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Some while ago Freek Wiedijk proposed the irrationality of v/2 as an interesting example to use in
a comparative study of different proof assistants. Freek received formalisations using many systems
and has prepared a report presenting the results. He was recently kind enough to draw my attention
to a draft of his very interesting introduction to the report. This kind thought led to a small flurry
of comments and then to the present contribution to the study using the ProofPower system. My
apologies to Freek for creating extra work at the last minute. Despite my efforts to delay him, Freek’s
report was published in book form in 2006 with a very nice foreword by Dana Scott [Seventeen Provers
of the World, LNAI 3600, Springer Verlag].

The formal material is based on the mathematical case studies in ProofPower-HOL that have been
under evolutionary development over the last few years. The present (March 2005) version of this
document does not yet form part of the official case studies, but parts of it are likely to be included in
them when one or two obvious gaps in the breadth of coverage have been filled (most conspicuously
the fundamental theorem of arithmetic). This note follows the mathematical case studies in including
theory listings for all the theories developed (in sections 6 to 10). We use a slightly different approach
in the discussion (giving the statements of the main results as ML quotations).

In retrospect, one of my main comments on Freek’s report amounted to my surprise that the theorem-
proving community only seemed to know one proof! The irrationality of v/2 has several proofs and
so, in the interests of variety, three proofs are presented here. Proof 1 is an ancient, but seemingly
not so widely known, “geometrical” proof that requires no number theory. This proof is amenable
to some interesting generalisations, but we do not look into that here (see, for example, The Book of
Numbers by John H. Conway and Richard K. Guy). Proof 2 and proof 3 are the well-known proofs
based on divisibility. Perhaps the least well-known thing about the well-known proofs is that there
are two of them! We present them in reasonably full generality (showing in one case that the square
root of any prime number is irrational, and in the other, that, if the square root of an integer is
rational than the square root is actually an integer). Following Freek’s rules, we are careful to derive
the specific conclusion that V/2 is irrational from the general proofs.

*Revised 11th November 2013 to be compatible with the latest version of the ProofPower mathemical case studies.
Revised 23rd November 2022 to include the nice depiction of proof 1 as a proof without words mentioned in the foreword
to Freek Wiedijk’s book and to avoid inconvenient redeclaration of ML names.



1 Common Definitions

The problem clearly needs to be formalised in terms of the 5 symbols forming the title of this
document. Of these, logical negation, the number 2 and the membership sign are supplied for free.
The square root function is defined in the theory of analysis from the mathematical case studies with
the following defining property:

FVY2e 0. <z=0. <SqgrtzANSqgrtz " 2==x

The proofs use no facts of analysis other than this definition. We need to define the set of rational
numbers. The definition is common to all three proofs: after all, we want the three proofs all to
prove exactly the same thing.

The following red tape sets up a theory sqrt_defs to hold this material.
SML

‘ set_pc "basic_holl";

‘ open_theory "analysis";

‘force-delete-theory "sqrt2_defs" handle Fail - => ();

‘new-theory "sqrt2_defs";

To state what is proved by the third proof, we need the set of integers as well as the set of rationals.
The definitions follow (in the usual ProofPower-HOL constant specification boxes where we give the
signature of the new constant and its desired defining property separated by a horizontal bar). The
consistency of these equational definitions is proved automatically.

HOL Constant

Z={x|3Im:Nex =NRmVz=~(NRm)}

Here NR is the function that injects the type of natural numbers into the type of reals.

HOL Constant

\
|
‘Q:{x|Elab:NOﬂb:0/\(x:a/b\/x:~(a/b))}

A handful of basic theorems about the square root function are developed in this theory, see the
listing for details.

2 Proof1l

Our first proof is very simple. It makes no reference to prime divisors or the like. It is inspired by
the construction depicted in figure 1. If we let x = BD and y = AB be respectively the diagonal and
side of the larger square, so that z/y = /2, DE = 2y — xz and DF = x — y form the diagonal and
side of the smaller square. But then, if x and y were both integers, so also would be x —y and 2y — x
and we would have a contradiction, since we could repeat the construction to produce arbitrarily
small squares with integer sides.



In his foreword to Freek’s book, Dana Scott added a note giving a beautiful depiction of this proofs
as a “proof without words” due to Stanley Tennenbaum. See figure 2 for Tennenbaum’s diagram
together with some pictorial equations showing the reasoning: the big square is presumed to have
area equal to the sum of the areas of the two congruent hatched squares, which have been placed
inside the big square at diagonally opposite corners. But then the intersection of the hatched squares,
the doubly-hatched square in the figure must have its area equal to the sum of the areas of the two
small white squares. But if the big square and the two hatched squares have integer side-lengths,
then so do all the squares, showing that their can be no minimal pair of positive integers z and y
with 2?2 = 2y%.

This proof translates very simply into algebra. To present the formalisation, we give the statements
of a selection of the lemmas proved. The theory listings towards the end of the document give the
output from ProofPower showing that these results have indeed been proved. The actual proof
scripts are included in the master source text of this document, but not in the printed form.

The main work in this proof is given in a series of 5 lemmas. The first lemma gives the key algebraic
facts about the geometrical construction. It also includes what amounts to the estimate that 1 <
V2 < 3/2, which is needed to show that when the inputs to the construction are positive integers,
then so are the outputs.
SML
val proofl_lemmal ="
Vr ye

NROLzANRO<yAz  2=NR2=xy~ 2
= y<zANR2xz <NRS3x*xy
A (NR2xy—2z)"2=NR2x(z—y) 2

.
)

The second and third lemmas (see the theory listing in section 7) essentially just specialise the above
to the case where x and y are natural numbers.

All three proofs proceed by Fermat’s “method of infinite descent”. I.e., one shows that the existence
of a positive integer counter-example to a conjecture implies the existence of a smaller counter-
example. Thus in each case we have an “inductive step” that produces smaller counter-examples
from larger ones. The following lemma gives this step for the present proof:

A B
AB =BC
/\ BAF=/\ BEF
F / DEF=/ ABC= |_
EF = ED
~/2=BD:BA=DF:DE
E
D C

Figure 1: The Geometrical Construction
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Figure 2: The Proof Without Words

SML
val proofl_lemmad ="
Vm ne
NRm~™2=NR2«xNRn"2A0<n
= dmi niel < nl Anl <nANRmI ™ 2=NR2«NRnl "~ 2

|

From this we conclude that the only natural number solution to m? = 2n? has n = 0.

SML
‘val proofl_lemmab ="
VnmeNRm ™ 2=NR2«NRn~ 2=n=20

.
)

The desired result follows easily from the above. We formalise it in two guises, the first guise is
explicit:

SML

‘val proofl_thml ="

| Ya be =b = 0 = —(a/b)"2 = NR 2

.
)

The second guise gives the result much as it is stated in the title of this note:

SML
‘val proofl_thm2 =T
‘ -Sqrt (NR 2) € Q

.
)

3 Divisibility

The other two proofs we give are the better known ones based on divisibility. They share common
material from the theory of divisibility. In this section we define the common notions. First we set
up a theory to hold the definitions. See section 8 for the listing of this theory.



SML
‘ open_theory "fin_set";
‘force-delete-theory " divisibility" handle Fail - => ();

‘ new_theory " divisibility";

We have a choice about whether to develop the theory for the natural numbers or for the integers. On
the one hand, it is more pleasant to work in a ring rather than a semi-ring, on the other hand negative
numbers are not very relevant to the main results, even when they are useful in the proofs. We vote
in favour of the natural numbers, and proceed to define the greatest common divisor function. This
is an implicit definition: the first of the two conjuncts in the defining property say that the greatest
common divisor is a common divisor and the second says that it is the greatest one (i.e., it is maximal
with respect to the divisibility ordering of the natural numbers). We have several choices about how
to capture formally the notion “m is divisible by n”. We opt to state it as m Mod n = 0.

HOL Constant

Ged : N —- N - N

(Ym ne 0<mANO<n
= 0 < Ged m n
A m Mod Ged m n = 0

A n Mod Ged m n = 0)
A (Ymn de 0 < d

A m Mod d = 0

A n Mod d = 0

= Ged m n Mod d = 0)

Now we define the set of prime numbers:

HOL Constant

Prime : N SET

Prime ={p| 1 <pAVmnep=msn=m=1Vn=1}

The important fact we need about prime numbers is the fact that a number is prime iff. it is greater
than 1 and whenever it divides a product it divides one of the factors. The right-to-left direction of
this is simple. It is for this the other direction that we need to develop the theory of the g.c.d.
SML
val prime_thm ="

Vpe  p € Prime

& 1 <p
A (Vm ne (mxn) Mod p = 0 = m Mod p = 0 V n Mod p = 0)

The bulk of the theory then comprises the supporting lemmas and theorems we need to prove that
the definition of greatest common divisor is consistent and to reason about it (see the theory listing
in section 8 for full details). The most common textbook account exhibits the g.c.d. of m and n as
the smallest positive value of the form am +bn. This requires a and b to range over negative integers.
A slightly less symmetrical alternative is to take the g.c.d. to be the smallest positive value of the



form (am) Mod n. This works over the natural numbers. The main result (after the consistency
theorem) is the following:
SML
val ged_eq-mod_thm =T
Vmne 0 <m A0 <nA0<mModn

= Jae 0 < (axm) Mod n
A (Vbe 0 < (bxm) Mod n = (axm) Mod n < (bxm) Mod n)
A Ged m n = (axm) Mod n

The final theorem in this theory for the current version of this document says that any integer greater
than 1 has a prime divisor.

SML

‘val prime_divisor_thm ="

‘ Vme 1 < m = dp nep € Prime A m = p*n

1.
)

From this, it is a very short step to the fundamental theorem of arithmetic, but that is not needed
for present purposes.

4 Proof 2

Our second proof is the most widely-known one: if m? = 2n2, then m is even, but then so is n, so
we can divide m and n by 2 to get a solution with smaller n. This gives a contradiction, because if
there is a solution for n positive, we get an infinite descending sequence of positive integers. This
proof generalises to show that /p is irrational for any prime p.

