A Verified Formal Model of a VC Generator

R.D. Arthan
Lemma 1 Ltd.
2nd Floor, 31A Chain Street
Reading UK RG1 2HX
rda@lemma-one.com

Abstract main sponsors of the tool, QinetiQ, funded a round of en-
hancements which included extensions to the range of flow
This paper describes some modelling work carried out control statements to be supported by the tool, e.g., to al-
to inform understanding of an Ada verification system. It low exit statements which break out of a nested loop. With
presents a simple formal model in Z of a refinement nota- the original intention of just establishing terminology, sim-
tion comprising a miniature, but complete, imperative pro- ple abstract models of the notation and its semantics were
gramming language annotated with formal specifications. developed. This model proved useful in understanding the
The semantics of that programming language and the no-problems and designing and implementing the solutions.
tion of correctness relative to the specification annotations As an exercise, | extended the model to include a formal
is defined. A semantic model of a verification condition specification of an abstract verification condition generator
generator is given which can be proved to be sound with and, after a little experimentation, found that this was very
respect both to the programming language semantics andamenable to a machine-checked proof of correctness. This
to the intensional semantics of the specification annota- proof was of some benefit in gaining further understanding
tions. The specifications and proofs were prepared using theof the notation and its implementation.
ProofPower system and all proofs have been fully machine- This paper presents a slightly simplified version of the
checked. We argue that the use of appropriate abstractionsspecification and presents the main lemmas and theorems
and good tools make machine-checked proof a realistic andthat make up the correctness proof. The lemmas and the-
beneficial target. orems are presented as Z conjectures. All of these conjec-
tures have been proved wikhoofPower.
The Z specification we give in this paper is a slightly
1 Introduction adapted version of the material provided as part Bfaf-
Power case study [2, 1] . The only difference is that [1]
The Compliance Tool is a specification and verification instantiates generic notions of specification and refinement
system for Ada code annotated with specifications written defined in [2]. For brevity here, we just give the specific in-
in the Z notation [14, 13]. The tool is implemented as an stances of these notions as we need them. This was in fact
application of theProofPower specification and verification ~ what was done in the original work in 2002 — the use of
system for Z and HOL [3]. The tool has been used on sev- the generic notions was a subsequent adaptation.
eral large scale verifications of avionics control software The Z specification uses infix notation for the following
[11]. Itis the subject of an ongoing programme of enhance- relation and function symbols:
ments to its ease of use and to its range of applicability. Fol-

lowing a long tradition, the tool implements specification relation - C _,_ = _, - L _
and verification via refinement of Floyd-Hoare style pre- function 60 leftassoc - > _, - B -
and post-conditions [8, 7, 10, 6]. The specification is given in sections 2, 3 and 4 below:

The implementation of the Compliance Tool is based on section 2 introduces our framework for specifying impera-
a Z specification and that specification has been invaluabletive programs and our notion of refinement; section 3 de-
in its development [12]. However, the specification is an fines the abstract syntax and semantics of the programming
operational description of the tool's input/output relation- language together with its specification annotations and de-
ship, and is not intended to give an abstract account of thefines our notions of program correctness; section 4 specifies
semantics of the notation supported by the tool. In 2002, thethe VC generation algorithm. The various lemmas and the-

orems proved are stated as Z conjectures interleaved with A pre-condition is just a predicate, in the above semantic

the specifications. sense. We think of a pre-condition as applying to the before-
I make no claims for the novelty of the theory presented state of a state transformation.

here, although the intensional aspects of the work do bring prec 2 pPRED

out some interesting properties that seem to be underem-

phasised in many accounts. However, | do believe it is im- The notion of post-condition is more complicated. While

portant to have examples of formal methods being appliedMany accounts are written as if a post-condition as just a

to the development of formal methods tools. What was par- Predicate on after-states, in general, a post-condition must

ticularly pleasing about the present example was that a verydescribe a relationship between before-states and after-

small amount of effort expended in fully machine-checked States. In syntactic accounts, this is often achieved by the

proof led to a much improved understanding of the problem Use of auxiliary variables, e.g., see [6]. In our semantic
at hand. account, a post-condition is just a relation. In giving ex-

amples of post-conditions, we will adopt the convention of
using a subscript 0 used to distinguish values in the before-
state, when necessary. So, for example, the syntactic post-
conditionY = Y,/X denotes the relation which holds be-
tween a before-state and an after-state precisely when the

