Mechanising Mathematical Proof:

A Progress Report

Rob Arthan

Lemma 1 Ltd. / DCS Queen Mary, London
3rd September, 2008

/ ‘An A — 7 of Mathematical Opinions I \

“I will say nothing, for example, about the great events in the area

between logic and computing”

Sir Michael Atiyah. Mathematics in the 20th Century.

“But the MOST significant contribution by 20th-Century human

mathematicians and computer scientists was the creation of
COMPUTER ALGEBRA.”

Doron Zeilberger. Opinion 47.

. /

/ ‘A Hypothetical Question I

What would Newton or the Bernoullis or Gauss or Delaunay or
Hilbert or ...your list goes here ... have done with one of these:

What would you like to prove today?

f;

@@BB@HBH.
=
EEE

HHEE
' Hﬁﬂﬂﬁﬁﬂ

O@

/‘1 + 1 = hmmm? '

“The properties of 2 are largely analogous to those of 1, while the

properties of 2, are more analogous to those of 2.7

~

-p. 375
A.N. Whitehead and B. Russell Principia Mathematica *56 - 1910

What about properties of e or 7 or ((1) or m13(S®) or ...7?

e The immense symbolic processing tasks defy human capabilities.

e Machines don’t know what symbols to process.

e Synergy between human and computer is what’s called for.

.

/

/‘ Why bother? I \

.

Mathematical arguments do contain errors!

How many in the classification of finite simple groups?

Even Aigner & Ziegler’s “Proofs from THE BOOK” (ed. 1).

See Bill Casselman. The Difficulties of Kissing in Three Dimensions.

Controversies about use of computers:
— 4 colour theorem

— Kepler sphere packing conjecture

‘ and, of course, because it’s there! I

‘ The Kepler Conjecture I

The density of a packing of congruent spheres in three

dimensions is never greater than 7/+/18.

e Asserted by Kepler in 1611.

e 1998 proof by Hales reduces a nonlinear optimisation problem in
an infinite number of variables to a problem in a finite number of

variables (/= 150). This in turn reduces to:
— Enumerating graphs that give possible local geometry.
— A large set of linear programming problems.

The enumeration and the linear programming problems are then

solved by computer.

. /

/ ‘Referees’ Verdict . \

Published subject to a disclaimer.

“The news from the referees is bad They have not been able to certify ... the

proof, and will not be able to certify it ..., because they have run out of energy to
devote to the problem.”

“[The chief of the 12 referees] thinks that this situation will occur more and more
often in mathematics. He says it is similar to the situation in exrperimental
science — other scientists acting as referees can’t certify the correctness of an
experiment, they can only subject the paper to consistency checks. He thinks that

the mathematical community will have to get used to this state of affairs.”

Robert MacPherson. Editor of Annals of Mathematics

‘ At least one member of the community disagrees ... I

‘ Hales’s Flyspeck Project I

e Proposed approach: a complete machine-checked formal proof

— not a verification of the programs.
e Estimated 20 person/year collaborative work in progress.

e Enumeration of tame planar graphs has been verified
Tobias Nipkow, Gertrud Bauer, TUM.

e Tools to handle the linear programming problems developed
Steve Obua, TUM.

But where does the assurance come from? '

/ ‘A Deductive System I \

Judgments: m D n, m,n € Z (intended meaning: m divides n)
D : axiom, m # 0
Rules: | 1, Dn . mDn; mDny
mD —n m D nqy + no
. . 1—[)1 . aflom
A deduction: | 1D 1 ~ ™™ 1D -1 4

1DO

e Robin Milner’s LCF method implements a deductive system as a

data type.

e Strongly typed programming language enforces the rules.

. /

‘ The Deductive System in ML I
Demo 1

local

datatype THEOREM = D of (int * int);
in

type THEOREM = THEOREM;

infix D; infix ++;

exception NOT_ALLOWED;

fun axiom m = if m <> 0 then m D m else raise NOT_ALLOWED;
fun -=- (m D n) = m D “n;
fun (m1 D nl1) ++ (m2 D n2) =

if m1 = m2 then m1 D (nl + n2) else raise NOT_ALLOWED;
end;

.

10

/ ‘A Decision Procedure . \
Demo 1 concluded.

