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Abstract

This paper describes some modelling work carried out
to inform understanding of an Ada verification system. It
presents a simple formal model in Z of a refinement nota-
tion comprising a miniature, but complete, imperative pro-
gramming language annotated with formal specifications.
The semantics of that programming language and the no-
tion of correctness relative to the specification annotations
is defined. A semantic model of a verification condition
generator is given which can be proved to be sound with
respect both to the programming language semantics and
to the intensional semantics of the specification annota-
tions. The specifications and proofs were prepared using the
ProofPower system and all proofs have been fully machine-
checked. We argue that the use of appropriate abstractions
and good tools make machine-checked proof a realistic and
beneficial target.

1 Introduction

The Compliance Tool is a specification and verification
system for Ada code annotated with specifications written
in the Z notation [14, 13]. The tool is implemented as an
application of theProofPower specification and verification
system for Z and HOL [3]. The tool has been used on sev-
eral large scale verifications of avionics control software
[11]. It is the subject of an ongoing programme of enhance-
ments to its ease of use and to its range of applicability. Fol-
lowing a long tradition, the tool implements specification
and verification via refinement of Floyd-Hoare style pre-
and post-conditions [8, 7, 10, 6].

The implementation of the Compliance Tool is based on
a Z specification and that specification has been invaluable
in its development [12]. However, the specification is an
operational description of the tool’s input/output relation-
ship, and is not intended to give an abstract account of the
semantics of the notation supported by the tool. In 2002, the

main sponsors of the tool, QinetiQ, funded a round of en-
hancements which included extensions to the range of flow
control statements to be supported by the tool, e.g., to al-
low exit statements which break out of a nested loop. With
the original intention of just establishing terminology, sim-
ple abstract models of the notation and its semantics were
developed. This model proved useful in understanding the
problems and designing and implementing the solutions.

As an exercise, I extended the model to include a formal
specification of an abstract verification condition generator
and, after a little experimentation, found that this was very
amenable to a machine-checked proof of correctness. This
proof was of some benefit in gaining further understanding
of the notation and its implementation.

This paper presents a slightly simplified version of the
specification and presents the main lemmas and theorems
that make up the correctness proof. The lemmas and the-
orems are presented as Z conjectures. All of these conjec-
tures have been proved withProofPower.

The Z specification we give in this paper is a slightly
adapted version of the material provided as part of aProof-
Power case study [2, 1] . The only difference is that [1]
instantiates generic notions of specification and refinement
defined in [2]. For brevity here, we just give the specific in-
stances of these notions as we need them. This was in fact
what was done in the original work in 2002 — the use of
the generic notions was a subsequent adaptation.

The Z specification uses infix notation for the following
relation and function symbols:

relation v , |= , ⊥
function 60 leftassoc B∗ , −B∗

The specification is given in sections 2, 3 and 4 below:
section 2 introduces our framework for specifying impera-
tive programs and our notion of refinement; section 3 de-
fines the abstract syntax and semantics of the programming
language together with its specification annotations and de-
fines our notions of program correctness; section 4 specifies
the VC generation algorithm. The various lemmas and the-
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orems proved are stated as Z conjectures interleaved with
the specifications.

I make no claims for the novelty of the theory presented
here, although the intensional aspects of the work do bring
out some interesting properties that seem to be underem-
phasised in many accounts. However, I do believe it is im-
portant to have examples of formal methods being applied
to the development of formal methods tools. What was par-
ticularly pleasing about the present example was that a very
small amount of effort expended in fully machine-checked
proof led to a much improved understanding of the problem
at hand.

2 Specification and Refinement

2.1 States and State Transformers

Imperative programs work by modifying a state, but the
internal structure of states is not relevant for present pur-
poses. For a conventional imperative programming lan-
guage, the states will be assignments of values to program
variables. We just introduce a given set to represent the
states:

[STATE]

The commands in our programming language will de-
notestate transformers. A state transformer is just a relation
on states:

STATE TRANSFORMER =̂ STATE ↔ STATE

We think of a state transformert asrespondingto a state,s,
in its domain, thebefore-state, by non-deterministically
selecting someresponseor after-state, which is a states′

such that(s, s′) ∈ t. For example, an atomic program
statement such as the assignmentX :=−1 denotes the
operation which given any before-states selects the
after-states′ in whichX has the value−1 and all other
variables have the same value as ins.