) o value ofY in the after-state is the result of dividing its value
Imperative programs work by modifying a state, but the i, the pefore-state by the value Xfin the after-state.
internal structure of states is not relevant for present pur-

poses. For a conventional imperative programming lan- POSTC = STATE « STATE

guage, the states will be aSSignmentS of values to program A Speciﬁcation statemens a pair Comprising a pre-
variables. We just introduce a given set to represent thecondition and a post-condition.

states:

[STATE]

2 Specification and Refinement

2.1 States and State Transformers

SPEC = PREC x POSTC

In examples, we will adopt the convention of the Compli-

The commands in our programming language will de- ance Notation (cf. also [10]) in which a specification state-
notestate transformersA state transformer is just arelation ment has the forma W [P, Q] whereW is alist of pro-
on states: gram variables called thieameand’P and Q are syntactic

STATE TRANSFORMER 2 STATE <> STATE predm_:ates giving the p.re—condmon and po;t—condmon re-
spectively. The frame lists the program variables that may

We think of a state transformemsrespondingo a states, be changed by the code being specified I.e., for each vari-

in its domain, thebefore-stateby non-deterministically able,V, that is not in the frame, the post-condition implic-

selecting someesponser after-state which is a state’ itly includes a conjunct’ = Vj.

such tha(s,s') € t. For example, an atomic program So, for example AY[X > 0, Y = Y,/X] specifies a

statement such as the assignmént —1 denotes the state transformation in which only may change, in which

operation which given any before-statselects the the before-state is required to satisfy the pre-condiion

after-states’ in which X has the value-1 and all other 0, and in which the after-state may be obtained from the

variables have the same value as.in before-state by giving” the value of the expression/X
calculated in the before-state. Note that, becausenot in

2.2 Specifications the frame X = X, here and so we do not need to decorate

X with a subscript in the post-condition. As another ex-

We choose to use semantic rather than syntactic notion@MPI&, AX, Y, T[X = Yo A Y = Xo| specifies a state
wherever we can. Syntactically, a predicate on a IOrogralmtransformanqn in which the valu_es of _the varlabllésand_ _
state would be some logical combination of primitive asser- ¥ '€ to be interchanged, possibly with some unspecified
tions about the values of program variables. Semantically, aSide-€ffect on the variabl.
predicate is just a set of states, namely those states in which /" the Compliance Notation, Ada procedures are spec-
the corresponding syntactic predicate denotgs For ex- ified by giving a speC|f|cat|on statement in the procedure
ample, ifX is a real-valued program variable the semantic Ne2der as in the following examples.
value of the syntactic predicake > 0 comprises precisely procedure SWAP
those states in whicK is indeed positive. AX, Y [true, X = Yo A Y = Xo)J;

N procedure NDSWAP
PRED = PSTATE AX, Y [true, {X, Y} = {Xo, Yo}];

Here SWAP interchanges the values of two global vari-
ables, whereaDSWAP either interchanges the values or
leaves them unchanged.

2.3 Refinement

We now define the important notion c#finement Re-
finement is the relation that obtains between a specifica-
tion and a satisfactory implementation of that specification,
where an “implementation” is simply another specification,
typically more concrete than the abstract specification it
refines. For example, the specification of the procedure
SWAP in section 2.2 is a possible refinement of the spec-
ification for NDSWAP.

The formal definition of the refinement relation is as fol-
lows, in whichs; C s, is written to mean that, is a re-
finement ofs; .

_C _:SPEC < SPEC

Vpreci, precz : PREC; postci, postc, : POSTCe
(preci, postci) C (preca, postcs)

& prec; C prec

A precy < postco C postcy

The two conjuncts in the definition of refinement are
known as the liveness and safety conditions (e.g., see [15])
The liveness condition is a weak one corresponding to as-
sertions of partial correctness, i.e., assertions of the form
“programp satisfies specification providing it terminates
normally”.