To quote the formal steps in the proof we need to construct a theory in which the common definitions
and the material on divisibility is available. The lemmas and theorems making up the proof are later
stored in this theory. See section 9 for the listing.

SML

‘ open_theory " divisibility";

‘force-delete-theory "sqrt2_proof2" handle Fail - => ();

‘ new_theory "“sqrt2_proof2";

‘ new_parent" sqrt2_defs";

The proof starts with the following lemma, the proof of which is easy given the results on divisibility.
This is almost identical to lemma 4 in the 1st proof, but with an arbitrary prime p in place of the
specific number 2. Of course, the method of proof is quite different: one observes that under the
stated conditions, p must divide both m and n and so dividing through by it gives a smaller solution.

SML

‘val proof2_lemmal ="

‘meno pEPrime Amxm=pxnxnA0<mn
‘:> dmi niel < nl Anl <nAmlxxml =pxnl xnl
1.

?




From this it follows that the only solution to m? = pn? in natural numbers m and n has n = m = 0.
Whence:

SML

‘val proof2_thm2 ="

‘ Vpep € Prime = —Sqrt (NR p) € Q

.
’

Freek quite rightly insists that we actually prove that v/2 is irrational, so we need to prove that it is
prime.

SML

‘val proof2_lemma3d ="

‘ 2 € Prime

.
)

Whence we draw the usual conclusion:
SML

‘val proof2_thm3 ="

‘ -Sqrt (NR 2) € Q

.
)

5 Proof 3

This is the most general of the three proofs we give: if m? = kn? for any natural numbers k, m and
n with k positive and n > 1, then any prime divisor of n is also a prime divisor of m. Thus by the
usual infinite descent the only solutions of this equation with k& and n positive have n = 1, i.e., the
only solutions are when k = m? is a square.

As in the previous section we need to create a theory in which the right vocabulary is available to
state the results: The lemmas and theorems making up the proof are later stored in this theory. See
section 10 for the listing.

SML

‘ open_theory "divisibility";

‘force-delete-theory "sqrt2_proof3" handle Fail - => ();

‘new-theory "sqrt2_proof3";

‘ new_parent" sqrt2_defs";

The first lemma is the following. It justifies the steps in the infinite descent.

SML

‘val proof3_lemmal ="

‘Vkmno O<kAmsm=ks«xn*snAl<mn
‘:> dmi1 nie0 < nl Anl <n A ml xml =Fk=x*xmnl xnl
.

I

The next step is rather different. The infinite descent bottoms out at 1, from which we we conclude
that if m? = kn? has a natural number solution with n positive, then k is a perfect square.



SML

‘val proof3_lemma2 ="

‘anmo NRO<NREANRO<NRnANRmMmM™ 2=NREkx* (NRn" 2)
= Jie NRi~ 2=NRk

.
)

With intermediate steps similar to the previous proofs, we arrive at the following:
SML

‘val proof3_thm2 ="

‘Vz’oNRO§i/\i€Z/\SqrtieQ:>Sqrti€Z

.
)

Yet again, we must exercise our skills on the specific number 2, which requires the following lemma
(easily proved using the numerical estimate that 1 < v/2 < 2).

SML

‘val proof3_lemma3d ="

| -Sqrt (NR 2) € Z

.
)

From which we conclude for the third and final time our old friend:
SML

‘val proof3_thm3 ="

| -Sgrt (NR 2) € Q

1.
)




6 THE THEORY sqrt2_defs

6.1 Parents

analysis
6.2 Children

sqrt2_proofl  sqrt2_proof3  sqrt2_proof2
6.3 Constants

R P
R P

O N

6.4 Definitions

Z FZ={z|3mez=NRmVaz=~(NRm)}
Q FQ={z|3abe-b=0AN(z=a/bVzz=~(a/b)}

6.5 Theorems

sqrt_thm FVYze 0.<zxz= Sqrtxz" 2==zx
square_even_thm

FYze~za~ 2=1"2
sqrt_eq.thm FVYzye 0. <ax Nz~ 2=y=2=S5qty
sqrt_egs_thm F Sqrt 0. = 0.

AN Sqrt 1. = 1.
A Sqrt 4. = 2.
A Sqrt 9. = 3.

square_square_root_mono_thml

FVzye 0.<zN0.<y=(zx"2<y " 2cz<y)
sqrt_less_thm

FVzye 0. <z ANO0. <y= (Sgrt z < Sqrt y & = < y)



7 THE THEORY sqrt2_proofl

7.1 Parents

sqrt2_defs

7.2 Theorems

proofl_lemmal_thm
FYazy
o). <z ANO.<yAhzx 2=2.xy " 2
= y<z
N2 . xx < 8. %y
N2 .xy—z)" 2=2.x(z—y) 2
proofl_lemma2_thm
FVijej<i=NR(—j)=NRi—NRj
proofl_lemma3_thm

FY mn
e NRm " 2=2.xNRn~"2A0<n
> n<m

AN2xm<8xn
ANR (2+«n—m)~2=2.«xNR(m—n)~ 2
proofl_lemmad_thm

FVY mn
e NRm ~“2=2.xsNRn~2A0<n
= (3 m1 nl

e <nl Anl <nANRmI ™ 2=2 %NRnl " 2)

proofl_lemma5_thm

FVnmeNRm™ 2=2.«xNRn~ 2=n=20
proofl_thml_thm

FVYabe—-b=0=-(a/b) " 2=2.
proofl_thmla FV a b

e~ b=0=-(a/b) " 2=2.N=-~(a/b) " 2=2.
proofl_thm2 F — Sqrt 2. € Q

10



8 THE THEORY divisibility

8.1 Parents

fin_set

8.2 Children
sqrt2_proof3  sqrt2_proof2

8.3 Constants

Ged N—-N=>N
Prime NP

8.4 Definitions

Gcd F ConstSpec
(A Ged'
o (Vmn
e ) <mAO0O<n
= 0 < Ged" m n
A m Mod Ged m n =0
A n Mod Ged' m n = 0)
ANV mmnd
e ) <dAmModd=0ANnModd=20
= Ged' m n Mod d = 0))
Ged
Prime F Prime
={pll <pAN(Vmnep=mxn=m=1Vn=1)}

8.5 Theorems

min_c_thm FVYnaené€a= Minaé€a
min_<_thm FVYnaeneca= Mina<n
times_eq_0_thm

FVYmnemsxn=0=m=0Vn=20
times_cancel_thm

FYEkmne 0 <kANkxm=k*xn=m=mn
times_eq_eq_1_thm

FVYmne O <nAmsxxn=n=m=1
times_eq_1_thm

FYmnemsxn=1=m=1An=1
div_mod_1_thm

FYmemDivi=mANAmDMod1=2~0
m_div_mod_m_thm

FYme O < m=mDivm=1ANm Mod m =0
zero_div_mod_thm

FVYme(O<m=0Divm=0AN0 Mod m=20
less_div_mod_thm

11



FVYmnen<m=mnDivm=0ANnModm-=n
div_mod_times_cancel_thm
FYEmn
o () <k
= (mx*xk+mn) Divk=m+n Divk
A (m *k + n) Mod k =n Mod k
mod_clauses + Yk mn
o ) <k
= (m x k) Mod k = 0
A (k * m) Mod k = 0

A (kxm + n) Mod k =n Mod k
A (m %k + n) Mod k =n Mod k
A (k + n) Mod k = n Mod k

A (n + k) Mod k =n Mod k
N0 Mod k =0

ANk Mod k=0

A m Mod k Mod k = m Mod k
mod_eq_-0_thm =Y m ne 0 < n = (m Mod n =0 < (3 ke m =k % n))
mod_eq_0_mod_eq_0_thm
FVmn
e <mANO<nAmModn=0AnModm=0=m=mn
mod_plus_homomorphism_thm
FYmnk
e ) <k= (m+n) Mod k = (m Mod k + n Mod k) Mod k
mod_times_homomorphism_thm
FYmmnk
e ) <k= (m=xn) Mod k= (m Mod k x n Mod k) Mod k
gcd_consistent_lemmal
FVmn
e ) <mANO<nAO<m Modn
= (Ja
e 0 < (axm) Mod n
A (VDb
e 0 < (bxm) Mod n
= (a * m) Mod n < (b *x m) Mod n))
gcd_consistent_lemma?2
FYmnoad
e <mANO<nAO<dAmMmModd=0ANn Modd= 20
= (a x m) Mod n Mod d = 0
gcd_consistent_lemma3
FYabmnprs
eaxm=bx(n+1)+rAm=pxr+s
= (3 go (¢ *x m) Mod (n + 1) = s Mod (n + 1))
gcd_consistent_lemma4d
FYabmmnprs
eaxm=bx(n+1)+rAn+1=p*xr+s
= (3 go (¢ *x m) Mod (n + 1) = s Mod (n + 1))
gcd_consistent_lemmab
FVmnka
e <m
N0 <mn

12



A0 < m Mod n
A0 < (a*m) Mod n
A (Y b
e 0 < (bxm) Mod n
= (a * m) Mod n < (b * m) Mod n)
= m Mod ((a x m) Mod n) = 0

A n Mod ((a * m) Mod n) = 0
Gced_consistent

F Consistent
(A Ged'
e (VWmn
e <mANO0O<n
= 0 < Gcd mn
A m Mod Ged m n = 0
A n Mod Ged' m n = 0)
ANV mmnd
e <dANAmModd=0Nn Mod d=20

= Ged' m n Mod d = 0))
gcd_eq-mod_thm

FVYmn
e ) <mANO<nAO0<mModn
= (3 a
e ) < (axm) Mod n
ANV b
e 0 < (bxm) Mod n
= (a * m) Mod n < (b x m) Mod n)

A Ged m n = (a * m) Mod n)
prime_0_less_thm

FVY pep € Prime = 0 <p
gcd_prime_thm

FVYmpeO<mAp€EPrime = Ged mp=1V Ged mp=p
prime_thm FVop

e p € Prime
S 1 <p
AN (Y mmn
o (m*n) Mod p =0

= m Mod p =0V n Mod p = 0)
prime_divisor_thm

FVYmel <m= (3pnepec Prime N m=p xn)