2.2 Specifications

We choose to use semantic rather than syntactic notions
wherever we can. Syntactically, a predicate on a program
state would be some logical combination of primitive asser-
tions about the values of program variables. Semantically, a
predicate is just a set of states, namely those states in which
the corresponding syntactic predicate denotestrue. For ex-
ample, ifX is a real-valued program variable the semantic
value of the syntactic predicateX > 0 comprises precisely
those states in whichX is indeed positive.

PRED =̂ PSTATE

A pre-condition is just a predicate, in the above semantic
sense. We think of a pre-condition as applying to the before-
state of a state transformation.

PREC =̂ PRED

The notion of post-condition is more complicated. While
many accounts are written as if a post-condition as just a
predicate on after-states, in general, a post-condition must
describe a relationship between before-states and after-
states. In syntactic accounts, this is often achieved by the
use of auxiliary variables, e.g., see [6]. In our semantic
account, a post-condition is just a relation. In giving ex-
amples of post-conditions, we will adopt the convention of
using a subscript 0 used to distinguish values in the before-
state, when necessary. So, for example, the syntactic post-
conditionY = Y0/X denotes the relation which holds be-
tween a before-state and an after-state precisely when the
value ofY in the after-state is the result of dividing its value
in the before-state by the value ofX in the after-state.

POSTC =̂ STATE ↔ STATE

A specification statementis a pair comprising a pre-
condition and a post-condition.

SPEC =̂ PREC × POSTC

In examples, we will adopt the convention of the Compli-
ance Notation (cf. also [10]) in which a specification state-
ment has the form∆ W [ P, Q] whereW is a list of pro-
gram variables called theframeandP andQ are syntactic
predicates giving the pre-condition and post-condition re-
spectively. The frame lists the program variables that may
be changed by the code being specified I.e., for each vari-
able,V , that is not in the frame, the post-condition implic-
itly includes a conjunctV = V0.

So, for example,∆Y[X > 0, Y = Y0/X] specifies a
state transformation in which onlyY may change, in which
the before-state is required to satisfy the pre-conditionX >
0, and in which the after-state may be obtained from the
before-state by givingY the value of the expressionY/X
calculated in the before-state. Note that, becauseX is not in
the frame,X = X0 here and so we do not need to decorate
X with a subscript in the post-condition. As another ex-
ample,∆X, Y, T[X = Y0 ∧ Y = X0] specifies a state
transformation in which the values of the variablesX and
Y are to be interchanged, possibly with some unspecified
side-effect on the variableT .

In the Compliance Notation, Ada procedures are spec-
ified by giving a specification statement in the procedure
header as in the following examples.

procedure SWAP
∆X, Y [true, X = Y0 ∧ Y = X0)];
procedure NDSWAP
∆X, Y [true, {X, Y} = {X0, Y0}];



HereSWAP interchanges the values of two global vari-
ables, whereasNDSWAP either interchanges the values or
leaves them unchanged.

2.3 Refinement

We now define the important notion ofrefinement. Re-
finement is the relation that obtains between a specifica-
tion and a satisfactory implementation of that specification,
where an “implementation” is simply another specification,
typically more concrete than the abstract specification it
refines. For example, the specification of the procedure
SWAP in section 2.2 is a possible refinement of the spec-
ification forNDSWAP.