In [2], elementary properties of a generic notion of re-
finement along the above lines is considered; it is shown
there that the refinement ordering constitutes a complete
lattice and explicit constructions of the meets and joins are
given.

3 Programs
3.1 Syntax and Semantics

Our notion of program has five syntactic categories:

Atom | A primitive operation on the state.

Seq Sequential composition

If If-then-else

While | While-loop

Spec | A program with a specification annotatign

The following free type gives the abstract syntax of pro-
grams, in which we mingle semantic and syntactic concepts
to simplify later work. We also use a tree structure rather

than a linear list for sequential composition, since that is se-
mantically harmless, and, again, helps to keep things simple
later on. (TheProofPower syntax for free type definitions

is currently slightly non-standard in not using the chevron
symbols.)

PROG ::=
Atom ((STATE_TRANSFORMER))
Seq ((PROG x PROG))
| If ((PRED x PROG x PROG))
| While ((PRED x PROG))
| Spec ((SPEC x PROG))
In a typical imperative language, the atoms might be the
denotations of assignment statements and procedure calls.
As discussed in section 2.2, in the Compliance Notation,
the denotation of a procedure call is effectively represented
by an instance of the formal specification appearing in the
procedure header.
The following function gives the semantics of this notion
of a program. The semantic value of a program is a state
transformer. In the semantics, the specification annotations
are just ignored — it is the actual code that determines the
semantics, not our aspirations for it.

semantics : PROG — STATE_TRANSFORMER

Vvt : STATE_.TRANSFORMER;
p1, p2 : PROG; c : PRED; s :

semantics (Atom t) =t

SPECe

A semantics (Seq(p1, p2)) =
semantics p1 § semantics p2
A semantics (If(c, p1, p2)) =
(c < semantics p1) U (c < semantics pz)
A semantics (While(c, p1)) =
(c < semantics p1)* B ¢
A semantics (Spec(s, p1)) =

semantics pi1

It is in the above that the convenience of dealing with
partial correctness becomes apparent. The semantic equa-
tion for a while-loop says that the body of the loop is to be
executed repeatedly in states satisfying the predicatsil
a state which does not satisfys reached. If this fails to ter-
minate the result is just the empty relation: we are under no
obligation to assign any more complex notion of meaning
to the non-terminating execution.

The partial semantics also embraces in an abstract way
the possibility of the program failing gracefully. Through-
out the sequel, when we talk about non-termination, we in-
clude the possibility that via some exception-raising mech-
anism that is outside the scope of the present model, exe-
cution of a command may result in some kind of abnormal

termination which is handled properly in the physical en- | am grateful to one of the referees for pointing out that
vironment in which the program is executed. For example, my original definition of uprightness was too weak: it omit-
in Ada the assignmerX:=1/Y will lead to the program ted the second conjunct in the clause for while-statements.
raising an exception i¥ happens to have the value zero. This kind of error is rather easy to make but would become
apparent in further work to derive useful consequences of
3.2 Program Correctness the uprightness relation formally. In the present work, such
consequences were only drawn informally and so the omis-
For a program to be correct every part of it that has a Sion was only detected by review.
specification must certainly satisfy that specification, which ~ Uprightness enjoys the following two useful properties:
in our setting means that the semantic value of the program
must be a refinement of the given specification annotation.
We writep & sto mean that programsatisfies specifica-
tion s.

upright_mono_thm 7+
V prog : PROG; c1, c2 : PREDe
prog L c1 Aca Ccp = prog L

- £ - : PROG « SPEC upright_cup_thm 7+

V prog : PROG; c1, c2 : PREDe
Y prog : PROG; prec : PREC; prog L c1 A prog L c; = prog L c1 Uc
postc : POSTC e

prog = (prec, postc)
< (prec, postc) C (prec, semantics prog) 4 The VC Generator

However, a good intuitive notion of correctness also re- 4.1 Pre-condition Calculation
quires the pre-condition of each specification in the program