13



9 THE THEORY sqrt2_proof2

9.1 Parents

sqrt2_defs divisibility

9.2 Theorems

proof2_lemmal_thm
FYpmn
epcEPrimeAmsm=pxnxnA0<n
= (3 m1 nl
e <nlAnl <nAmlsxml=psxnlxnl)
proof2_lemma2_thm
FYpnm
epe Prime ANRm ™ 2=NRp*xNRn~2=n=20
proof2_thml FY pabepec PrimeN—-b=0=-(a/b) " 2=NRp
proof2_thmla FV a b
ep € Prime N —=b=10
=-(a/b)"2=NRpA-~(a/b)"2=NRp
proofl_thm2_thm
FV pe p € Prime = — Sqrt (NR p) € Q
proof2_lemma3_thm
F 2 € Prime
proof2_thm3_thm
F = Sqgrt 2. € Q

14



10 THE THEORY sqrt2_proof3

10.1 Parents

sqrt2_defs divisibility

10.2 Theorems

proof3_lemmal_thm
FYEkEmn
e <kAmxm=%kxnxnAl<n
= (3 m1 nl
o0 <nlAnl <nAmlsxml==Fsx%nlxnl)
proof3_lemma2_thm
FYEknm
e ). <NREAO. <NRnANRm ™ 2=NRk*xNRn" 2
= (3 NR i~ 2 =NR k)
proof3_lemma3_thm
F—- Sqrt 2. € Z
proof3_thml_thm
FVEkabd
e~ b=0AN(a/b) " 2=NREk
= (Fie NR i~ 2 = NR k)
proof3_thm2 FVie 0. <iNi€ZNSqrtie Q= Sqrtie€Z
proof3_thm3 F — Sqrt 2. € Q

15
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A Common Definitions — Proofs

Prove the consistency of the definition of the square root (using the exponential and logarithm
functions for the witness):

SML

‘open_theory "sqrt2_defs",;

‘set-merge-pcs["’Z", "R "sets_alg", "basic_holl" ];

The existence of square roots has already been proved in the the theory of analysis. We just have to
use the existence theorem to provide a witness.

SML

(%

push_consistency_goal " Sqrt™;

a(prove_-3_tac THEN REPEAT strip_tac);

a(cases_tac™NR 0 < /7 THEN asm_rewrite_tac|]);
a(be_thm_tac square_root_thmi THEN REPEAT strip_tac);
save_consistency_thm “Sqrt™ (pop_thm());

%)

SML
val sqri_def = get_spec” Sqrt™;
val sqrt_thm = tac_proof ((]],
"Vze NR 0 <z = Sqrt z = 2 = z7),
REPEAT strip_tac THEN all_fc_tac[sqrt_def));
val Z_def = get_spec™Z7;
val rats_def = get_spec" Q™

SML
set_goal([], "
Vee NR 0 <z = Sqrt « =~ 2 ==z
7);
a(REPEAT strip_tac THEN all_fc_tac [sqrt_def]);
val sqrt_thm = save_pop_thm “sqrt_thm";

SML
set_goal([], ™
Ve :Re (~z) " 2 =272
7);
a(rewrite_tac [R_N_exp_square_thm]

THEN PC_T1 "R_lin_arith" prove_tac]]);
val square_even_thm = save_pop_thm "square_even_thm";
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SML
set_goal([], ™
Ve ye NR 0 <z Az"2 =y =2 =8qty

|

);

a(REPEAT strip_tac);

a(lemma_tac™NR 0 < y7);

(% sk Goal "1" sk k)

a(all_var_elim_asm_tacl THEN rewrite_tac[R_N_ezp_square_thm));

a(be_thm_tac R_0_<_0_<_times_thm THEN REPFEAT strip_tac);

(% sk Goal "2" sk k)

a(lemma_tac™z~2 = Sqrt y~2 AN NR 0 < Sqrt y? THEN1
(all_fe_tac [sqrt_def] THEN asm_rewrite_tac[]));

a(fe_taclsquare_root_unique_thmy));

a(PC_T1 "R_lin_arith" asm_prove_tac|]);

val sqrt_eq_thm = save_pop_thm "sqrt_eq_thm";

SML

set_goal([], ™

Sqrt (NR 0) = NR 0
A Sqrt (NR 1) = NR 1
A Sqrt (NR 4) = NR 2
A Sqrt (NR 9) = NR 3

_I

);
a(REPEAT strip_tac THEN conv_tac eq_sym_conv

THEN be_thm_tac sqrt_eq-thm THEN rewrite_tac|R_N_exp_square_thm));
val sqrt_egs_thm = save_pop_thm "sqrt_egs_thm";

SML
set_goal([], "V z ye
NRO<zANRO<y
= (z72<y~ 2 z<y’),
a(rewrite_tac[R-<_def] THEN REPEAT V_tac THEN =-_tac);

(¢ skk Goal "1" sxx *)

a(ALL_.FC_T1 fc_<_canon rewrite_tac[square_square_root_mono_thm]);
(x sk Goal "2" sk x)
a(all_var_elim_asm_tacl THEN rewrite_tac[R_N_exp_square_thm));
a(lemma-tac™NR 0 < z *« 7 THEN1

(be_thm_tac R_0_less_0_less_times_-thm THEN REPEAT strip_tac));
a(PC_T1 "R_lin_arith" asm_prove_tac]));
(x sk Goal "3" sk x)
a(all_var_elim_asm_tacl THEN rewrite_tac[R_N_exp_square_thm]);
a(lemma_tac™NR 0 < y x y? THENI

(be_thm_tac R_0_less_0_less_times_thm THEN REPEAT strip_tac));
a(PC_T1 "R_lin_arith" asm_prove_tacl]);
(¢ skk Goal "4" sx% *)
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‘ a(all_var_elim_asm_tacl THEN rewrite_tac[R_N_exp_square_thm]);

‘val square_square_root_mono_thml = save_pop_thm "square_square_root_mono_thml1";

SML
set_goal([], "Vz yeNR 0 < z ANR 0 < y
= (Sgrt © < Sqrt y < = < y)
);
a(REPEAT V_tac THEN =_tac);
a(all_fc_tac[sqrt_def));
a(LEMMA_T"z < y <Sqrt 72 < Sqrt y~27 rewrite_thm_tac
THEN1 asm_rewrite_tacl]);
a(ALL_FC_T1 fe_<_canon rewrite_tac[square_square_root_mono_thm1]);
val sqrt_less_thm = save_pop_thm "sqrt_less_thm";
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B Proof 1 — Proofs

SML

The first proof is based on a geometrical construction which viewed algebraically goes a follows: if
2?2 = 2y% then y < z < (3/2)y and (2y — x)? = 2(z — y)?. Whence, if x and y are positive integers
with 22 = 2y2, then so also are 2’/ = 2y —x and v/ = z —y. But ¥/ < y which leads to a contradiction,
since if there is some solution to z? = 2y?, there must be one for which y is minimal.

SML

‘open_theory "sqrt2_defs";

‘force-delete-theory "sqrt2_proofl" handle Fail - => ();

‘ new_theory "sqrt2_proofl";

‘set-merge-pcs["’Z", WR" "sets_alg", "basic_holl" |;

Now sneak up on the result in a series of lemmas.

Step 1: if 22 = 2y?, then y < z < (3/2)y, and (2y — x)? = 2(z — y)?:
SML
set_goal([], proof1 _lemmal);
a(rewrite_tac[R_N_exp_square_thm] THEN contr_tac);
(% sk Goal "1" sk x)
a(cases_tac"y = 7 THEN1 all_var_elim_asm_tacl);
(¢ #xx Goal "1.1" sxx %)
a(LEMMA_T"z+xx = NR 07 ante_tac THEN1 PC_T1 "R_lin_arith" asm_prove_tacl]);
a(rewrite_tac[R_times_eq_0_thm|] THEN PC_T1 "R_lin_arith" asm_prove_tac|));
( skk Goal "1.2" skx x)
a(lemma_tac™zxy < yxy' THENI
once_rewrite_tac[R_times_comm_thm| THEN1
be_thm_tac R_times_mono_thm THENI
PC_T1 "R_lin_arith" asm_prove_tac|]);
a(lemma_tac™zxz < zxy' THENI
be_thm_tac R_<_times_mono_thm THENI
PC_T1"R_lin_arith" asm_prove_tacl]);
a(LEMMA_T"y * NR 0 < yxy? (strip_asm_tac o rewrite_rule[]) THEN1
be_thm_tac R_times_mono_thm THENI
PC_T1"R_lin_arith" asm_prove_tacl[]);
a(all_fc_tac[R_<_less_trans_thm]
THEN PC_T1"R_lin_arith" asm_prove_tac|]);
(¢ sk Goal "2" sxx *)
a(lemma_tac” (NR 3xy)+(NR 2xz) < (NR 2xz)*(NR 2xz)" THENI
conv_tac(RANDS_C (eq-match_conv R_times_comm_thm)) THENI
be_thm_tac R_times_mono_thm THEN1
PC_T1 "R_lin_arith" asm_prove_tac|]);
a(lemma_tac” (NR 3xy)«(NR 3xy) < (NR 3*y)*(NR 2xz)" THENI
be_thm_tac R_<_times_mono_thm THENI
PC_T1"R_lin_arith" asm_prove_tac|]);
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a(LEMMA_T"z « NR 0 < zxz” (strip-asm_tac o rewrite_rule[]) THEN1
be_thm_tac R_times_mono_thm THEN1
PC_T1"R_lin_arith" asm_prove_tacl]);
a(all_fe_tac[R-<_less_trans_thm)]
THEN PC_T1"R_lin_arith" asm_prove_tac|]);
(% sk Goal "3" sk %)
a(PC_T1"R_lin_arith" asm_prove_tac]]);
val proofl_lemmal_thm = save_pop_thm "proofl_lemmal _thm";