Given m and n, the function decide tries to prove that m divides n:

fun decide m n =
if n < 0 then ——-(decide m ("n))
else if n <= m then axiom m

else decide m (n-m) ++ axiom m;
Logical kernel will not allow invalid deductions:

> decide 2 6;

val it = 2 D 6 : THEOREM

> decide 2 7;

val it = 2 D 8 : THEOREM

> decide O O;

Exception- NOT_ALLOWED raised

. /

11

~

‘A Real System: ProofPower-HOL I

Member of the HOL family implemented for industrial use.
Cf. Classic HOL (Gordon), HOL IV (Slind, Norrish), HOL Light (Harrison).

Expressions and predicates represented by the type T'"TERM ,
entered using “Quine corners”: "1 4+ 271, "1 = 27
Abstract data type of theorems is the type THM. Printed with

a turnstile: - -1 = 2.
Extensive facilities for programming with syntax.

Maintains a database of theories containing specifications (i.e.,
defining properties of types and constants) and theorems.

Powerful higher-level tools for automated and interactive proof.

/

12

-

‘ Characteristics of the LCF Approach I

Logical kernel is small and simple to check

— possibly even formally verifiable.

Derived rules may fail to produce desired output but can’t

produce unsound results.
Can safely code very complex algorithms.

Potential for cross-checking using alternative compilers and/or

implementations.

There are other complementary approaches.

/

13

/ ‘Other Real Systems I \

e Many systems around, LCF style and other approaches.

e Deductive system usually mathematical foundation system, e.g.,
— Set theory — Mizar, Isabelle-ZF

— Polymorphic type theory — HOL family, Coq, PVS
— Theory of recursive functions — NQTHM, ACL2

e Many systems designed for computer science applications, e.g.,
program verification, but general purpose.

e Libraries available, but often application-oriented.

e Mizar is one system with a very extensive mathematical library.

But can you prove real theorems? I

14

/ ‘Some Achievements .
A personal selection — no warranty offered or implied!

e Mizar Mathematical Library. Trybulec et al. 1970s — present

e Calculus. Harrison, Gottliebsen, Arthan, et al. 1990s — present

e Nonstandard analysis. Fleuriot, 1996 — present
e (Godel’s incompleteness theorem. Shankar, 1994
e Sylow’s theorem. Kammiiller. 1997.
e Prime Number Theorem. Avigad et al., 2004, Harrison, 2008
e Jordan Curve Theorem. Hales, 2005
e Brouwer fixed point theorem. Harrison, 2005
e 4 Colour Theorem. Gonthier, 2005

~

15

/‘Calculus In ProofPower-HOL 1 I

e Write (f Deriv ¢) = to mean function f has derivative c at x (i.e., df /dz = ¢

.

or f'(x) = ¢ in the usual vernacular).

$Deriv: (R - R) = R - R — BOOL

Vf c ze (f Deriv c) x
& Vee (0. < e = dde 0. < d A
Vye Abs(y—z) < d N ~y=z = Abs((f y—f =)/(y—z) — ¢c) < e

e This definition is trivially consistent.

e All the usual theorems: product rule, chain rule, Rolle, IVT, MVT,

~

/

16

/‘Calculus In ProofPower-HOL 2 I

.

e Define the exponential function by the differential equation:

Exp: R —- R

Exp 0. = 1. N (Vze (Exp Deriv Exp) x)

e Prove the consistency via theory of power series and differentiation of limits.

e Logarithm defined as left inverse of exponential.

e All the usual basic theorems, e.g.,

-V ze 0. < 2 = (Log Deriv x —1) xz : THM

/

17

/‘Calculus In ProofPower-HOL 3 I

.

e Integration via the Kurzweil-Henstock gauge integral. F'TC, areas, ...

e A theorem of Minkowski:

- VA ae
A € Convex N A € Bounded N ~A = {}
N (Vz yo (z,y) € A = (~zx, ~y) € A)
AN A Area a N a > 4.
=i j:Ze (ZR i, ZR j5) € A N —(ZR i, ZR j5) = (0., 0.)

e de Bruijn factor. Formal / Informal. Typically 0.5 — 57

e See Freek Wiedijk’s web site http://www.cs.ru.nl/ " freek/

18

/ ‘Example: A Combinatorics Problem I \
Demo 2 concluded.

e (m+n)™ should give the number of ways of drawing m samples with

replacement out of a set of m 4+ n elements.

e DistinctSamples n m should give the number of ways of drawing m samples

without replacement out of a set of m + n elements.