to be satisfied whenever the relevant part of the program is The verification condition (VC) generators we are con-
executed. For example, every part of a program that hascerned with are essentially pre-condition calculators: given
a specification might satisfy its specification, but, the pro- 3 desired post-conditigpostcand a progranprog, the VCs
gram might still include a reachable specification with an gmountto a pre-conditioprec, such that wheneverogter-
empty pre-condition: clearly, this part of the program is minates after execution from an initial state satisfynec,
“correct, but for the wrong reasons”. thenpostcholds in the terminal state. One then endeavours
If pis a program and is a set of states, we will say that o show thaprecis true, in practice by proving a set of syn-
p is upright on ¢ iff. no pre-condition inp will be violated tactic predicates whose conjunction impljgsc.
whenp is executed in a starting statednWe writep L ¢ In this section we formalise a general notion of a pre-
when this holds (reverting to the original mathematical use ¢gndition calculator and say what it means for such a thing
of the symboll as an infix relation with apologies to those g pe sound. In the next section, we will specify a particular
more accustomed to it as denoting the bottom element in 8pre-condition calculator.
lattice). The simplest view of a pre-condition calculator would be
| . PROG < PRED a predicate t_rgnsfo_rmer: afunction that takesaprogram and
a post-condition given as a predicate on the final state as
its argument and returns a predicate that, we hope, gives a

vt : STATE_TRANSFORMER; p1, p2 : PROG; pre-condition which will guarantee achievement of the post-
c1, ¢z, prec : PREC; postc : POSTCe condition.
((Atom t) L c1) However, the predicate transformer idea is slightly sim-
A ((Seq(pi, p2) L 1) & plistic: to deal with a post-condition such &s = Y,/X,
p1 L c1 A pa L semantics p (c1)) in which the p_ost—condit.ion depends on values in the before
A ((If(ca, pr, p2) L c1) state, something more is needed, to reflect the dependency.

(In other accounts, such as [6], auxiliary (non-program)
variables are used to capture values at particular points in
the program. These introduce a similar problem.)

One possible solution is to deal with post-conditions as
predicates parametrised in some way. However, it seems
A ((Spec((prec, postc), p1) L 1) < more natural to deal with post-conditions as relations on

c1 C prec A pr L c) states, rather than just states. The domains and ranges of
these relations corresponds to appropriate initial, final, or

prLlanNaAp Lalc)
A ((While(ez, p1) L @) &
pr LcaNc A
p1 L semantics p1 (c1 N) N)

intermediate program states, depending on the point in the

program being considered. This gives us the following sig-
nature for a pre-condition calculator.

PREC_CALC = PROG x POSTC — POSTC

We can now state what it means for a pre-condition cal-

culator to be sound. Soundness requires, that given any

program,prog, and any target post-conditioafter, the re-
sult of pre-condition calculation is a relatidfefore such
that (equipped with standard pre-conditions) the sequentia
compositiorbefore g semantics prog is a refinement odfter.

sound_prec_calc : PPREC_CALC

Vpc : PREC_CALCe

pc € sound_prec_calc

(Vprog : PROG; before, after :
| before = pc(prog, after)
(dom before, after) C

(dom before, before

& POSTC

o

¢ semantics prog))

So, for example, consider the case wipesg is the fol-
lowing if-statement:

if X< Ythen X:=Yelse Y := Xendif

For a sound pre-condition calculatée,fore must be a
state transformer such that the program:

before; if X < Y then X := Y else Y := X end if

will have the overall effect of making the desired post-
conditiona fter hold.
In the relation returned by a pre-condition calculator, the

domain and the range of the relation have both been pulled

back to the initial state. The desired pre-condition is ex-
tracted by intersecting with the identity relation. This gives

the following simple consequence of soundness, if the pro-
gram has a specification at the top level and if the calcu-
lated pre-condition contains the pre-condition of the speci-
fication, then the program satisfies the specification:

prec_calc_sat_thm 7+
V pc : PREC_CALC; c_prec, s_prec: PREC;
s_postc : POSTC; p : PROG
| pc € sound_prec_calc
N c_prec =
dom (pc(Spec((s-prec, s_postc), p), s_postc) N
(id STATE))
s_prec C c_prec
p E (s_prec, s_postc)

Continuing the earlier example, ffc is a sound pre-
condition calculator and the desired post-conditigsbstc
is X = max{Xo, Yo} the calculated pre-condition for the
if-statement

if X <Y then X:=VYelseY := Xendif

could betrue, whereas if the desired post-condition is
Y = max{Xo, Yo}, then the calculated pre-condition must
be no stronger thax Y.