The formal definition of the refinement relation is as fol-
lows, in whichs1 v s2 is written to mean thats2 is a re-
finement ofs1.

v : SPEC ↔ SPEC

∀prec1, prec2 : PREC; postc1, postc2 : POSTC•
(prec1, postc1) v (prec2, postc2)

⇔ prec1 ⊆ prec2

∧ prec1 C postc2 ⊆ postc1

The two conjuncts in the definition of refinement are
known as the liveness and safety conditions (e.g., see [15]).
The liveness condition is a weak one corresponding to as-
sertions of partial correctness, i.e., assertions of the form
“programp satisfies specifications providing it terminates
normally”.

In [2], elementary properties of a generic notion of re-
finement along the above lines is considered; it is shown
there that the refinement ordering constitutes a complete
lattice and explicit constructions of the meets and joins are
given.

3 Programs

3.1 Syntax and Semantics

Our notion of program has five syntactic categories:

Atom A primitive operation on the state.
Seq Sequential composition
If If-then-else
While While-loop
Spec A program with a specification annotation

The following free type gives the abstract syntax of pro-
grams, in which we mingle semantic and syntactic concepts
to simplify later work. We also use a tree structure rather

than a linear list for sequential composition, since that is se-
mantically harmless, and, again, helps to keep things simple
later on. (TheProofPower syntax for free type definitions
is currently slightly non-standard in not using the chevron
symbols.)

PROG ::=
Atom (( STATE TRANSFORMER ))

| Seq (( PROG × PROG ))
| If (( PRED × PROG × PROG ))
| While (( PRED × PROG ))
| Spec (( SPEC × PROG ))

In a typical imperative language, the atoms might be the
denotations of assignment statements and procedure calls.
As discussed in section 2.2, in the Compliance Notation,
the denotation of a procedure call is effectively represented
by an instance of the formal specification appearing in the
procedure header.

The following function gives the semantics of this notion
of a program. The semantic value of a program is a state
transformer. In the semantics, the specification annotations
are just ignored — it is the actual code that determines the
semantics, not our aspirations for it.

semantics : PROG → STATE TRANSFORMER

∀t : STATE TRANSFORMER;

p1, p2 : PROG; c : PRED; s : SPEC•
semantics (Atom t) = t

∧ semantics (Seq(p1, p2)) =

semantics p1
o
9 semantics p2

∧ semantics (If(c, p1, p2)) =

(c C semantics p1) ∪ (c −C semantics p2)

∧ semantics (While(c, p1)) =

(c C semantics p1)
∗ −B c

∧ semantics (Spec(s, p1)) =

semantics p1

It is in the above that the convenience of dealing with
partial correctness becomes apparent. The semantic equa-
tion for a while-loop says that the body of the loop is to be
executed repeatedly in states satisfying the predicatec until
a state which does not satisfyc is reached. If this fails to ter-
minate the result is just the empty relation: we are under no
obligation to assign any more complex notion of meaning
to the non-terminating execution.

The partial semantics also embraces in an abstract way
the possibility of the program failing gracefully. Through-
out the sequel, when we talk about non-termination, we in-
clude the possibility that via some exception-raising mech-
anism that is outside the scope of the present model, exe-
cution of a command may result in some kind of abnormal



termination which is handled properly in the physical en-
vironment in which the program is executed. For example,
in Ada the assignmentX := 1/Y will lead to the program
raising an exception ifY happens to have the value zero.

3.2 Program Correctness

For a program to be correct every part of it that has a
specification must certainly satisfy that specification, which
in our setting means that the semantic value of the program
must be a refinement of the given specification annotation.
We writep |= s to mean that programp satisfies specifica-
tion s.

|= : PROG ↔ SPEC

∀ prog : PROG; prec : PREC;

postc : POSTC •
prog |= (prec, postc)

⇔ (prec, postc) v (prec, semantics prog)

However, a good intuitive notion of correctness also re-
quires the pre-condition of each specification in the program
to be satisfied whenever the relevant part of the program is
executed. For example, every part of a program that has
a specification might satisfy its specification, but, the pro-
gram might still include a reachable specification with an
empty pre-condition: clearly, this part of the program is
“correct, but for the wrong reasons”.