Step 1: tiny fact about the conversion of naturals to reals

SML
set_goal([], "Vi jej < i = NR(i — j) = NR ¢ — NR j7);
a(rewrite_tac[<_def] THEN REPEAT strip_tac THEN
all_var_elim_asm_tacl);
a(rewrite_tac|V_elim™i'7 plus_order_thm,
NR_plus_homomorphism_thm)|
THEN PC_T1 "R_lin_arith" prove_tacl]);

val proofl_lemma2_thm = save_pop_thm "proofl _lemma2_thm";

Step 3: this is step 1 pulled back to the natural numbers:
SML
set_goal([], "Vm ne
NRm~2=NR2«NRn~2A0<n
= n<mAN2xm<8xn
A NR (2xn—m)  2=NR2«NR(m—n)" 2
7);
a(REPEAT V_tac THEN =_tac);
a(lemma_tac "NR 0 < NR m A NR 0 < NR n THEN1
asm_rewrite_tac[NR_<_thm, NR_less_thm]);
a(ALL_.FC_T (MAP_EVERY ante_tac) [proofl_lemmal_thm));
a(rewrite_tac[NR_<_thm, NR_less_thm,
conv_rule (ONCE_MAP_C eq_sym_conv)
NR_times_homomorphism_thm|] THEN REPEAT strip_tac);
a(lemma_tac™m < 2xn An < m? THEN1 PC_T1 "lin_arith" asm_prove_tac|]);
a(ALL_.FC_T asm_rewrite_tac[proofl _lemma2_thm]);
val proofl_lemma3_thm = save_pop_thm "proofl_lemma3 _thm";

Step 4: if m and n are positive integer solutions to m? = 2n?2, then there is a solution with smaller
n:
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SML

set_goal([], proof1 _lemmaj);

a(REPEAT strip_tac THEN all_fc_tac[proofl _lemma3_thm]);

a(I-tac™2xn — m? THEN 3_tac"m — n THEN asm_rewrite_tacl]);

a(LEMMA_-T "n < m™ (strip-asm_tac o rewrite_rule[<_def])
THEN1 PC_T1 "“lin_arith" asm_prove_tac|]);

a(all_var_elim_asm_tacl);

a(rewrite_tac[V_elim™i" plus_order_thm));

a(PC_T1 "“lin_arith" asm_prove_tac]]);

val proofl_lemmad_thm = save_pop_thm "proofl_lemmad _thm";

Step 5: the induction that shows the only natural number solutions to m? = 2n? has m = 0:
SML

set_goal([], proof1 _lemmad);
a(V_tac THEN cov_induction_tac™n:N7 THEN REPEAT strip_tac);
a(contr_tac THEN lemma-tac "0 < n' THEN1
PC_T1 "lin_arith" asm_prove_tac|]);
a(all_fc_tac[proof! _lemmad _thm]);
a(all_asm_fc_tac]| THEN all_var_elim_asm_tacl);
val proofl_lemmab_thm = save_pop_thm "proofl_lemmasd _thm";

... which gives what we wanted, expressed explicitly:
SML

set_goal([], proofl _thm1);

a(REPEAT strip_tac);

a(lemma_tac"=NR b = NR 07 THEN1
asm_rewrite_tac[NR_one_one_thm));

a(rewrite_tac[R_frac_def] THEN ALL_FC_T rewrite_tac[R_over_times_recip_thm]);

a(contr_tac THEN LEMMA_T"
(NRa*NRbH 1)~ 2+«NRbH™2=NR2xNRb" 27 ante_tac
THEN1 asm_rewrite_tacl]);

a(rewrite_tacl));

a(LEMMA-T™Vz y z:Re(zxy) 2x2"2 = (zxzxy)~ 2" rewrite_thm_tac THEN1
(rewrite_tac[R_N_exp_square_thm]

THEN PC_T1"R_lin_arith" prove_tacl)));

a(ALL_FC_T rewrite_tac[R_times_recip_thm]);

a(contr_tac THEN all_fc_tac[proofl _lemmas _thm));

val proofl_thml_thm = save_pop_thm "proofl _thmi_thm";

A lemma extending the above to the case when a/b < 0.
SML

set_goal([], ™
Vabe—-b=0= —(a/b)"2=NR 2 A —(~(a/b))"2 =NR 2
);

a(rewrite_tac[proofl _thm1 _thm, square-even_thm]);

val proofl_thmla = save_pop_thm "proofl _thmla";
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The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).
SML
set_goal([], ” =Sqrt (NR 2) € Q 7);
a(rewrite_tac[get_spec" Q7] THEN REPEAT_UNTIL is_V strip_tac);
a(cases_tac "b = 07 THEN asm_rewrite_tac|));
a(contr_tac THEN
(LEMMA_T "Sqrt(NR 2)~2 = NR 27 ante_tac THEN1
be_tac(map (rewrite_rule[]) (fc-canon (get_spec” Sqrt™))))
THEN ALL_FC_T asm_rewrite_tac[proofl _thm1lal);
val proofl_thm?2 = save_pop_thm "proofl _thm2";
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C Divisibility — Proofs

The other two proofs we give are the better known ones based on divisibility. They share a great

deal of common material about primes, divisibility etc.
SML

‘ open_theory "divisibility";
‘set-merge-pcs[”’sets_alg", "basic_holl" |;

SML

‘val prime_def = get_spec” Prime™;

SML

set_goal([], "Vn ae n € a = Min a € a);

a(V_tac THEN cov_induction_tac "n:N" THEN REPEAT strip_tac);
a(cases_tac™Ime m < n A m € a™);

(% sk Goal "1" sk x)

a(all_asm_fc_tacl]);

(¢ #xx Goal "2" skx )

a(LEMMA_T "Min a = n™ asm_rewrite_thm_tac);
a(be_thm_tac(get_spec” Min™) THEN REPEAT strip_tac);
a(spec_nth_asm_tac 2 "i7);

a(PC_T1 “lin_arith" asm_prove_tac]));

val man_€_thm = save_pop_thm"min_&_thm";

SML

set_goal([], "Vn ae n € a = Min a < n™);

a(V_tac THEN cov_induction_tac "n:N7 THEN REPEAT strip_tac);
a(cases_tac"Ime m < n A m € a™);

(* skk Goal "1" sx% *)

a(all_asm_fc_tac]));

a(PC_T1 "“lin_arith" asm_prove_tacl]);

(¢ skk Goal "2" sxx *)

a(LEMMA_-T "Min a = n" rewrite_thm_tac);
a(be_thm_tac(get_spec™ Min) THEN REPEAT strip_tac);
a(spec_nth_asm_tac 2 "i7);

a(PC_T1 "“lin_arith" asm_prove_tac]]);

val man_<_thm = save_pop_thm"min_<_thm";

SML
val div_mod_unique_thml =
rewrite_rule[taut _rule
"Vpl p2 p3e (pl = p2 = p3) < (pl A p2 = p3)7]
(conv_rule (ONCE_MAP_C(RAND_C(RAND_C (RANDS_C eq_sym_conv))))

div_mod_unique_thm);
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SML
set_goal([], "Ym nem x n =0 =m =0V n=0");

a(contr_tac);

a(LEMMA-T"1 < m A 1 < n™ (strip-asm_tac o rewrite_rule[<_def])
THEN1 PC_T1 "“lin_arith" asm_prove_tac|));
a(all_var_elim_asm_tacl

THEN PC_T1 "“lin_arith" asm_prove_tac|]);

val ttmes_eq_0_thm = save_pop_thm "times_eq_-0_thm";

SML
set_goal(]], "Vk m ne0 <k Nkxm=Fk*n=m=n");
a(contr_tac);
a((LEMMA-T™m < n V n < m? (strip_asm_tac o rewrite_rule[<_def])
THEN1 rewrite_tac[<_cases_thm))
THEN all_var_elim_asm_tacl);
(% *xx Goal "1" sk% *)
a(lemma_tac"kxi = 07 THEN1 PC_T1 "lin_arith" asm_prove_tac|));
a(fe_tac[times_eq_0_thm] THEN all_var_elim_asm_tacl
THEN1 PC_T1 "“lin_arith" asm_prove_tacl]);
(x xxx Goal "2" xxx %)
a(lemma_tac"kxi = 07 THEN1 PC_T1 "lin_arith" asm_prove_tac|));
a(fe_tac[times_eq-0_thm] THEN all_var_elim_asm_tacl
THEN1 PC_T1 "“lin_arith" asm_prove_tacl]);
val times_cancel_thm = save_pop_thm "times_cancel_thm";

SML
set_goal([], "Vm ne0) < nAmsxn=n=m=1");
a(REPEAT strip_tac THEN
be_thm_tac (once_rewrite_rule[times_comm_thm| times_cancel_thm));
a(3-tac"n™ THEN asm_rewrite_tacl]);
val times_eq_eq_1_thm = save_pop_thm "times_eq_eq_1_thm";

SML

set_goal([], "Ym nem x n =1 =m=1An=17)

a(REPEAT V_tac);

a(cases_tacm =0V n=0Vm=1Vn=1"THEN_TRY
(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|]));

a(LEMMA_T™2 < m A 2 < n™ (strip_asm_tac o rewrite_rule[<_def])
THEN1 PC_T1 "“lin_arith" asm_prove_tacl]);

a(LIST_-DROP_NTH_ASM_T [3, 4, 5, 6] discard_tac);

a(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|]);

val titmes_eq_1_thm = save_pop_thm "times_eq_1_thm";
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SML

set_goal([], "Ymem Div 1 = m A m Mod 1 = 07);
a(V_tac);

a(bc_thm_tac div_-mod_unique_thm1 THEN rewrite_tac[]);
val div_mod_1_thm = save_pop_thm "“div_mod_1_thm";

SML

set_goal([], "Vme 0 < m = m Div m =1 A m Mod m = 07);
a(V_tac THEN =_tac);

a(be_thm_tac div_mod_unique_thm1 THEN asm_rewrite_tac[]);

val m_div_mod_m_thm = save_pop_thm "“m_div_mod_m_thm",

SML

set_goal([], "YmeO < m = 0 Div m = 0 N 0 Mod m = 07);
a(V_tac THEN =_tac);

a(bc_thm_tac div_-mod_unique_thm1 THEN asm_rewrite_tacl]);
val zero_div_mod_thm = save_pop_thm "zero_div_mod_thm";