DaistinctSamples : N — N — N

(Vne DistinctSamples n 0 = 1)

A (VYm ne
DistinctSamples n (m—+1) = (n+m+1) * DistinctSamples n m)

e Plan: give high assurance solution to a combinatorics problem by:

— 1) Proving that these functions do give the desired results.

\\ — 2) Symbolically executing them inside the theorem prover. /

19

‘ Final Remarks '

e Machine-checked proof has a part to play.

e Should the need to compute make maths an empirical science?
e Technology can help: critical bugs are not inevitable!
e Formalisation need not lead to combinatorial explosion.

e Lots of fascinating work to do.

‘ Thank you! I

20

e For ProofPower

http://www.lemma-one.com/ProofPower/index/index.html

e Other implementations of HOL:
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/"jrh13/hol-1light/

e The Flyspeck project:
http://code.google.com/p/flyspeck/

e Freek Wiedijk’s progress report on 100 theorems:
http://www.cs.ru.nl/"freek/100/index.html

e The Mizar project:
\\\\ http://mizar.uwb.edu.pl/

~

21

The following is the Standard ML source of the demos:

Text dumped to file 64dedsys.ML

local

datatype THEOREM = D of (int * int);
in

type THEOREM = THEOREM;

inficx D; infix +-+;

exception NOT_ALLOWED:;

fun axziom m = if m <> 0 then m D m else raise NOT_ALLOWED:;
fun —— (m D n) = m D ~mn;

fun (m1 D n1) ++ (m2 D n2) =
if ml1 = m2 then ml D (nl + n2) else raise NOT_ALLOWED:;

end;

Text dumped to file 64s1.ML

1+2;

fun fact n = if n <= 0 then 1 else n * fact(n—1);
fact 40;

map fact [1, 2, 3, 4, 5, 6, T];

use "64dedsys.ML";

axiom 1;

1 D 1;

3 D 5

val thml = axiom 1;

val thm2 = —— (axiom 1);

val thm8 = thml 4+ thm2;

fun decide m n =
if n < 0 then ——(decide m (~mn))
else if n <= m then axiom m
else decide m (n—m) ++ azxiom m;

21-1

decide

1 1;

decide 1 ~1;
decide 2 6;

decide 13
decide 2 7;
decide 0 O0;
decide ~ 1

1001;

1;

Text dumped to file 64s2. ML

val
val
val
val
val
val
val
val

set_goal([], "Vm i j

tml = T0 % 17

tyl = type_of tml;

(f1, argsl) = strip_app tml;

ty_f1 = type_of fI;

thml = get_spec f1;

thm2 = list_ V_elim [T17, T17] thmi;

thm8 = A_left_elim thm2;

thm4 = rewrite_conv[] T(0+14+243)«(3+24+140)7;

a(REPEAT strip_tac);
a(induction_tac Tj57);
a(rewrite _tac] N_exp_def]);
a(asm_rewrite_tac| plus_assoc_thm1 , N_exp_def]);
a(PC_T1 "lin_arith" prove_tac []);

val
val
val
val
val
val
val
val
val
val
val

thmb

= pop_thm();

tm2 = T (Azex + 1)7T;

ty2 =
thm6

type_of tm2;
= rewrite_conv[]T (Azexz + 1) 27;

tm8 = T[z; y; 1]7;

tys3 =

type_of tm3;

(f3, args3) = strip_app "[z; y; z]7;

ty_f8

thm7 = rewrite_conv|[nth_def] T Nth [z; y;

thm&
tys =

= type_of [3;

= get_spect Map ™,
type_of " Map;

: Ne m™ (¢ + j) = m™i x m™j57);

z] 27

21-2

val thm9 = rewrite_conv[map_def] " Map (Aze = + 1) [1; 2; 3]
val tm4 = T2 € {1; 2; 3}7;
val (f4, args4) = strip_app tmi;
val ty_f4 = type_of f4;
val thm4 = get_spec f4;
val thm10 = prove_rule[] tm4;
val thm1l = pc_rulel "sets_extl"prove_rule[elems_def]
CElems [1; 2; 8] = {1; 2; 8}
distinct_samples_def;

val thm12 = (print "\n\n"; conv_rule(MAP_C plus_conv)(pure_rewrite_conv
[distinct_samples_def ,
pc_rulel "lin_arith" prove_rule[]"Vmem=x1 = m7,

plus_assoc_thm1]