If p is a program andc is a set of states, we will say that
p is upright on c iff. no pre-condition inp will be violated
whenp is executed in a starting state inc. We writep ⊥ c
when this holds (reverting to the original mathematical use
of the symbol⊥ as an infix relation with apologies to those
more accustomed to it as denoting the bottom element in a
lattice).

⊥ : PROG ↔ PRED

∀t : STATE TRANSFORMER; p1, p2 : PROG;

c1, c2, prec : PREC; postc : POSTC•
((Atom t) ⊥ c1)

∧ ((Seq(p1, p2) ⊥ c1) ⇔
p1 ⊥ c1 ∧ p2 ⊥ semantics p1 (|c1|))

∧ ((If(c2, p1, p2) ⊥ c1) ⇔
p1 ⊥ c1 ∩ c2 ∧ p2 ⊥ c1 \ c2)

∧ ((While(c2, p1) ⊥ c1) ⇔
p1 ⊥ c1 ∩ c2 ∧
p1 ⊥ semantics p1 (|c1 ∩ c2|) ∩ c2)

∧ ((Spec((prec, postc), p1) ⊥ c1) ⇔
c1 ⊆ prec ∧ p1 ⊥ c1)

I am grateful to one of the referees for pointing out that
my original definition of uprightness was too weak: it omit-
ted the second conjunct in the clause for while-statements.
This kind of error is rather easy to make but would become
apparent in further work to derive useful consequences of
the uprightness relation formally. In the present work, such
consequences were only drawn informally and so the omis-
sion was only detected by review.

Uprightness enjoys the following two useful properties:

upright mono thm ?`
∀ prog : PROG; c1, c2 : PRED•

prog ⊥ c1 ∧ c2 ⊆ c1 ⇒ prog ⊥ c2

upright cup thm ?`
∀ prog : PROG; c1, c2 : PRED•

prog ⊥ c1 ∧ prog ⊥ c2 ⇒ prog ⊥ c1 ∪ c2

4 The VC Generator

4.1 Pre-condition Calculation

The verification condition (VC) generators we are con-
cerned with are essentially pre-condition calculators: given
a desired post-conditionpostcand a programprog, the VCs
amount to a pre-conditionprec, such that wheneverprogter-
minates after execution from an initial state satisfyingprec,
thenpostcholds in the terminal state. One then endeavours
to show thatprecis true, in practice by proving a set of syn-
tactic predicates whose conjunction impliesprec.

In this section we formalise a general notion of a pre-
condition calculator and say what it means for such a thing
to be sound. In the next section, we will specify a particular
pre-condition calculator.

The simplest view of a pre-condition calculator would be
a predicate transformer: a function that takes a program and
a post-condition given as a predicate on the final state as
its argument and returns a predicate that, we hope, gives a
pre-condition which will guarantee achievement of the post-
condition.

However, the predicate transformer idea is slightly sim-
plistic: to deal with a post-condition such asY = Y0/X,
in which the post-condition depends on values in the before
state, something more is needed, to reflect the dependency.
(In other accounts, such as [6], auxiliary (non-program)
variables are used to capture values at particular points in
the program. These introduce a similar problem.)

One possible solution is to deal with post-conditions as
predicates parametrised in some way. However, it seems
more natural to deal with post-conditions as relations on
states, rather than just states. The domains and ranges of
these relations corresponds to appropriate initial, final, or



intermediate program states, depending on the point in the
program being considered. This gives us the following sig-
nature for a pre-condition calculator.

PREC CALC =̂ PROG × POSTC → POSTC

We can now state what it means for a pre-condition cal-
culator to be sound. Soundness requires, that given any
program,prog, and any target post-condition,after, the re-
sult of pre-condition calculation is a relationbefore such
that (equipped with standard pre-conditions) the sequential
compositionbefore o

9 semantics prog is a refinement ofafter.

sound prec calc : PPREC CALC

∀pc : PREC CALC•
pc ∈ sound prec calc

⇔ (∀prog : PROG; before, after : POSTC

| before = pc(prog, after)

• (dom before, after) v
(dom before, before o

9 semantics prog))

So, for example, consider the case whenprog is the fol-
lowing if-statement:

if X < Y then X := Y else Y := X end if

For a sound pre-condition calculator,before must be a
state transformer such that the program:

before; if X < Y then X := Y else Y := X end if

will have the overall effect of making the desired post-
conditionafter hold.