SML
set_goal([], "Vm nen < m = n Div m = 0 AN n Mod m = n’);
a(REPEAT V_tac THEN =_tac);

a(be_thm_tac div_mod_unique_thm1 THEN asm_rewrite_tac[]);

val less_div_mod_thm = save_pop_thm "less_div_mod_thm";

SML
set_goal([], "Vk m ne0 < k = (mxk + n) Div k = m + n Div k N (mxk + n) Mod k = n Mod k™);
a(REPEAT V_tac THEN =_tac);
a(bc_thm_tac div_mod_unique_thm1
THEN ALL_FC_T rewrite_tac[mod_less_thm]);
a(rewrite_tac[times_plus_distrib_thm, plus_assoc_thm]);
a(bc_thm_tac div_mod_thm THEN REPEAT strip_tac);

val div_mod_times_cancel _thm = save_pop_thm "div_mod_times_cancel_thm";

SML

set_goal([], "Vk m ne

= (mxk) Mod k = 0

A (kxm) Mod k = 0

A (kxm + n) Mod k = n Mod k
A (mxk + n) Mod k = n Mod k
A (k + n) Mod k = n Mod k
A (n + k) Mod k = n Mod k
A 0 Mod k =

A k Mod k = 0

A

(m Mod k) Mod k = m Mod k
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|

)

)
a(REPEAT V_tac THEN =_tac);
a(rewrite_tac[V_elim"™ k7 times_comm_thm]);
a(ALL_FC_T rewrite_tac]

div_mod_times_cancel _thm, m_div_mod_m_thm, zero_div_mod_thm]);
a(pure_once_rewrite_tac[prove_rule|]

"mxk = mxk + 0 Nk +n=1xk + nAn+ k= 1k + n7);
a(ALL_FC_T pure_rewrite_tac[div_mod_times_cancel_thm]

THEN ALL_FC_T rewrite_tac[zero_div_mod_thm));
a(lemma_tac™m Mod k < k7 THEN1 ALL_FC_T rewrite_tac[mod_less_thm]);
a(ALL_FC_T rewrite_tac[less_div_mod_thm]);
val mod_clauses = save_pop_thm "“mod_clauses";

SML
set_goal([], "Vm ne
0 <n
= (m Mod n = 0 < Jkem = kxn)

|

)

a(REPEAT strip_tac);

(% *xx Goal "1" skx )

a(3-tac"m Div n);

a(ALL_.FC_T (conv_tac o LEFT_C o once_rewrite_conv)[div_mod_thm]);
a(asm_rewrite_tacl]);

(x xxx Goal "2" xxx %)

a(all_var_elim_asm_tacl THEN ALL_FC_T rewrite_tac|mod-clauses]);
val mod_eq_0_thm = save_pop_thm "mod_eq_0_thm";

SML
set_goal([], "Vm ne

0<mANO<nAmModn=0ANn Modm=20
= m=mn

|

9

)
a(REPEAT strip_tac THEN all_fc_tac[mod_eq_0_thm]);
a(lemma_tac™ (K'xk)x*m = m™ THENI

(POP_ASM_T (fn th => conv_tac (RIGHT _C(rewrite_conv[th])))

THEN asm_rewrite_tac[times_assoc_thm)));

a(all_fe_tac[times_eq_eq_1_thm));
a(all_fc_tac[times_eq_1_thm));
a(all_var_elim_asm_tacl THEN rewrite_tac|));

val mod_eq_0_mod_eq_0_thm = save_pop_thm "mod_eq_0_mod_eq_0_thm";

SML

set_goal([], "Vm n ke0 < k = (m + n) Mod k = (m Mod k + n Mod k) Mod k7);
a(REPEAT strip_tac);

a(all_fe_tac|div_mod_thm));
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a(TOP_ASM_T (ante_tac o V_elim"m™));
a(POP_ASM_T (ante_tac o V_elim™n") THEN REPEAT strip_tac);
a(REPEAT (POP_ASM_T (fn th => conv_tac(LEFT_C(once_rewrite_conv[th])))));
a(rewrite_tac[pc-rulel "lin_arith" prove_rulel]
"Va b ¢ de(axk + b) + (cxk + d) = (a+c)xk + b + d7));
a(ALL_FC_T rewrite_tac[div_mod_times_cancel_thm]);

val mod_plus_homomorphism_thm = save_pop_thm "mod_plus_homomorphism_thm";

SML
set_goal([], "Vm n ke0 < k = (m % n) Mod k = ((m Mod k) x (n Mod k)) Mod k™);
a(REPEAT strip_tac);
a(all_fe_tac|div_mod_thm));
a(TOP_ASM_T (ante_tac o V_elim™m™));
a(POP_ASM_T (ante_tac o V_elim™n") THEN REPEAT strip_tac);
a(REPEAT (POP_ASM_T (fn th => conv_tac(LEFT_C(once_rewrite_conv[th])))));
a(rewrite_tac[pc-rulel "lin_arith" prove_rulel]

"Va b c de(axk + b) * (cxk + d) = (axcxk + axd +bxc)xk + bxd]);
a(ALL_FC_T rewrite_tac[div_mod_times_cancel_thm]);

val mod_times_homomorphism_thm = save_pop_thm "mod_times_homomorphism_thm",

SML
set_goal([], "Vm ne
0<mANO<nANO<m Modn
= Jae 0 < (axm) Mod n
A Vbe 0 < (bxm) Mod n = (axm) Mod n < (bxm) Mod n™);
a(REPEAT strip_tac);
a(PC_T1 "predicates" lemma_tac
T Jie i € {i| Jael < (axm) Mod n A i = (axm) Mod n } 7);
(¢ skk Goal "1" sx% *)
a(3-tac"m Mod n™ THEN REPEAT strip_tac);
a(3-tac" 17 THEN asm_rewrite_tac|]);
(x skk Goal "2" k% )
a(all_fe_tacmin_€_thm]);
a(3-tac"a? THEN REPEAT strip_tac);
a(DROP_NTH_ASM_T 4 discard_tac);
a(PC_T1 "predicates" lemma_tac
T (bxm) Mod n € { i | Jae0 < (axm) Mod n N i = (axm) Mod n } 7
THEN1 (REPEAT strip_tac THEN asm_prove_tac|]));
a(all_fc_tac[min_<_thm]);
a(POP_ASM _T ante_tac THEN asm_rewrite_tacl]);

val ged_consistent_lemmal = save_pop_thm" gcd_ consistent_lemmal";
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SML

set_goal([], "VYm n a de
0<mANANO<nANO0<d

A m Mod d = 0 AN n Mod d =0

= ((axm) Mod n) Mod d = 0

|

)

)
a(REPEAT strip_tac);
a(all_fc_tac[mod_eq-0_thm]);
a(ante_tac(list_V_elim["axm™, "n7] div_mod_thm));
a(strip_-tac THEN LEMMA_T
“(((a*xm) Div n)*n + (axm) Mod n) Mod d = (axm) Mod d ante_tac
THEN1 POP_ASM_T (rewrite_thm_tac o eq_sym_rule));
a(ALL_FC_T once_rewrite_tac[mod_plus_homomorphism_thm));
a(all_var_elim_asm_tacl
THEN rewrite_tac[conv_rule (ONCE_MAP_C eq_sym_conv) times_assoc_thm]
THEN ALL_FC_T rewrite_tac|mod_clauses]);

val ged_consistent_lemma2 = save_pop_thm" gcd_consistent_lemma2";

SML
set_goal([]], "Va b m n pr se
axm = bx(n+1) + r
A m = pxr + §
= dqe(gxm) Mod (n+1) = s Mod (n+1)7);
a(REPEAT strip_tac);
a(3-tac" nxpxa+17);
a(scale_nth_asm_tac"nxp” 2);
a(rewrite_tac[times_assoc_thm, times_plus_distrib_thm] THEN
POP_ASM_T (asm_rewrite_thm_tac o rewrite_rule[times_assoc_thm]));
a(LEMMA_T *
nxpx(bx(n + 1) + 7))+ p*xr + s =
(n+1)*(pxbxn + pxr) + s rewrite_thm_tac THEN1
PC_T1 "lin_arith" prove_tacl]);

a(rewrite_tac[rewrite_rule[| (V- elim™n+1"mod - clauses)));

val ged_consistent_lemma3d = save_pop_thm" gcd_ consistent_lemma3";

SML
set_goal([]], "Va b m n p r se

axm = bx(n+1) + r
A n—+1=pxr+s
= dge(gxm) Mod (n+1) = s Mod (n+1)7);
(REPEAT strip_tac);
(LEMMA_T"™Vze(xzxm) Mod (n + 1) = (zxm + n + 1) Mod (n + 1)

rewrite_thm_tac THEN1
rewrite_tac[rewrite_rule[](V_elim™ n+1"mod_ clauses)));

a(3-tac"nxpxa’);

a

a
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a(scale_nth_asm_tac"nxp? 2);

a(rewrite_tac[times_assoc_thm, times_plus_distrib_thm| THEN
POP_ASM_T (rewrite_thm_tac o rewrite_rule[times_assoc_thm)));
a(LEMMA_T™Vzexr + n + 1 = x + pxr + s rewrite_.thm_tac THEN1
asm_rewrite_tacl]);

o(LEMMA_T ©

nxpkx(bx(n+1) +r) + p*xr + s =

(n+1)x(pxbxn + pxr) + s rewrite_thm_tac THEN1

PC_T1 "lin_arith" prove_tac|));
a(rewrite_tac[rewrite_rule[](V_elim™n+1"mod_ clauses)));

val ged_consistent_lemmad = save_pop_thm" gcd_consistent_lemma4 ",

SML
set_goal([], "Vm n k ae
0<mANO<nANO<m Modn
0 < (axm) Mod n
(Vbe 0 < (bxm) Mod n = (axm) Mod n < (bxm) Mod n)
m Mod ((axm) Mod n) = 0 A n Mod ((axm) Mod n) = 07);
a(REPEAT Y_tac THEN =_tac THEN

