
'

&

$

%

Reasoning about Linear Systems

Rob Arthan

Lemma 1 Ltd./Dept. of Computer Science. Queen Mary, London

With

Ursula Martin, Paulo Oliva, Erik Arne Mathiesen

Dept. of Computer Science. Queen Mary, London

ARG, Cambridge 13th November, 2007

1



'

&

$

%

References and Links

• Reasoning About Linear Systems, this paper, SEFM 2007.

• Hoare Logic in the Abstract, Oliva, Mathiesen & Martin, CSL 2006.

• Formal Methods for Control Engineering: a Validate Decision Procedure for

Nichols Plot Analysis, Hardy, Ph. D. Thesis, St. Andrews, 2006

(also Applications of Real Number Theorem Proving in PVS, Gottliebsen,

Hardy, Lightfoot & Martin, to appear).

• A Hoare Logic for Single-Input Single-Output Continuous-Time Control

Systems, Boulton, Hardy & Martin, HSCC, 2003.

• ClawZ: Control Laws in Z, Arthan, Caseley, O’Halloran & Smith, ICFEM

2000.

• ClawZ — The Semantics of Simulink Diagrams, Jones, Lemma 1 Report,

1999.

• See ‘Papers’ and ‘ClawZ’ pages at http://www.lemma-one.com

2



'

&

$

%

Backgrounds and Aims

• Apply computational logic to specification and verification of

systems with continuous data/time.

• Applications domains, e.g., avionics control systems

• Existing tools (e.g., Simulink):

– Good for: numerical calculation, simulation

– No help with: logical reasoning, verification of properties

• Reuse ideas from software specification and verification

• Modular, scalable approach building on proven ideas

3



'

&

$

%

Models of Control Systems I

• A physical system:

mk

x

f

• Laws of mechanics give an equational model:

mẍ(t) + kx(t) − f = 0

4



'

&

$

%

Models of Control Systems II

• Equational model has no intensionality:

mẍ(t) + kx(t) − f = 0

• Block diagram model gives structure and intensionality:

f
- 1

m

ẍ
-+h - ∫

ẋ
- ∫

x
-

−k

m

�

6

• Can be viewed in many ways: e.g., as a design for an analogue

computer

5



'

&

$

%

New Systems From Old — Structured Block Diagrams

• Starting from existing systems:

F G

• Construct new systems using standard constructions:

F G

Sequence

F

G

Sum

F

G

Feedback Loop

• Modular approach is good for scalability

6



'

&

$

%

Unstructured Diagrams — Signal Flow Graphs

Real-life diagrams are often less structured:

1

OUTPUT

subtract

add2

add1

Divisor

Mult

Input

Out1

Scale5

Divisor

Mult

Input

Out1

Scale4

Divisor

Mult

Input

Out1

Scale3

Divisor

Mult

Input

Out1

Scale2

Divisor

Mult

Input

Out1

Scale1 Saturation

2

SMPIDO

1

SDPIDO

500

SCFPRP

1200

SCFPRF

1250

SCFINT

25

SCFDIF

T

z−1xo

Discrete−Time
Integrator

du/dt

Derivative

1

DFMVGP

1

DFMVGD

5

DFMVG1

4

DFMVGF

3

FMVPV

2

FMVPE

1

IntInir

SCALEINPUT

FMVER2

FMVDTM

FMVPTM

FMVER1

INTINPUT

SCDIF

FMVFTM

UPPER_LINRES

7



'

&

$

%

Linear Algebra

• A (real) vector space V is:

– A commutative group: (v,w) 7→ v + w, v 7→ −v,

– acted on by elements of R, (λ,v) 7→ λv,

– where λ ∈ R acts as a homomorphism: λ(v + w) = λv + λw

– and × on R is composition of actions: (λµ)v = λ(µv)

• Linear transformations, f : V → W :

– satisfy f(v + w) = f(v) + f(w) and f(λv) = λf(v),

– have kernels, ker(f) = {v | f(v) = 0}
– and factor as: f = (g : V � V/ker(f)); (h : V/ker(f) � W )

8



'

&

$

%

Linear Systems

• Semantic value of a system is its input/output relation

• Many possible mathematical domains to model signals

• We consider linear systems. I.e., systems where:

– signals are elements of vector spaces over R

– blocks are linear transformations between spaces

– edges represent equational constraints

• semantic value of a diagram is an additive relation

9



'

&

$

%

Additive Relations

• A relation r : V ↔ W between vector spaces is additive iff. r is

a subspace of the product space V × W

E.g., a linear transformation or its inverse, or a composition:

f1; f
−1

2
; f3; f

−1

4
; . . .

• Like a linear transformation, an additive relation has a kernel:

ker(r) = {v : V | v r 0}

A uniform measure of information loss.

• An additive relation also has an indeterminacy:

ind(r) = {w : W | 0 r w} = ker(r−1)

A uniform measure of non-determinism.