In the relation returned by a pre-condition calculator, the
domain and the range of the relation have both been pulled
back to the initial state. The desired pre-condition is ex-
tracted by intersecting with the identity relation. This gives
the following simple consequence of soundness, if the pro-
gram has a specification at the top level and if the calcu-
lated pre-condition contains the pre-condition of the speci-
fication, then the program satisfies the specification:

prec calc sat thm ?`
∀ pc : PREC CALC; c prec, s prec: PREC;

s postc : POSTC; p : PROG
| pc ∈ sound prec calc
∧ c prec =

dom (pc(Spec((s prec, s postc), p), s postc) ∩
(id STATE))

∧ s prec ⊆ c prec
• p |= (s prec, s postc)

Continuing the earlier example, ifpc is a sound pre-
condition calculator and the desired post-conditions postc

is X = max{X0, Y0} the calculated pre-condition for the
if-statement

if X < Y then X := Y else Y := X end if

could be true, whereas if the desired post-condition is
Y = max{X0, Y0}, then the calculated pre-condition must
be no stronger thanX = Y.

4.2 A Useful Pre-condition Calculator

We can easily exhibit a sound but not at all useful, pre-
condition calculator, which simply returns the empty rela-
tion. The following theorem says that this is indeed sound.

trivial prec calc sound thm ?`
∀ pc : PREC CALC
| ∀prog : PROG; postc : POSTC•

pc (prog, postc) = ∅
• pc ∈ sound prec calc

In this section, we give a model of a pre-condition cal-
culator that is more useful than this trivial example. Before
giving the definition we need two preliminaries.

The first preliminary comprises a variant on the theme
of range restriction and range anti-restriction, which are
needed to deal with if-statements. The idea here is this: IfR
is a set of state transitions andT is some set of target after-
states, then the usual range restrictionR B c contains all
before-states thatmaylead to states inT , whereasR B ∗ c

contains only the before-states thatmustlead to states inT.
R −B ∗ c bears the analogous relationship withR −B c.

[X, Y ]

B∗ : (X ↔ Y) × PY → (X ↔ Y);

−B∗ : (X ↔ Y) × PY → (X ↔ Y)

∀R : X ↔ Y; c : P Y •
R B∗ c = R ∼ (| Y \ c |) −C R

∧ R −B∗ c = R ∼ (| c |) −C R

The useful pre-condition calculator will use a heuristic
to propose a specification for the body of a while-loop. Our
remaining preliminary is a loose definition of this heuristic.
The definition requires that if the body has been supplied
with an explicit specification, then that specification should
be used. The pre-condition calculator must therefore ensure
soundness without relying on any properties of this heuris-
tic. (A practical realisation of the pre-condition calculator
might simply insist that the body of a while-loop be given
with an explicit specification).

guess spec : PROG → SPEC

∀s : SPEC; p : PROG • guess spec(Spec(s, p)) = s



With the preliminaries in place, we can now define the
useful pre-condition calculator, which we think of as pulling
a post-condition backwards through a program transform-
ing it as we go. We give the Z first and then give a clause-
by-clause commentary:

prec calc : PREC CALC

∀t : STATE TRANSFORMER; postc, postc1 : POSTC;

p1, p2 : PROG; c : PRED; prec1 : PREC;

body prec : PRED; body postc : POSTC•
prec calc (Atom t, postc) =

{s, s′ : STATE | t(|{s′}|) ⊆ postc(|{s}|)}
∧ prec calc (Seq(p1, p2), postc) =

prec calc(p1, prec calc(p2, postc))

