n) = m D ~n;

fun (m1 D n1) ++ (m2 D n2) =

if m1 = m2 then m1 D (n1 + n2) else raise NOT_ALLOWED;

end;

9

'

&

$

%

A Decision Procedure
Demo 1 concluded.

Given m and n, the function decide tries to prove that m divides n:

fun decide m n =

if n < 0 then --(decide m (~n))

else if n <= m then axiom m

else decide m (n-m) ++ axiom m;

Logical kernel will not allow invalid deductions:

> decide 2 6;

val it = 2 D 6 : THEOREM

> decide 2 7;

val it = 2 D 8 : THEOREM

> decide 0 0;

Exception- NOT_ALLOWED raised

10

'

&

$

%

A Real System: ProofPower-HOL

Demo 2.

• Member of the HOL family implemented for industrial use.

Cf. Classic HOL (Gordon), HOL IV (Slind, Norrish), HOL Light (Harrison).

• Expressions and predicates represented by the type TERM ,

entered using “Quine corners”: p 1 + 2 q , p1 = 2 q

• Abstract data type of theorems is the type THM . Printed with

a turnstile: ⊢ ¬1 = 2 .

• Extensive facilities for programming with syntax.

• Maintains a database of theories containing specifications (i.e.,

defining properties of types and constants) and theorems.

• Powerful higher-level tools for automated and interactive proof.

11

'

&

$

%

Characteristics of the LCF Approach

• Logical kernel is small and simple to check

— possibly even formally verifiable.

• Derived rules may fail to produce desired output but can’t

produce unsound results.

• Can safely code very complex algorithms.

• Potential for cross-checking using alternative compilers and/or

implementations.

• There are other complementary approaches.

12

'

&

$

%

Definitions In ProofPower-HOL

• Syntax for defining new constants (including functions,

functionals etc.) with an arbitrary defining property:

<NAME> :<TYPE>

<DEFINING PROPERTY>

• Proof obligation to verify consistency (often discharged

automatically).

HOL Constant

Even : N SET

∀n• n ∈ Even ⇔ (∃m•n = 2∗m)

HOL Constant

Odd : N SET

∀n• ¬ 2∗n ∈ Odd ∧ 2∗n+1 ∈ Odd

13

'

&

$

%

Calculus In ProofPower-HOL 1

• Write (f Deriv c) x to mean function f has derivative c at x (i.e., df/dx = c

or f ′(x) = c in the usual vernacular).

$Deriv : (R → R) → R → R → BOOL

∀f c x• (f Deriv c) x

⇔ ∀e• 0 . < e ⇒ ∃d• 0 . < d ∧

∀y• Abs(y−x) < d ∧ ¬y=x ⇒ Abs((f y−f x)/(y−x) − c) < e

• This definition is trivially consistent.

• All the usual theorems: product rule, chain rule, Rolle, IVT, MVT,

14

'

&

$

%

Calculus In ProofPower-HOL 2

• Define the exponential function by the differential equation:

Exp : R → R

Exp 0 . = 1 . ∧ (∀x• (Exp Deriv Exp x) x)

• Prove the consistency via theory of power series and differentiation of limits.

• Logarithm defined as left inverse of exponential.

• All the usual basic theorems, e.g.,

⊢ ∀ x• 0 . < x ⇒ (Log Deriv x −1) x : THM

• Similar treatment of trigonometric functions.

15

'

&

$

%

Calculus In ProofPower-HOL 3
Demo 2 continued.

• Integration via the Kurzweil-Henstock gauge integral. FTC, areas, . . .

• A theorem from antiquity:

⊢ ∀ r• 0 . < r ⇒

{(x , y)|Sqrt (x b 2 + y b 2) ≤ r} Area π ∗ r b 2

• A theorem of Minkowski:

⊢ ∀A a•

A ∈ Convex ∧ A ∈ Bounded ∧ ¬A = {}

∧ (∀x y• (x , y) ∈ A ⇒ (∼x , ∼y) ∈ A)

∧ A Area a ∧ a > 4 .

⇒∃i j : Z• (ZR i , ZR j) ∈ A ∧ ¬(ZR i , ZR j) = (0 ., 0 .)

• de Bruijn factor. Formal / Informal. Typically 0.5 – 5?