LEMMA_-T "1 < n

(strip_asm_tac o once_rewrite_rule[plus_comm_thm)|
o rewrite_rule[<_def]) THEN1

PC_T1 "lin_arith" asm_prove_tac]);

a(all_var_elim_asm_tacl THEN contr_tac);

> >

(x *xx Goal "1" sk% *)
a(ante_tac(list_¥_elim[ "a”, "(axm) Div (i+1)7,
“m™, "¢, "m Div ((axm) Mod (i+1))7,
"(axm) Mod (i+1)7,
“m Mod ((axm) Mod (i4+1))7 |gcd-consistent_lemma3));
a(asm_tac (prove_rule[]”0 < i + 17));
a(ALL_FC_T rewrite_tac]
conv_rule(ONCE_MAP_C eq_sym_conv) div_mod_thm]);
a(lemma_tac™m Mod ((axm) Mod (i + 1)) < (axm) Mod (i+1)"
THEN1 EXTEND_PC_T1 “'mmpl" all_fc_tac[mod_less_thm]);
a(lemma_tac™ (axm) Mod (i+1) < (i+1)”
THEN1 (bc_thm_tac mod_less_thm THEN REPEAT strip_tac));
a(lemma_tac™m Mod ((axm) Mod (i + 1)) < (i+1)"
THEN1 EXTEND_PC_T1 “'mmpl" all_fc_tac[less-trans_thm]);
a(ALL_FC_T rewrite_tac [less_div_mod_thm));
a(contr_tac);
a(DROP_NTH_ASM_T 7 (ante_tac o ¥Y_elim"™q™));
a(asm_rewrite_tac|));
a(PC_T1 "lin_arith" asm_prove_tac]]);
(x sk Goal "2" sk x)
a(ante_tac(list_¥_elim| "a”, "(axm) Div (i+1)7,
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“m™, 77, T(i+1) Div ((axm) Mod (i+1))7,

"(axm) Mod (i+1)7,

"(i+1) Mod ((axm) Mod (i+1))™ |ged_consistent_lemma4));
a(asm_tac (prove_rule[]"0 < i + 17));
a(ALL_FC_T rewrite_tac|

conv_rule(ONCE_MAP_C eq_sym_conv) (div-mod_thm)));
a(lemma_tac™ (i+1) Mod ((axm) Mod (i+1)) < (axm) Mod (i+1)"

THEN1 (bc_thm_tac mod_less_-thm THEN REPEAT strip_tac));
a(lemma_tac™ (axm) Mod (i+1) < (i+1)"

THEN1 (bc_thm_tac mod_less_.thm THEN REPEAT strip_tac));
a(lemma_tac™ (i+1) Mod ((axm) Mod (i + 1)) < (i+1)"

THEN1 all_fc_tac[less_trans_thm]);
a(ALL_FC_T rewrite_tac [less_div_mod_thm));

contr_tac);

(
(
(DROP_NTH_ASM_T 7 (ante_tac o VY_elim™q™));
a(asm_rewrite_tac[]);

a(PC_T1 "lin_arith" asm_prove_tac]]);

val ged_consistent_lemmab = save_pop_thm" ged_ consistent_lemmad";

a

a

SML

push_consistency_goal " Ged™;

a(prove_3_tac THEN REPFEAT strip_tac);

a(cases_tac™m' = 07 THENI all_var_elim_asm_tacl);

(x xxx Goal "1" xxx %)

a(3-tac" 0" THEN REPFEAT strip_tac THEN
ALL_FC_T rewrite_tac[mod- clauses));

(% sk Goal "2" sk k)

a(cases_tac™n’ = 07 THEN1 all_var_elim_asm_tacl);

( skk Goal "2.1" skx x)

a(3-tac" 0" THEN REPFEAT strip_tac THEN
ALL_FC_T rewrite_tac[mod_clauses));

(% wxk Goal "2.2" sxx x)

a(cases_tac™m' Mod n' = 07);

(¢ *xx Goal "2.2.1" *xx x)

a(3_-tac™n'? THEN REPEAT strip_tac THEN
ALL_FC_T rewrite_tac[mod_clauses));

(% *xx Goal "2.2.2" xxx x)

a(lemma_tac™0 < m' A 0 <n' A0 <m' Mod n'”
THEN1 PC_T1 "“lin_arith" asm_prove_tacl]
THEN LIST.DROP_NTH_ASM_T |}, 5, 6] discard_tac);

a(all_fe_tac [ged-consistent_lemmal]);

a(all_fe_tac [ged- consistent_lemmas));

a(3_tac™ (axm’) Mod n'" THEN asm_rewrite_tacl]);

a(REPEAT strip_tac);

(

a(bc_thm_tac ged-consistent_lemma2
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\ THEN REPEAT strip_tac);
‘val _ = save_consistency_thm " Ged™ (pop_thm());

SML

‘Ual gcd_def = get_spec” Ged ™,

SML
set_goal([], ged-eq-mod_thm);
a(REPEAT strip_tac);
a(all_fc_tac[gcd - consistent _lemmal));
a(3-tac"a? THEN asm_rewrite_tac|));
a(lemma_tac™ Ged m n Mod ((a x m) Mod n) = 07 THENI
(all_fc_taclgcd- consistent_lemmad |
THEN all_fc_tac|A_right_elim gcd_def]));
a(lemma_tac™((a * m) Mod n) Mod Ged m n = 0~
THEN1 (bc_thm_tac gcd_consistent_lemmaZ2
THEN all_fe_tac[A-left_elim gcd-def)
THEN REPEAT strip_tac));
a(lemma_tac™0 < Ged m n”
THEN1 (all_fc_tac[A_left_elim ged_def]));
a(all_fc_tac[mod_eq_-0_mod_eq_-0_thm));
val ged_eq_-mod_thm = save_pop_thm" gcd_eq_mod_thm";

SML

set_goal([], "Vpe p € Prime = 0 < p7);

a(rewrite_tac[prime_def] THEN PC_T1 "lin_arith" asm_prove_tac]));
val prime_0_less_thm = save_pop_thm"prime_0_less_thm";

SML
set_goal([], "Vm pe
0 < mA p € Prime
= Ged mp=1V Ged m p=p);
a(REPEAT strip_tac
THEN all_fc_tac[prime_0_less_thm]

THEN all_asm_ante_tac);
a(rewrite_tac[prime_def] THEN REPEAT strip_tac);
a(all_fc_tac[prime_0_less_thm]);
a(lemma_tac "0 < Ged m p THENI1 all_fc_tac[ged-def));
a(LEMMA_T "p Mod Ged m p = 07 ante_tac THEN1 all_fc_taclged_def]);
a(ALL_FC_T1 fe_<_canon rewrite_tac[mod_eq_0_thm]);
a(REPEAT strip_tac);
a(LIST_-DROP_NTH_ASM_T [5] fe_tac);
a(all_var_elim_asm_tacl);
a(POP_ASM_T (ante_tac o eq_sym_rule) THEN rewrite_tacl));
val ged_prime_thm = save_pop_thm" gcd_prime_thm";
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SML

set_goal([], "Vpe

(Vm ne (m*n) Mod p = 0

= m Mod p = 0V n Mod p = 0)
A 1 <p
= p € Prime

4

);
a(rewrite_tac[prime_def] THEN contr_tac);
a(all_var_elim_asm_tacl);
a(DROP_NTH_ASM_T 4 (ante_tac o list_¥_elim["m™, "n7)));
a(lemma_tac "0 < m N 0 < n” THEN1

(contr_tac THEN lemma_tac™m = 0 V n = 0"

THEN_TRY all_var_elim_asm_tacl THEN
PC_T1"lin_arith" asm_prove_tac]]));

a(lemma_tac "—mxn = 07 THEN1

(contr_tac THEN all_fc_tac[times_eq_0_thm]

THEN PC_T1 "“lin_arith" asm_prove_tac|)));

a(lemma_tac "0 < mxn 7 THENI

PC_T1"lin_arith" asm_prove_tac|]);
a(ALL_FC_T rewrite_tac[m_div_mod_m_thm]);
a(cases_tac™m < mxn” THENI

ALL_FC_T asm_rewrite_tac[less-div_mod_thm)]);
(% #xx Goal "1" skx )
a(cases_tac™n < mxn” THENI
(ALL_FC_T asm_rewrite_tac[less_div_mod_thm| THEN

PC_T1 "“lin_arith" asm_prove_tac||));
a(LEMMA_T"™2 < m™ (strip_asm_tac o rewrite_rule[<_def])
THEN1 PC_T1"lin_arith" asm_prove_tac]));
a(all_var_elim_asm_tacl THEN PC_T1"lin_arith" asm_prove_tac|));
(x #xx Goal "2" skx )
a(LEMMA_T"2 < n7 (strip_asm_tac o rewrite_rule[<_def])
THEN1 PC_T1"lin_arith" asm_prove_tac]]);
a(all_var_elim_asm_tacl THEN PC_T1"lin_arith" asm_prove_tac|));
val prime_lemmal = pop_thm ();

SML

set_goal([], "Vp m ne

p € Prime N (mxn) Mod p = 0
= m Mod p =0V n Mod p =0

|

9

)
a(REPEAT V_tac THEN =_tac);
a(all_fe_tac[prime_0_less_thm));
a(cases_tac™m = 0 V n = 07 THEN_TRY
(all_var_elim_asm_tacl THEN