∧ prec calc (If(c, p1, p2), postc) =

(prec calc(p1, postc) B∗ c) ∪
(prec calc(p2, postc) −B∗ c)

∧ ((body prec, body postc) = guess spec p1

⇒ prec calc (While(c, p1), postc) =

postc −B c ∪
{ ss′ : dom postc × c

| c ⊆ body prec

∧ body prec ⊆
dom (prec calc(p1, body postc) ∩
(id STATE))

∧ dom postc × (body postc(|body prec|) \ c) ⊆
postc })

∧ prec calc (Spec((prec1, postc1), p1), postc) =

{ s : STATE; s′ : STATE

| postc1(|{s′}|) ⊆ postc(|{s}|) } B

(prec1 ∩ dom(prec calc(p1, postc1) ∩
(id STATE)))

In the definition, the 5 clauses deal with the various syn-
tactic categories as follows:

• A post-condition is pulled back through an atomic
statement, by calculating the set of pairs(s, s′) such
that the response of the atom ons′ is a response per-
mitted by the post-condition ons.

• A post-condition is pulled back through the sequential
composition ofp1 andp2 in the obvious way: pull it
back throughp2 and then pull the result back through
p1.

• A post-condition is pulled back through an if-then-else
statement by pulling it back through the then- and else-
parts of the statement. The overall result is then the
union of these intermediate results after discarding all
transitions which do not unambiguously belong to the
if-part or the else-part.

• A post-condition is pulled back through a while loop
by applying the heuristic to guess a specification for
the body of the loop. The overall result is formed as a
union of two parts.

The first part of the union corresponds to states where
the body of the loop is never execute and is just the
appropriate restriction of the original post-condition.

The second part corresponds to states where the body
of the loop is executed at least once and is given
as a set comprehension below. The set comprehen-
sion is empty unless three conditions are satisfied:(i)
the condition of the while-loop must denote a set of
states that are included in the guessed pre-condition;
(ii) the pre-condition of the body must denote a set
of states that satisfy the pre-condition resulting from
pulling the guessed post-condition back through the
body; and(iii) for each state satisfying the guessed pre-
condition, the set of all states allowed by the guessed
post-condition in response to this state which do not
satisfy the loop condition must be contained in every
possible response of the original post-condition.

• A post-condition is pulled back through a specifica-
tion statement in much the same way as it is pulled
back through an atomic statement treating the post-
condition of the specification statement in the same
way as the state transformer of the atom. The result
is then filtered to remove all state transitions which do
not unambiguously satisfy both the pre-condition of
the specification statement and the pre-condition cal-
culated from the body of the specification statement.

4.3 Implementation Considerations

Before formalising theorems about the useful pre-
condition calculator, some remarks about how something
like it is realised in a practical system are in order.

An implementation can represent the post-condition be-
ing transformed as (the conceptual conjunction of) a finite
set of syntactic predicatesPi( ~x0, ~x), where~x represents
some list of program variables and~x0 represents a list of
program variables decorated to distinguish them as initial
variables (i.e., they refer to the before-state of the code be-
ing analysed). The pre-condition calculator will operate by
syntactic transformations on these predicates which hold
the initial variables fixed but may make substitutions to~x.
At the beginning of the calculation,~x refers to the final
state of the program, and as the calculation works back-
wards through the code, the execution state referred to by
~x moves backwards in step.

The most primitive state-changing operation will be the
atomic statements that represent program language assign-
ments. Given an assignment,v := e, the requirements of



the above formal definition are precisely met by substitut-
ing e for v in the Pi( ~x0, ~x). Here we are tacitly assum-
ing that program variables and expressions have some well-
defined representation as logical variables and expressions
in the logical system in use.

Procedure calls are the other common form of atomic
statements and as already discussed these can be treated
much as specification statements (with empty bodies).

If the programming language has them, then other forms
of atomic statements can be dealt with in anad hocway as
their semantics dictates. For example, many programming
languages have a null statement form, which corresponds to
the identity operation on the set of predicates. An atomic
statement that aborted execution could be dealt with by de-
livering an empty set of predicates, or equivalently, the sin-
gle predicatetrue, (see example pre-condition calculations
at the end of this section).