4.2 A Useful Pre-condition Calculator

We can easily exhibit a sound but not at all useful, pre-
Icondition calculator, which simply returns the empty rela-
tion. The following theorem says that this is indeed sound.

trivial_prec_calc_sound_thm 7+

V pc : PREC_CALC

| Vprog : PROG; postc : POSTCe
pc (prog, postc) = @

e pc € sound_prec_calc

In this section, we give a model of a pre-condition cal-
culator that is more useful than this trivial example. Before
giving the definition we need two preliminaries.

The first preliminary comprises a variant on the theme
of range restriction and range anti-restriction, which are
needed to deal with if-statements. The idea here is thR: If
is a set of state transitions afids some set of target after-
states, then the usual range restriction- c contains all
before-states thahaylead to states ifi’, whereaR > . c
contains only the before-states tiatstlead to states i .

R & . cbears the analogous relationship withe c.

e (X Y) X PY - (X < Y);
B (X Y) X PY - (X<Y)

VR: X - VY;c:PYe
Rro.c=RY(Y\c)<R
A RB*CiRNqCDQR

The useful pre-condition calculator will use a heuristic
to propose a specification for the body of a while-loop. Our
remaining preliminary is a loose definition of this heuristic.
The definition requires that if the body has been supplied
with an explicit specification, then that specification should
be used. The pre-condition calculator must therefore ensure
soundness without relying on any properties of this heuris-
tic. (A practical realisation of the pre-condition calculator
might simply insist that the body of a while-loop be given
with an explicit specification).

guess_spec : PROG — SPEC

Vs : SPEC; p : PROG e guess_spec(Spec(s, p)) = s

With the preliminaries in place, we can now define the
useful pre-condition calculator, which we think of as pulling
a post-condition backwards through a program transform-
ing it as we go. We give the Z first and then give a clause-
by-clause commentary:

prec_calc : PREC_CALC

vVt : STATE_TRANSFORMER; postc, postc; : POSTC;
p1, p2 : PROG; c : PRED; prec; : PREC;
body_prec : PRED; body_postc : POSTCe
prec_calc (Atom t, postc) =
{s, s' : STATE | t({s'}) C postc({s})}
prec_calc (Seq(pi, p2), postc) =
prec_calc(p1, prec-calc(pz, postc))
prec_calc (If(c, p1, p2), postc) =
(prec_calc(py, postc) >« c) U
(prec_calc(p2, postc) B« c)
((body_prec, body_postc) = guess_spec p1

>

prec_calc (While(c, p1), postc)
postc B c U
{ ss' : dom postc x ¢
| ¢ C body_prec
A body_prec C
dom (prec_calc(p1, body_postc) N
(id STATE))
A dom postc x (body_postc(body_prec) \ ¢) C
postc })
prec_calc (Spec((preci, postci), p1), postc)
{ s : STATE; s’ : STATE
| postci({s'}) € postc({s}) } >
(prec1 N dom(prec_calc(p1, postci) N
(id STATE)))

A

In the definition, the 5 clauses deal with the various syn-
tactic categories as follows:

e A post-condition is pulled back through an atomic
statement, by calculating the set of pafsss’) such
that the response of the atom ehis a response per-
mitted by the post-condition an

A post-condition is pulled back through the sequential
composition ofp; andps in the obvious way: pull it
back throughp, and then pull the result back through
P1-

A post-condition is pulled back through an if-then-else

e A post-condition is pulled back through a while loop
by applying the heuristic to guess a specification for
the body of the loop. The overall result is formed as a
union of two parts.

The first part of the union corresponds to states where
the body of the loop is never execute and is just the
appropriate restriction of the original post-condition.

The second part corresponds to states where the body
of the loop is executed at least once and is given
as a set comprehension below. The set comprehen-
sion is empty unless three conditions are satisf(@d:

the condition of the while-loop must denote a set of
states that are included in the guessed pre-condition;
(i) the pre-condition of the body must denote a set
of states that satisfy the pre-condition resulting from
pulling the guessed post-condition back through the
body; andjii) for each state satisfying the guessed pre-
condition, the set of all states allowed by the guessed
post-condition in response to this state which do not
satisfy the loop condition must be contained in every
possible response of the original post-condition.