™ DistinctSamples 10 (04+1+1+1)7));
val thm18 = rewrite_rule[] thm12;
distinct_samples_finite _size_thm;
samples_finite_size_thm;
(* and then x)
use_file"64demoZ2proof . ML";
val thm14 = pop_thm();

Text dumped to file 64demo2proof.ML

set_goal([], © (* Try mot to show from HERE ... %)
let S = {L | Elems L C {i | 1 < i AN i < 865} N# L = 23}
inlet X = {L | L €€ S AN L € Distinct}
in S € Finite
AN —#S =0
AN X CS
A H#X | #S > 1/2
)
a(rewrite_tac[let_def]);
a(strip_asm_tac(V_elim"™ 8657 range_finite_size_thm1));
a(lemma_tac™ 28 < #{i | 1 < i N 1 < 865}V THEN1 asm_rewrite_tac[]);
a(all_fc_tac[distinct_samples_finite_size _thm]);

21-3

a(all_fc_tac[samples_finite_size _thm]);
a(REPEAT_N 2 (POP_ASM_T(ante_tac o V_elim™2387)));
a(POP_ASM _T discard_tac THEN strip_tac THEN strip_tac);
a(pure_asm_rewrite_tac[conv_rule(ONCE_MAP_C eq_sym_conv)NR_one_one_thm,
NR_N_exp_thm,
R_frac_def]);
a(asm_tac(rewrite_conv[|[FTNR 865 — 237));
a(PC_T1"predicates" rewrite_tac[] THEN strip_tac
THEN1 (pure_asm_rewrite_tac[NR_one_one_thm]
THEN PC_T1 "“lin_arith" prove_tac[]));
a(REPEAT strip_tac THEN1 PC_T1 "sets_extl" prove_tacl]);
a(pure_rewrite_tac[NR_one_one_thm]);
a(LEMMA_TT{L | (Blems L C {i | 1 < i A i < 865} A # L = 23)
A —L € Distinct}
= {L | Elems L C {: | 1
{L | Elems L C {i | 1
A L € Distinct}
pure_rewrite_thm_tac
THEN1 PC_T1 "sets_extl" prove_tac(]);
a(lemma_tac™ {L | Elems L C {i | 1 < i AN i < 365} N # L = 23 A
L € Distinct} C
(L | Elems L C {i|1<4iAi< 365} A# L =23}
THEN1 PC_T1 "sets_extl" prove_tacl]);
a(ALL_FC_T (MAP_EVERY (ante_tac o
once_rewrite_rule[conv_rule(ONCE_MAP_C eq_sym_conv)NR_one_one_thm]))
[size_C _diff _thm]);
a(pure_rewrite_tac[NR_plus_homomorphism _thm,
pc_rulel "R_lin_arith" prove_rule[]
"Va b c:Rea = b + ¢ & b = a — c7]
THEN STRIP_T pure_rewrite_thm_tac);
a(LIST_DROP_NTH_ASM_T [8, 6, 9] pure_rewrite_tac);
a(LEMMA_T "Va b c d:ReNR 0 < b A NR 0 < d A axd < bxc = a/b < c¢/d7
bc_thm_tac
THEN1 (REPEAT strip_tac
THEN1 ALL_FC_T1 fc_<_canon asm_rewrite_tac[R_cross_mult_less_thm]));
a(pure_asm_rewrite_tac[NR_N_exp_thm,

Il
\S)
Qo
-
~

VAN
VAR

Il
\S)
¥

365} A # L
865} A # L

INIA

<
<

21-4

pc_rulel "R_lin_arith" prove_rule[]

"Va b c:cRea < NR 2 % (b — ¢) <& a + NR 2 x ¢ < NR 2 % b7,

REPEAT _C (once_rewrite_conuv|distinct_samples _rw_thm)]

THEN_C rewrite_conv[])

™ DistinctSamples (365—23) 237]);
a(pure_rewrite_tac[NR_plus_homomorphism _thm1

NR_times_homomorphism_thml1,

NR_less_thm]);
a(rewrite_tac[]) (* ... down to HERE! x);

21-5