Sequential composition can be handled exactly as in
the formal definition: the set of predicates calculated for
the second statement is just passed in as the target post-
condition for the first statement.

If-then-else statements cause sets of predicates to be
combined. EachPi( ~x0, ~x) resulting from analysing the
then-part of the conditional with conditionc would con-
tribute c ⇒ Pi( ~x0, ~x) to the result. Similarly, each
Pj( ~x0, ~x) resulting from the analysis of the else-part would
contribute¬c ⇒ Pj( ~x0, ~x).

While-loops are handled by logical transformations that
mimic the various parts of the set comprehension in the
formal definition above. There are various possible ap-
proaches, some of which necessitate a more complex repre-
sentation of the post-condition involving quantifiers, rather
than a flat conjunction of quantifier-free formulae. The
Compliance Notation avoids this complexity by generating
what are called side conditions, universally closed conjec-
tures that have to be proved to justify the correctness of the
main calculation. From a user’s perspective the end result
of the whole process is just a set of verification conditions
(VCs) that have to be proved and these side conditions just
get added to the final set of VCs. For example, in a loop
with conditionc, if the post-conditionpostcin the formal
definition above is represented by the set of syntactic predi-
catesAj , a side condition of the formPi( ~x0, ~x)∧c ⇒ Aj is
generated for eachPi( ~x0, ~x) in the representation ofbody
postc. This corresponds to the requirements of the last con-
junct in the set comprehension above.

Like while-loops, if full generality is to be achieved,
specification statements require a more complex represen-
tation using quantifiers. Again, the Compliance Notation
adopts the simpler approach of generating side conditions,
if necessary. For example, side conditions of the form
Pi( ~x0, ~x) ∧ c ⇒ Aj will be generated for eachPi( ~x0, ~x)
in the representation of what is calledpostc1 above and for

eachAj in the representation ofpostc. This corresponds to
the predicate of the set comprehension above.

4.4 Properties of the Pre-condition Calculator

We now return to the formal work and present a number
of conjectures all of which have been proved withProof-
Power. We conjecture that the useful pre-condition calcu-
lator is sound. Note that since soundness is defined quite
directly in terms of the notion of refinement and of the
programming language semantics, this is strong evidence
that the definition of the pre-condition calculator is strong
enough.

prec calc sound thm ?` prec calc ∈ sound prec calc

The following conjecture gives a useful property of our
useful pre-condition calculator, which turns out to be a sim-
ple consequence of its soundness.

prec calc dom thm ?`
∀ prog: PROG; postc : POSTC
• dom (prec calc(prog, postc) ∩ (id STATE)) ∩

dom (semantics prog)
⊆ dom postc

We also conjecture that a program is upright in every
state in the pre-condition produced by the pre-condition cal-
culator, i.e., no execution of the program can cause the pre-
condition of any specification in the program to be violated
in those states. Taken together with the soundness con-
jecture, this shows that a VC generator based on the pre-
condition calculator does indeed guarantee program cor-
rectness as discussed in section 3.2 above.

prec calc upright thm ?`
∀ prog: PROG; postc, postc′ : POSTC
| postc = prec calc(prog, postc′)
• prog ⊥ ran postc

Finally, we give some evidence that the useful pre-
condition calculator really is useful by exhibiting some sim-
ple examples for which it returns something more interest-
ing than an empty relation.