A post-condition is pulled back through a specifica-

tion statement in much the same way as it is pulled
back through an atomic statement treating the post-
condition of the specification statement in the same
way as the state transformer of the atom. The result
is then filtered to remove all state transitions which do
not unambiguously satisfy both the pre-condition of
the specification statement and the pre-condition cal-
culated from the body of the specification statement.

4.3 Implementation Considerations

Before formalising theorems about the useful pre-
condition calculator, some remarks about how something
like it is realised in a practical system are in order.

An implementation can represent the post-condition be-
ing transformed as (the conceptual conjunction of) a finite
set of syntactic predicateB;(zo, £), whereZ represents
some list of program variables ang represents a list of
program variables decorated to distinguish them as initial
variables (i.e., they refer to the before-state of the code be-
ing analysed). The pre-condition calculator will operate by
syntactic transformations on these predicates which hold
the initial variables fixed but may make substitutionsrto

At the beginning of the calculationy refers to the final

state of the program, and as the calculation works back-

statement by pulling it back through the then- and else- wards through the code, the execution state referred to by

parts of the statement. The overall result is then the
union of these intermediate results after discarding all
transitions which do not unambiguously belong to the
if-part or the else-part.

Z moves backwards in step.

The most primitive state-changing operation will be the
atomic statements that represent program language assign-
ments. Given an assignment,:= ¢, the requirements of

the above formal definition are precisely met by substitut- each.4; in the representation glstc. This corresponds to
ing e for v in the P;(£y,Z). Here we are tacitly assum- the predicate of the set comprehension above.

ing that program variables and expressions have some well-

defined representation as logical variables and expressiong.4 Properties of the Pre-condition Calculator

in the logical system in use.

Procedure calls are the other common form of atomic We now return to the formal work and present a number
statements and as already discussed these can be treatedl conjectures all of which have been proved withoof-
much as specification statements (with empty bodies). Power. We conjecture that the useful pre-condition calcu-

If the programming language has them, then other formslator is sound. Note that since soundness is defined quite
of atomic statements can be dealt with inahhocway as directly in terms of the notion of refinement and of the
their semantics dictates. For example, many programmingprogramming language semantics, this is strong evidence
languages have a null statement form, which corresponds tghat the definition of the pre-condition calculator is strong
the identity operation on the set of predicates. An atomic enough.
statement that aborted execution could be dealt with by de-
livering an empty set of predicates, or equivalently, the sin- Prec-calc-sound-thm 7 prec_cale € sound.prec_calc
gle predicatetru_e, (seg example pre-condition calculations The following conjecture gives a useful property of our
atthe end O_f this sect|o_r7). . useful pre-condition calculator, which turns out to be a sim-

Sequential composition can be handled exactly as in ple consequence of its soundness.
the formal definition: the set of predicates calculated for
the second statement is just passed in as the target postprec_calc_dom_thm 7+
condition for the first statement. V prog: PROG; postc : POSTC

Ii-then-else statements cause sets of predicates to be® dom (prec-calc(prog, postc) N (id STATE)) N
combined. EachP;(x), ¥) resulting from analysing the dom (semantics prog)
then-part of the conditional with condition would con- & dom postc

tribute ¢ = Pi(7),) to the result. Similarly, each We also conjecture that a program is upright in every
Pj (@0,) resulting from the analysis of the else-part would gt in the pre-condition produced by the pre-condition cal-
contribute~c = P; (<, 7). culator, i.e., no execution of the program can cause the pre-
While-loops are handled by logical transformations that condition of any specification in the program to be violated
mimic the various parts of the set comprehension in then those states. Taken together with the soundness con-
formal definition above. There are various pOSSibIe ap- jecture, this shows that a VC generator based on the pre-

proaches, some of which necessitate a more complex reprecondition calculator does indeed guarantee program cor-
sentation of the pOSt'Condition inVOlVing quantifiers, rather rectness as discussed in section 3.2 above.