ALL_FC_T rewrite_tac[mod_clauses]));
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a(lemma-tac™0 < m N 0 < n' THEN1 PC_T1 "lin_arith" asm_prove_tac|]);
a(cases_tac™ Ged m p = p' THEN1
(POP_ASM_T (once_rewrite_thm_tac o eq_sym_rule) THEN
all_fc_taclged_def] THEN REPEAT strip_tac));
a(cases_tac” Ged n p = p?' THEN1
(POP_ASM_T (once_rewrite_thm_tac o eq_sym_rule) THEN
all_fe_tac[(A_left_elim gcd_def)]
THEN REPEAT strip_tac));
a(lemma_tac™Ged m p = 1 N Ged n p = 1" THEN1
(fe_tac[ged-prime_thm]
THEN LIST_DROP_NTH_ASM_T [1, 2] fe_tac
THEN REPEAT strip_tac));
a(rewrite_tac[pc-rulel "lin_arith" prove_rulel]
"Vaea = 0 & -0 < a));
a(contr_tac);
a(all_fe_tac|ged_eq_mod_thm]);
a(LIST_DROP_NTH_ASM_T (1, 4] (MAP_EVERY ante_tac));
a(asm_rewrite_tacl]);
a(LIST_DROP_NTH_ASM_T (interval 1 14) discard_tac);
a(conv_tac (ONCE_MAP_C eq_sym_conv) THEN contr_tac);
a(LEMMA_T"((a’ * m)*(a * n)) Mod p = 17 ante_tac THENI
ALL_FC_T once-asm_rewrite_tac|mod_times_homomorphism_thm]);
(% #xx Goal "1" skx )
a(DROP_NTH_ASM_T 5 (strip_asm_tac o rewrite_rule[prime_def]));
a(ALL_FC_T asm_rewrite_tac[less_div_mod_thm));
(¢ #xx Goal "2" skx )
a(LEMMA_T™((a' % a)x(m % n)) Mod p = 07 ante_tac THEN1
(ALL_FC_T once_asm_rewrite_tac[mod_times_homomorphism_thm]
THEN ALL_FC_T asm_rewrite_tac[mod_clauses]));
a(conv_tac(ONCE_MAP_C anf_conv) THEN PC_T1 "lin_arith" prove_tac[]);

val prime_lemma2 = pop_thm ();

SML
set_goal([], prime_thm);
a(REPEAT strip_tac THEN _LIST |
POP_ASM_T (strip_asm_tac o rewrite_rule[prime_def])
THEN asm_rewrite_tac|],
all_fe_tac[prime_lemmaZ2],
all_fc_tacprime_lemmall));

val prime_thm = save_pop_thm "prime_thm";

SML

set_goal([], prime_divisor_thm);

a(V_tac THEN cov_induction_tac™m:N7);
a(REPEAT strip_tac);
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a(cases_tac"m € Prime” THENI

(3-tac"m™ THEN 3F_tac™ 17 THEN asm_rewrite_tacl]));
a(POP_ASM _T (strip_asm_tac o rewrite_rule[prime_def]));
a(cases_tac™m' = 07 THEN1

(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|)));
a(lemma_tac™1 < m'? THEN1 PC_T1 "lin_arith" asm_prove_tac|]);
a(cases_tac™—m’'< m™);
(x skk Goal "1" k% )
a(cases_tac™n = 07 THEN1

(all_var_elim_asm_tacl THEN PC_T1 "“lin_arith" asm_prove_tacl]));
a(LEMMA_T"2 < n7 (strip_asm_tac o rewrite_rule[<_def])

THEN1 PC_T1 "lin_arith" asm_prove_tac|));
a(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac]]);
(¢ sxx Goal "2" skx )
a(LIST_DROP_NTH_ASM_T [8] all_fc_tac);
a(3_tac"p? THEN 3_tac"n'sn” THEN asm_rewrite_tac[times_assoc_thm]);

val prime_divisor_thm = save_pop_thm "prime_divisor_thm";
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D Proof 2 — Proofs

SML
‘ open_theory "sqrt2_proof2",;

n/

‘set-merge-pcs["’Z", WR", "sets_alg", "basic_holl" |;

This is the traditional proof intended to impress non-mathematicians.

The main lemma for this proof is that if p is prime and m and n are positive solutions to m? = pn?,
then there is a solution with smaller n (obtained by dividing m and n by p):
SML
set_goal([], proof2_lemmal);
a(REPEAT strip_tac);
a(all_fc_tac[prime_0_less_thm]);
a(lemma_tac™ (m+xm) Mod p = 07 THEN1

(ALL_FC_T asm_rewrite_tac[mod_ clauses)));
a(GET_NTH_ASM_T 5 (strip-asm_tac o rewrite_rule[prime_thm)));
a(LIST_.GET_NTH_ASM_T [1] fe_tac);
(% *xx Goal "1" which is the same as "2" sxx %)
a(all_fc_tac[mod_eq_0_thm]);
a(lemma-tac™ (nxn) Mod p = 07);
(¢ skk Goal "1.1" skx x)
a(ALL_.FC_T1 fc_<_canon rewrite_tac [mod_eq_0_thm]);
a(3-tac" kxk™);
a(bc_thm_tac times_cancel_thm);
a(3-tac"p? THEN REPFEAT strip_tac);
a(DROP_NTH_ASM_T 9 (rewrite_thm_tac o eq-sym_rule));
a(DROP_NTH_ASM_T 2 rewrite_-thm_tac THEN PC_T1 "lin_arith" prove_tac|]);
(% wrk Goal "1.2" sxx x)
a(LIST_-DROP_NTH_ASM_T [5, 7] fe_tac);
(% *xx Goal "1.2.1" which is the same as all the 3 other outstanding goals! s*x x)
a(POP_ASM_T ante_tac THEN DROP_NTH_ASM_T 3 ante_tac);
a(LIST_DROP_NTH_ASM_T |1, 2, 3, 8] discard_tac);
a(ALL_FC_T1 fe_&_canon rewrite_tac [mod_eq_0_thm]);
a(REPEAT strip_tac THEN all_var_elim_asm_tacl);
a(3_tac"k? THEN 3F_tac"k'" THEN REPEAT strip_tac);
(% *xx Goal "1.2.1.1" s%x )
a(contr_tac THEN lemma_tac™k' = 07

THEN_TRY all_var_elim_asm_tacl

THEN PC_T1 "lin_arith" asm_prove_tac|]);
(% *xx Goal "1.2.1.2" skx x)
a(LEMMA_T"2 < p™ (strip-asm_tac o rewrite_rule[<_def])

THEN1 PC_T1 "lin_arith" asm_prove_tac|]);
a(all_var_elim_asm_tacl THEN1 PC_T1 "lin_arith" asm_prove_tacl]);
(% *xx Goal "1.2.1.3" sxx )

a(bc_thm_tac times_cancel_thm);

37



a(3-tac"p? THEN REPFEAT strip_tac);

a(be_thm_tac times_cancel_thm);

a(3_tac"p? THEN REPEAT strip_tac);

a(PC_T1 "“lin_arith" asm_prove_tac]]);

val proof2_lemmal_thm = save_pop_thm "proof2_lemmal _thm";

SML

set_goal([], "Vp n m e

p € Prime ANRm ™~ 2=NR px (NRn "~ 2)
n =10

=

)
a(rewrite_tac[R_N_exp_square_thm,
NR_times_homomorphism_thm1, NR_one_one_thm));
a(V_tac THEN V_tac THEN cov_induction_tac"n:N7 THEN REPEAT strip_tac);
a(contr_tac THEN lemma-tac "0 < n' THEN1
PC_T1 "lin_arith" asm_prove_tac|]);
a(all_fc_tac[proof2_lemmal _thm]);
a(all_asm_fc_tac]| THEN all_var_elim_asm_tacl);
val proof2_lemma2_thm = save_pop_thm "proof2_lemmaZ2_thm";

...giving us that the square roots of prime numbers are irrational, expressed explicitly:
SML

set_goal([], "Vp a be
p € Prime A =b = 0 = —(a/b)"2 = NR p
);
a(REPEAT strip_tac);
a(lemma_tac™=NR b = NR 07 THEN1
asm_rewrite_tac[NR_one_one_thm));
a(rewrite_tac[R_frac_def] THEN ALL_FC_T rewrite_tac[R_over_times_recip_thm]);
a(contr_tac THEN LEMMA_T"
(NRa+NRb " 1)"2+«NRb™2=NRpx*NRb ™ 27 ante_tac
THEN1 asm_rewrite_tacl]);
a(LEMMA-T™Vz y z:Re(zxy) 2x2z"2 = (xxzxy)~ 2" rewrite_thm_tac THEN1
(rewrite_tac[R_N_exp_square_thm]
THEN PC_T1"R_lin_arith" prove_tacl)));
a(ALL_FC_T rewrite_tac[R_times_recip_thm]);
a(contr_tac THEN all_fc_tac[proof2_lemma2_thm));
val proof2_thml = save_pop_thm"proof2_thml1",

A lemma extending the above to the case when a/b < 0.

SML
set_goal([], ™

Va be p € Prime A =b = 0 = —(a/b)"2 = NR p A =(~(a/b))"2 = NR p
);

a(rewrite_tac[proof2_thml, square_even_thm]);

val proof2_thmla = save_pop_thm "proof2_thmla";
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The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).
SML
set_goal([], proof2_thm2);
a(rewrite_tac[get_spec" Q7] THEN REPEAT_UNTIL is_V strip_tac);
a(cases_tac "b = 07 THEN asm_rewrite_tac|));
a(lemma_tac"NR 0 < NR p”' THEN1
(all_fc_tac|prime_0_less_thm] THEN
asm_rewrite_tac[NR_<_thm, <_def]));
a(contr_tac THEN
(LEMMA_T "Sqrt(NR p)~2 = NR p? ante_tac THEN1
be_tac(map (rewrite_rule[]) (fc-canon (get-spec™Sqrt™))))
THEN ALL_FC_T asm_rewrite_tac[proof2_thm1la));
val proof2_thm2_thm = save_pop_thm "proofl _thm2_thm",

As Freek Wiedijk rightly insists, we must show that we can specialise this to v/2, which means we
need to prove that 2 is prime. The ProofPower demo suite actually includes an automatic conversion
for testing for primality. Rather than reproduce that material here, we just prove that 2 is prime by
hand.