• See Freek Wiedijk’s web site http://www.cs.ru.nl/~freek/

16

'

&

$

%

Example: A Combinatorics Problem
Demo 2 concluded.

• (m + n)m should give the number of ways of drawing m samples with

replacement out of a set of m + n elements.

• DistinctSamples n m should give the number of ways of drawing m samples

without replacement out of a set of m + n elements.

DistinctSamples : N → N → N

(∀n• DistinctSamples n 0 = 1)

∧ (∀m n•

DistinctSamples n (m+1) = (n+m+1) ∗ DistinctSamples n m)

• Plan: give high assurance solution to a combinatorics problem by:

– 1) Proving that these functions do give the desired results.

– 2) Symbolically executing them inside the theorem prover.

17

'

&

$

%

Final Remarks

• Machine-checked proof has a part to play.

• Technology can help: critical bugs are not inevitable!

• Formalisation need not lead to combinatorial explosion.

• Lots of fascinating work to do.

Thank you!

18

'

&

$

%

Links

• For ProofPower

http://www.lemma-one.com/ProofPower/index/index.html

• Other implementations of HOL:

http://hol.sourceforge.net/

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

http://www.cl.cam.ac.uk/~jrh13/hol-light/

• The Flyspeck project:

http://code.google.com/p/flyspeck/

• Freek Wiedijk’s progress report on 100 theorems:

http://www.cs.ru.nl/~freek/100/index.html

• The Mizar project:

http://mizar.uwb.edu.pl/

19

The following is the Standard ML source of the demos:

Text dumped to file 82dedsys.ML

local

datatype THEOREM = D of (int ∗ int);
in

type THEOREM = THEOREM ;
infix D; infix ++;
exception NOT ALLOWED;

fun axiom m = if m <> 0 then m D m else raise NOT ALLOWED;

fun −− (m D n) = m D ∼n;

fun (m1 D n1) ++ (m2 D n2) =
if m1 = m2 then m1 D (n1 + n2) else raise NOT ALLOWED;

end;

Text dumped to file 82s1.ML

1+2 ;
fun fact n = if n <= 0 then 1 else n ∗ fact(n−1);
fact 1s0 ;
map fact [1, 2, 3, 4, 5, 6, 7];
use "82dedsys.ML";
axiom 1 ;
1 D 1 ;
3 D 5 ;
val thm1 = axiom 1 ;
val thm2 = −− (axiom 1);
val thm3 = thm1 ++ thm2 ;
fun decide m n =

if n < 0 then −−(decide m (∼n))
else if n <= m then axiom m

else decide m (n−m) ++ axiom m;

19-1

decide 1 1 ;
decide 1 ∼1 ;
decide 2 6 ;
decide 13 1001 ;
decide 2 7 ;
decide 0 0 ;
decide ∼1 1 ;

Text dumped to file 82s2.ML

val tm1 = p0 ∗ 1q;
val ty1 = type of tm1 ;
val (f1, args1) = strip app tm1 ;
val ty f1 = type of f1 ;
val thm1 = get spec f1 ;
val thm2 = list ∀ elim [p1q, p1q] thm1 ;
val thm3 = ∧ left elim thm2 ;
val thm4 = rewrite conv[] p(0+1+2+3)∗(3+2+1+0)q;
set goal([], p∀m i j : N• mb(i + j) = mbi ∗ mbjq);
a(REPEAT strip tac);
a(induction tac pjq);
a(rewrite tac[N exp def]);
a(asm rewrite tac[plus assoc thm1 , N exp def]);
a(PC T1 "lin arith" prove tac []);
val thm5 = pop thm();
val tm2 = p(λx•x + 1)q;
val ty2 = type of tm2 ;
val thm6 = rewrite conv[]p(λx•x + 1) 2q;
val tm3 = p[x ; y; 1]q;
val ty3 = type of tm3 ;
val (f3, args3) = strip app p[x ; y; z]q;
val ty f3 = type of f3 ;
val thm7 = rewrite conv[nth def] pNth [x ; y; z] 2q;
val thm8 = get specpMapq;
val ty4 = type of pMapq;