than a flat conjunction of quantifier-free formulae. The]

Compliance Notation avoids this complexity by generating Prec-calc-upright_thm 7 ,

what are called side conditions, universally closed conjec- 7 Po8: PROG; poste, postc™ : POSTC

tures that have to be proved to justify the correctness of the | poste f prec_calc(prog, postc’)

main calculation. From a user’s perspective the end result Prog . ran postc

of the whole process is just a set of verification conditions Finally, we give some evidence that the useful pre-

(VCs) that have to be proved and these side conditions jusicondition calculator really is useful by exhibiting some sim-
get added to the final set of VCs. For example, in a loop ple examples for which it returns something more interest-
with conditionc, if the post-conditiorpostcin the formal ing than an empty relation.

definition above is represented by the set of syntactic predi- The first block of examples covers various forms of
catesA;, a side condition of the for®; (zy, £) Ac = A; is atom.

generated for eacR;(z, Z) in the representation dfody.

postc This corresponds to the requirements of the last con- Prec-calc-atom_egs.thm 7+~

: . . V null, chaos, stop : PROG; postc : POSTC
junct in the set comprehension above. | null = Atom (id STATE)

Lil_«_—z while—loops, if full gel_nerality is to be achieved, . .c— Atom (STATE x STATE)
specification statements require a more complex represen-, g5 — Atom @
tation using quantifiers. Again, the Compliance Notation ¢ prec_calc(null, postc) = postc
adopts the simpler approach of generating side conditions, A prec_calc(chaos, postc) =
if necessary. For example, side conditions of the form {s, s': STATE | postc({s}) = STATE}
Pi(20,Z) A c = A; will be generated for eacR; (2o, ¥) A prec_calc(stop, postc) = STATE x STATE
in the representation of what is callpéstc; above and for

The second block gives at least one example of each of Correcting the omission in the definition of uprightness

the compound syntactic categories. mentioned in section 3.2 presented some evidence that the
) specification and proof infrastructure was reasonably ro-
prec_calc_compound.egs_thm 7 bust: it took only about 30 minutes to develop the handful

¥ null, chaos, stop, p, spec_null : PROG;
postc : POSTC; c : PRED
null = Atom (id STATE)

of additional lines of proof script to show that the useful
pre-condition calculator is correct relatively to the stronger

|/\ chaos = Atom (STATE x STATE) notion of uprightness. Moreover, once the specification was
A stop = Atom o amended the proof work was purely mechanical: no signif-
A spec_null = Spec((STATE, id STATE), null) icant intellectual effort was required.
e prec_calc(If(c, null, stop), postc) =

postc >, ¢ U (STATE x STATE) &. ¢ 6 Conclusions
A prec_calc(Seq(p, null), postc) = prec_calc(p, postc)
A prec_calc(Seq(null, p), postc) = prec_calc(p, postc)

A prec_calc(While(STATE, spec_null), postc) — A formal specification i.n Z of a_simple imperative pro-
dom postc x STATE gramming language equipped with §peC|f|cat|on annota-
tions has been presented together with an abstract formal
design of a verification condition generator for that lan-
These calculational results give evidence that the defini-guage. A number of theorems have been stated which
tion of the useful pre-condition calculator is not too strong together show that the verification condition generator is
and there is some value in them: it was only when | tried to sound with respect to the programming language seman-

A prec_calc (spec_null, postc) = postc

prove them that | realised that | had mistakenly written: tics and guarantees a property we have calipdghtness
) which expresses formally part of the intensionality of the
{s'} @t C {s} < postc specification annotations. Machine-checked proofs of these

theorems were prepared usiRgofPower. The work was
of some benefit in gaining a better understanding of a real-
t({s'}) C postc({s}) world program verification system (the Z/Ada Compliance
Tool) and in enhancing the capabilities of that system.
in the equation for the semantic category Atom. The By choosing a suitable level of abstraction, it was a rel-
pre-condition calculator is sound and guarantees upright-atively small task to conduct fully machine-checked proofs
ness with this mistake, but very far from useful (since of all the conjectures. This helped give a deeper understand-
the mistaken predicate prohibits the state from changing ifing and revealed some flaws. It is noteworthy that even

instead of

{s’} < tisnotempty). such a familiar thing as a Floyd-Hoare logic for a simple
programming language contains pitfalls for the unwary and
5 Some Statistics some surprises even for the expert.