The first block of examples covers various forms of
atom.

prec calc atom egs thm ?`
∀ null, chaos, stop : PROG; postc : POSTC
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
• prec calc(null, postc) = postc
∧ prec calc(chaos, postc) =

{s, s′: STATE | postc(|{s}|) = STATE}
∧ prec calc(stop, postc) = STATE × STATE



The second block gives at least one example of each of
the compound syntactic categories.

prec calc compound egs thm ?`
∀ null, chaos, stop, p, spec null : PROG;

postc : POSTC; c : PRED
| null = Atom (id STATE)
∧ chaos = Atom (STATE × STATE)
∧ stop = Atom ∅
∧ spec null = Spec((STATE, id STATE), null)
• prec calc(If(c, null, stop), postc) =

postc B∗ c ∪ (STATE × STATE) −B∗ c
∧ prec calc(Seq(p, null), postc) = prec calc(p, postc)
∧ prec calc(Seq(null, p), postc) = prec calc(p, postc)
∧ prec calc(While(STATE, spec null), postc) =

dom postc × STATE
∧ prec calc (spec null, postc) = postc

These calculational results give evidence that the defini-
tion of the useful pre-condition calculator is not too strong
and there is some value in them: it was only when I tried to
prove them that I realised that I had mistakenly written:

{s′} C t ⊆ {s} C postc

instead of

t(|{s′}|) ⊆ postc(|{s}|)

in the equation for the semantic category Atom. The
pre-condition calculator is sound and guarantees upright-
ness with this mistake, but very far from useful (since
the mistaken predicate prohibits the state from changing if
{s′} C t is not empty).

5 Some Statistics

As the reader can see the specifications and the state-
ments of the theorems as given here occupy only about 8
or 9 pages even when heavily leavened with narrative. The
corresponding parts of the account in the case study docu-
ment [1] is actually about 10 pages, but that is mainly due
to differences in layout. The case study document also in-
cludes 11 pages of automatically generated listings and an
index. When the narrative is stripped out the specification is
about 200 lines of Z text. The proof script comprise about
380 lines of Standard ML code. The original development
of both specifications and proofs took about 5 days.

As has been mentioned, the material was subsequently
revised to use a generic theory of specification and refine-
ment. This adaptation was very simple and only took an
hour or two (the only material affected is that in section 2
above, which becomes a little shorter). The generic theory
of refinement in [2] is very similar in size to the present
specification and the proof script is also closely comparable
both in size and in development time.

Correcting the omission in the definition of uprightness
mentioned in section 3.2 presented some evidence that the
specification and proof infrastructure was reasonably ro-
bust: it took only about 30 minutes to develop the handful
of additional lines of proof script to show that the useful
pre-condition calculator is correct relatively to the stronger
notion of uprightness. Moreover, once the specification was
amended the proof work was purely mechanical: no signif-
icant intellectual effort was required.

6 Conclusions

A formal specification in Z of a simple imperative pro-
gramming language equipped with specification annota-
tions has been presented together with an abstract formal
design of a verification condition generator for that lan-
guage. A number of theorems have been stated which
together show that the verification condition generator is
sound with respect to the programming language seman-
tics and guarantees a property we have calleduprightness
which expresses formally part of the intensionality of the
specification annotations. Machine-checked proofs of these
theorems were prepared usingProofPower. The work was
of some benefit in gaining a better understanding of a real-
world program verification system (the Z/Ada Compliance
Tool) and in enhancing the capabilities of that system.

By choosing a suitable level of abstraction, it was a rel-
atively small task to conduct fully machine-checked proofs
of all the conjectures. This helped give a deeper understand-
ing and revealed some flaws. It is noteworthy that even
such a familiar thing as a Floyd-Hoare logic for a simple
programming language contains pitfalls for the unwary and
some surprises even for the expert.

It is becoming apparent that the ideas behind Floyd-
Hoare logic have application beyond the sphere of func-
tional correctness of imperative programming languages.
Potential applications include resource management in pro-
gramming [4] and, going further afield, continuous systems
expressed diagrammatically [5]. There are theoretical in-
dications that the Floyd-Hoare approach applies to a very
wide class of systems indeed [9].

Some experimentation has begun in applying the ap-
proach of the present paper to other systems (including one
of the two main general types identified in [9]) with contin-
uous systems as a goal. In these less familiar applications, a
fully rigorous approach to the metatheory promises to give
important insights and to help build sound tools for specifi-
cation and verification in applications.
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