19-2

val thm9 = rewrite conv[map def] pMap (λx• x + 1) [1 ; 2 ; 3]q;
val tm4 = p2 ∈ {1 ; 2 ; 3}q;
val (f4, args4) = strip app tm4 ;
val ty f4 = type of f4 ;
val thm4 = get spec f4 ;
val thm10 = prove rule[] tm4 ;
val thm11 = pc rule1 "sets ext1"prove rule[elems def]

pElems [1 ; 2 ; 3] = {1 ; 2 ; 3}q;
get specpπq;
get specpSinq;
get specp$Areaq;
get specp$IntRq;
get specpGaugeq;
get specpTaggedPartitionq;
get specp$Fineq;
get specpRiemannSumq;
distinct samples def ;
val thm12 = (print "\n\n"; conv rule(MAP C plus conv)(pure rewrite conv

[distinct samples def ,
pc rule1 "lin arith" prove rule[]p∀m•m∗1 = mq,
plus assoc thm1]
pDistinctSamples 10 (0+1+1+1)q));

val thm13 = rewrite rule[] thm12 ;
distinct samples finite size thm;
samples finite size thm;
(∗ and then ∗)
use file"82demo2proof .ML";
val thm14 = pop thm();
get specpElemsq;
get specpDistinctq;
get specpFiniteq;

Text dumped to file 82demo2proof.ML

set goal([], p (∗ Try not to show from HERE ... ∗)

19-3

let S = {L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23}
in let X = {L | L ∈ S ∧ ¬L ∈ Distinct}
in S ∈ Finite

∧ ¬#S = 0

∧ X ⊆ S

∧ #X / #S > 1/2

q);
a(rewrite tac[let def]);
a(strip asm tac(∀ elimp365q range finite size thm1));
a(lemma tacp23 ≤ #{i | 1 ≤ i ∧ i ≤ 365}q THEN1 asm rewrite tac[]);
a(all fc tac[distinct samples finite size thm]);
a(all fc tac[samples finite size thm]);
a(REPEAT N 2 (POP ASM T(ante tac o ∀ elimp23q)));
a(POP ASM T discard tac THEN strip tac THEN strip tac);
a(pure asm rewrite tac[conv rule(ONCE MAP C eq sym conv)NR one one thm,

NR N exp thm,
R frac def]);

a(asm tac(rewrite conv[]pNR 365 b 23q));
a(PC T1"predicates" rewrite tac[] THEN strip tac

THEN1 (pure asm rewrite tac[NR one one thm]
THEN PC T1 "lin arith" prove tac[]));

a(REPEAT strip tac THEN1 PC T1 "sets ext1" prove tac[]);
a(pure rewrite tac[NR one one thm]);
a(LEMMA Tp{L | (Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23)

∧ ¬L ∈ Distinct}
= {L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23} \

{L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23

∧ L ∈ Distinct}q

pure rewrite thm tac

THEN1 PC T1 "sets ext1" prove tac[]);
a(lemma tacp{L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23 ∧

L ∈ Distinct} ⊆
{L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23}q

THEN1 PC T1 "sets ext1" prove tac[]);
a(ALL FC T (MAP EVERY (ante tac o

once rewrite rule[conv rule(ONCE MAP C eq sym conv)NR one one thm]))

19-4

[size ⊆ diff thm]);
a(pure rewrite tac[NR plus homomorphism thm,

pc rule1 "R lin arith" prove rule[]
p∀a b c:R•a = b + c ⇔ b = a − cq]
THEN STRIP T pure rewrite thm tac);

a(LIST DROP NTH ASM T [3, 6, 9] pure rewrite tac);
a(LEMMA T p∀a b c d:R•NR 0 < b ∧ NR 0 < d ∧ a∗d < b∗c ⇒ a/b < c/dq

bc thm tac

THEN1 (REPEAT strip tac

THEN1 ALL FC T1 fc ⇔ canon asm rewrite tac[R cross mult less thm]));
a(pure asm rewrite tac[NR N exp thm,

pc rule1 "R lin arith" prove rule[]
p∀a b c:R•a < NR 2 ∗ (b − c) ⇔ a + NR 2 ∗ c < NR 2 ∗ bq,
REPEAT C (once rewrite conv[distinct samples rw thm]

THEN C rewrite conv[])
pDistinctSamples (365−23) 23q]);

a(pure rewrite tac[NR plus homomorphism thm1,
NR times homomorphism thm1,
NR less thm]);

a(rewrite tac[]) (∗ ... down to HERE! ∗);

19-5