It is becoming apparent that the ideas behind Floyd-
As the reader can see the specifications and the stateFioare logic have application beyond the sphere of func-
ments of the theorems as given here occupy only about glional correctness of imperative programming languages.
or 9 pages even when heavily leavened with narrative. ThePotential applications include resource management in pro-
corresponding parts of the account in the case study docudramming [4] and, going further afield, continuous systems
ment [1] is actually about 10 pages, but that is mainly due exprgssed diagrammatically [5]. There are theoreucal in-
to differences in layout. The case study document also in-dications that the Floyd-Hoare approach applies to a very
cludes 11 pages of automatically generated listings and anVide class of systems indeed [9]. . _
index. When the narrative is stripped out the specificationis SOMe experimentation has begun in applying the ap-
about 200 lines of Z text. The proof script comprise about Proach of the present paper to other systems (including one
380 lines of Standard ML code. The original development Of the two main general types identified in [9]) with contin-
of both specifications and proofs took about 5 days. uous §ystems as a goal. In these less familiar appllcanor_ls, a
As has been mentioned, the material was subsequentlyully rigorous approach to the metatheory promises to give
revised to use a generic theory of specification and refine-imPortant insights and to help build sound tools for specifi-
ment. This adaptation was very simple and only took an ¢&tion and verification in applications.
hour or two (the only material affected is that in section 2
above, which becomes a little shorter). The generic theoryACknowledgments
of refinement in [2] is very similar in size to the present
specification and the proof script is also closely comparable | am grateful to the referees and to the participants at the
both in size and in development time. Z 2006 meeting for their very helpful comments.

References

(1]

(2]

(3]
(4]

5]

(6]

(7]
(8]
&
(10]
(11]

(12]

(13]

(14]

(15]

R. Arthan. On correctness of imperative programs —
precondition calculation. Working Paper WRK071, Lemma
1 Ltd., 2002.http://www.lemma-one.com

R. Arthan. On refinement calculus and partial correctness.
Working Paper WRK069, Lemma 1 Ltd., 2002.
http://www.lemma-one.com .

R. Arthan and R. Jones. Z in HOL ProofPower. BCS
FACS FACTS2005-1.

R. Bornat, C. Calcagno, P. O'Hearn, and M. Parkinson.
Permission accounting in separation logic P@PL '05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languageses
259-270. ACM Press, 2005.

R. Boulton, R. Hardy, and U. Martin. A hoare logic for
single-input single-output continuous-time control systems.
In O. Maler and A. Pnueli, editorsjybrid Systems:
Computation and Contrppages 113-125. Springer-Verlag,
2003.

P. Cousot. Methods and logics for proving programs. In
J. van Leeuwen, editoHandbook of Theoretical Computer
Science: Volume B: Formal Models and Semantieges
841-993. Elsevier, Amsterdam, 1990.

M. J. Gordon.Programming Language Theory and its
Implementation Prentice/Hall International, 1988.

C. A. R. Hoare. An axiomatic basis for computer
programming.Commun. ACM12(10):576-580, 1969.

U. Martin, E. A. Mathiesen, and P. Oliva. Hoare logic in the
abstract.To appear 2006.

C. Morgan.Programming from Specifications
Prentice/Hall International, 1990.

C. O’Halloran. Model based code verification. IBFEM,
pages 16-25, 2003.

C. O'Halloran, R. D. Arthan, and D. King. Using a formal
specification contractuallyfrormal Asp. Comput.
9(4):349-358, 1997.

C. O’'Halloran and A. Smith. Don't verify, abstract! In
ASE pages 5362, 1998.

C. T. Sennett. Demonstrating the compliance of ada
programs with z specifications. In R.Shaw, edifih
Refinement Workshp@/orkshops in Computing, pages
88-118. Springer-Verlag/BCS-FACS, 1992.

J. Wordsworth Software Development with Z
Addison-Wesley, 1992.