10



'

&

$

%

New Additive Relations From Old

Diagram constructors correspond to operators on additive relations:

Sequence: v (r; s) w iff. ∃u • v r u ∧ u r w

Sum: v r + s w iff. ∃w1, w2 • v r w1 ∧ v s w2 ∧ w = w1 + w2

Loop: v loop(r, t) w, iff. ∃v1 • w t v1 ∧ (v + v1) r w

r

s

w

w

v w

1

2

r s
v u w

r

t
v

v w
1

WARNING: sum is associative, commutative and has a 0, but:

∃r, s, t • r + s = t + s 6⇒ r = t

∃r • r − r 6= 0

11



'

&

$

%

Feedback Loops and Relational Inverse

• The feedback loop is definable in terms of relational inverse:

loop(r, t) = (r−1 − t)−1,

• . . . and vice versa: if r : V ↔ V is additive:

r−1 = (1−1

V
− (1V − r))−1 = loop(1V , 1V − r)

And, in general, if r : V ↔ W , r−1 is the composite:

(0, 1W ) : W → V × W ;

loop(1V ×W , 1V ×W − (π1; r; (0, 1W ))) : V × W ↔ V × W ;

π1 : V × W → V

where π1 : V × W → V and π2 : V × W → W are the projections.

12



'

&

$

%

Completeness of Structured Block Diagrams

Assume given all linear transformations as basic blocks.

Theorem 1 Every additive relation is the semantic value of some

structured block diagram.

Proof. An additive relation r : V ↔ W , factors as f−1; g; h−1 where

for some A, B, f : A � V , g : A � B, and h : W � B.

Corollary 2 Every signal flow graph is equivalent to some structured

block diagram.

Proof. The semantic value of an unstructured diagram is an additive

relation. Apply the theorem to that additive relation.

Cf. while-programs are Turing complete.

13



'

&

$

%

Weakest pre-conditions

• As usual, for r : X ↔ Y , B ⊆ Y , define

wp(r, B) := {x : dom(r) | ∀y : Y • x r y ⇒ y ∈ B}

• W.P. for a function is very simple: if f : X → Y ,

wp(f, B) = Bf−1

• W.P. for additive relations are nearly as simple:

wp(r, B) = B0r
−1

where

B0 = {b : B | b + ind(r) ⊆ B}

14



'

&

$

%

The Hoare Logic

• Linear combination rule:

{A} r {B} {A} s {B1}
{A} βr + γs {βB + γB1}

• Inverse rule:

{A} r {B}
{B} r−1 {A + ker(r)} B ⊆ Ar

• Sequence rule:

{A} s {B} {B} t {C}
{A} s; t {C}

• Loop rule derivable from inverse rule (see paper).

15



'

&

$

%

State Space Representation

• Taking u, u̇ and ü as states to represent a signal, u, the spring

and cart system is a 3-dimensional linear system:

- F -+f- G - G -

H �

6

where:

F =

0

B

B

@

1

m
0 0

0
1

m
0

0 0
1

m

1

C

C

A

G =

0

B

B

@

0 1 0

0 0 1

0 0 0

1

C

C

A

H =

0

B

B

@

0 0 0

0 0 0

−
k

m
0 0

1

C

C

A

16



'

&

$

%

Specification and Proof Automation

• Envisage assertions expressed say in first-order real arithmetic,

possibly restricting to linear arithmetic.

• Language is expressive but decidable

• Weakest pre-conditions can be calculated automatically.

• Automatically prove properties: E.g.,

{ẍ > c} SpringAndCart {f > (m + k)c}

17



'

&

$

%

Specification Language Issues

• Trade off between expressiveness and complexity/possibility of

decision procedures

• Full first-order theory of vector spaces reduces to the theory of a

real closed field (Solovay)

• Real closed field decision procedure only just practical with

current state of the art (MacLaughlin, Harrison)

• There are “linear” theories of linear algebra that reduce to the

theory of linear real arithmetic (Solovay, Arthan)

• Linear arithmetic with rational coefficients is widely implemented

(e.g., in all the HOLs)

• But what about more general/expressive fields of reals?

18



'

&

$

%

Generality of Hodes-Fourier-Motzkin Procedure

• Recall the Fourier-Motzkin elimination step: if some ai1 6= 0,

a11x1 + . . . + a1nxn < b1 ∧ . . . ∧ am1x1 + . . . + amnxn < bm

iff

L1 < x1 ∧ L2 < x1 ∧ . . . ∧ x1 < U1 ∧ x1 < U2 ∧ . . .

iff

L1 < U1 ∧ L1 < U2 ∧ . . . ∧ L2 < U1 ∧ L2 < U2 ∧ . . .

• Works over any ordered field with decidable ground formulae

• Engineers will want
√

2 and likely more: e, π, etc.

• What are the options?

19



'

&

$

%

Zero-th Order Real Number Theorem Proving

• Q, Q[
√

p/q | p, q ∈ N, q 6= 0] — easy

• A = Q[RealRoots(f) | f ∈ Q[X]]

the ring of all algebraic numbers – doable, hard-ish

• A = A[RealRoots(f) | f ∈ A[X]] — doable, harder

• Q[e], Q[π] — doable, hard-ish

• A[e], A[π] — doable, harder still

• Q[e, π] — very difficult open question: Schanuel’s conjecture

20



'

&

$

%

Concluding Remarks & Current/Future Work

• Hoare logic + algebraic structure is a promising combination

• Easier than logics for programming in some ways

• Inference rules provide structure and understanding of proofs

• Decision procedures give high level of automation when wanted

• Reconcile with Hoare Logic in the Abstract (with Oliva & Martin)

• Looking into implementation issues

• Metatheory of linear algebra (with Solovay & Harrison)

21