SML
set_goal([], proof2_lemma3);
a(rewrite_tac[prime_def] THEN contr_tac);
a(cases_tac™m = 07 THEN1
(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|)));
a(cases_tac™n = 07 THEN1
(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|)));
a(LEMMA_-T™2 < m A 2 < n™ (strip_asm_tac o rewrite_rule[<_def])
THEN1 PC_T1 "“lin_arith" asm_prove_tac|]);
a(all_var_elim_asm_tacl THEN PC_T1 "“lin_arith" asm_prove_tac]]);
val proof2_lemma3_thm = save_pop_thm "proof2_lemma3 _thm";

SML

‘set_goal([], proof2_thm3);

‘a(bc-thm-tac proof2_thm2_thm THEN accept_tac proof2_lemmaS3_thm);
‘val proof2_thm3_thm = save_pop_thm"proof2_thm3_thm";
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E Proof 3 — Proofs

SML
‘ open_theory "sqrt2_proof3";

n/

‘set-merge-pcs["’Z", WR", "sets_alg", "basic_holl" |;

This is the most general proof (about square roots of integers) and the one that generalises further
(to the statement that the integers are a integrally closed: i.e., that any rational solution to a monic
polynomial with integer coefficients is actually an integer).

The main lemma for this proof is that if k£ is any positive number and m and n are solutions to
m? = kn? with n > 1, then there is a solution with smaller n (obtained by dividing m and n by any
prime factor of n):
SML
set_goal([], proof3_lemmal);
a(REPEAT strip_tac);
a(all_fe_tac[prime_divisor_thm));
a(all_fc_tac[prime_0_less_thm]);
a(lemma_tac "(mxm) Mod p = 07 THEN1

(asm_rewrite_tac[pc_rulel "lin_arith" prove_rule]

"V y zexx(pxy)xz = pxaxyxz | THEN
ALL_FC_T rewrite_tac[mod_clauses]));

a(fe_tac[prime_thm]);
a(LIST_DROP_NTH_ASM_T (2] fe_tac);
(x sxx Goal "1" same as "2" #xx %)
a(DROP_NTH_ASM_T 38 discard_tac THEN all_fc_tac [mod_-eq-0_thm));
a(3-tac" k' THEN 3_tac™n'? THEN all_var_elim_asm_tacl

THEN REPEAT strip_tac);
(% swxk Goal "1.1" sxx x)
a(contr_tac THEN1

(lemma_tac™n' = 07 THEN_TRY all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove
(% sxk Goal "1.2" sxx x)
a(LEMMA_T "2 < p7 (strip_asm_tac o rewrite_rule[<_def])

THEN1 PC_T1 "“lin_arith" asm_prove_tac|));
a(cases_tac™n’ = 07 THEN1

(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|)));
a(all_var_elim_asm_tacl THEN PC_T1 "lin_arith" asm_prove_tac|]);
(x skk Goal "1.3" skx x)
a(bc_thm_tac times_cancel_thm);
a(3-tac"p? THEN REPEAT strip_tac);
a(be_thm_tac times_cancel_thm);
a(3-tac"p? THEN REPEAT strip_tac);
a(PC_T1 "“lin_arith" asm_prove_tac]]);
val proof3_lemmal_thm = save_pop_thm "proof3_lemmal _thm";
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SML
set_goal([], proof3_lemmaZ2);
a(rewrite_tac[R_N_exp_square_thm,
NR_times_homomorphism_thm1, NR_one_one_thm, NR_less_thm]);
a(REPEAT strip_tac);
a(PC_T1 "predicates" lemma_tac

Tyey e {y |0 <yANTzezsxz=Fkxyx*xy}

THEN1 (3-tac"n™ THEN REPEAT strip_tac
THEN 3_tac"m™ THEN REPEAT strip_tac));

a(all_fe_tac[min_e_thm]);
a(cases_tac™1 < Min { y | 0 <y ANJzezxz=kx*xyxy}'

THEN1 all_fc_tac[proof3_lemmal _thm));
(¢ skk Goal "1" sx% *)
a(PC_T1 "predicates" lemma_tac

"l e{y|l0<yANJzezsxx=Fkxy=xy}’

THEN1 (REPEAT strip_tac THEN 3_tac"m1" THEN REPEAT strip_tac));
a(all_fc_tac[min_<_thm|] THEN PC_T1 "lin_arith" asm_prove_tac]]);
(x #xx Goal "2" skx )
a(lemma_tac™Min { y | 0 < y NJzex xz =k*xy*xy} =1"

THEN1 PC_T1 "lin_arith" asm_prove_tac|));
a(I-tac"x? THEN asm_rewrite_tac|]);
val proof3_lemma2_thm = save_pop_thm "proof3_lemma2_thm";

In this proof, to show that /2 is irrational, we must show that it is not an integer:

SML

set_goal([], proof3_lemma3);

a(rewrite_tac[Z-def] THEN contr_tac);

(¢ #xx Goal "1" s%x )

a(ante_tac (rewrite_rule[sqrt_egs_thm|
(list_V_elim["NR 17, "NR 27 sqrt_less_thm)));

a(asm_rewrite_tac [NR_less_thm]);

a(ante_tac (rewrite_rule[sqrt_egs_thm)|
(list_V_elim["NR 27, "NR 47 sqrt_less_thm)));

a(asm_rewrite_tac [NR_less_thm]);

a(PC_T1 "“lin_arith" prove_tacl));

(x *xx Goal "2" skx )

a(asm_tac (rewrite_rule[sqrt_egs_thm]
(list_V_elim["NR 17, "NR 27 sqrt_less_thm)));

a(lemma_tac "Sqrt (NR 2) < NR 07 THEN_LIST
[asm_rewrite_tac]], PC_T1 "R_lin_arith" asm_prove_tac[]]);

val proof3_lemma3_thm = save_pop_thm" proof3_lemma3_thm";

We now have the general result that rational square roots of prime numbers are integers, expressed

explicitly:
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SML
set_goal([], "Vk a be

~b =0 A (a/b2 = NR k
= Jie NR ¢~ 2 =NRk

|

)

)
a(REPEAT strip_tac);
a(cases_tac"k = 0 THEN1
(3-tac” 07 THEN asm_rewrite_tac[R_N_ezp_square_thm]));
a(lemma_tac"=NR b = NR 07 THEN1
asm_rewrite_tac[NR_one_one_thm));
a(swap_nth_asm_concl_tac 3);
a(rewrite_tac[R_frac_def] THEN ALL_FC_T rewrite_tac[R_over_times_recip_thm));
a(contr_tac THEN LEMMA_T"
(NRa*NRbH 1)~ 2+«NRb™2=NRE=xNRb ™ 27 ante_tac
THEN1 asm_rewrite_tacl]);
a(LEMMA_T™Vz y z:Re(zxy) 2x2"2 = (zxzxy)~ 2" rewrite_thm_tac THEN1
(rewrite_tac[R_N_exp_square_thm]
THEN PC_T1"R_lin_arith" prove_tacl]));
a(ALL_FC_T rewrite_tac[R_times_recip_thm]);
a(lemma_tac"NR 0 < NR £ A NR 0 < NR " THEN1
(rewrite_tac[NR_less_thm| THEN PC_T1 "lin_arith" asm_prove_tac|]));
a(contr_tac THEN all_fc_tacproof3_lemmaZ2_thm]);
a(all_asm_fc_tac]));

val proof3_thml_thm = save_pop_thm" proof3_thml1 _thm";

The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).

SML

set_goal([], proof3_thm2);

a(rewrite_tac[rats_def, Z_def] THEN contr_tac
THEN all_var_elim_asm_tacl);

(% *xx Goal "1" skx )

a(LEMMA_T" Sqgrt (NR m)~2 = NR m™ ante_tac THEN1
ALL_FC_T rewrite_tac[sqrt_thm]);

a(asm_rewrite_tac[] THEN contr_tac THEN
all_fc_tac|proof3_thm1 _thm]);

a(lemma_tac"NR 0 < NR i7" THEN1
rewrite_tac[NR_<_thm));

a(all_fc_tac[sqrt_eq_thm]);

a(DROP_NTH_ASM_T 5 (ante_tac o V_elim"™i™));

a(asm_rewrite_tac[]);

(¢ #xx Goal "2" skx )

a(LEMMA_T" Sqgrt (NR m)~2 = NR m™ ante_tac THEN1
ALL_FC_T rewrite_tac|sqrt_thm]);

a(LEMMA_T™Vz:Re(~z)"2 = 727 asm_rewrite_thm_tac THEN1
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(rewrite_tac[R_N_exp_square_thm| THEN
PC_T1 "R_lin_arith" prove_tac[]));

a(contr_tac THEN all_fc_tac[proof3_thm1 _thm));
a(lemma-tac"NR 0 < NR i THEN1

rewrite_tac[NR_<_thm));
a(all_fc_tac[sqrt_eq_thm]);
a(DROP_NTH_ASM_T 5 (ante_tac o ¥Y_elim™i™));
a(asm_rewrite_tacl));
(¢ skk Goal "83" k% *)
a(DROP_NTH_ASM_T } ante_tac);
a(pure_once_rewrite_tac[R_<_<_0_thm]);
a(rewrite_tac[NR_<_thm));
a(swap_nth_asm_concl_tac 1 THEN REPEAT strip_tac);
a(3-tac” 07 THEN all_var_elim_asm_tacl THEN asm_rewrite_tacl]);
a(POP_ASM _T (rewrite_thm_tac o eq_sym_rule));
a(rewrite_tac[sqrt_egs_thm]);
(x skk Goal "4" sx% *)
a(DROP_NTH_ASM_T 4 ante_tac);
a(pure_once_rewrite_tac[R_<_<_0_thm]);
a(rewrite_tac[NR_<_thm));
a(swap_nth_asm_concl_tac 1 THEN REPEAT strip_tac);
a(3-tac” 07 THEN all_var_elim_asm_tacl THEN asm_rewrite_tacl]);
a(POP_ASM _T (rewrite_thm_tac o eq_sym_rule));

a(rewrite_tac[sqrt_egs_thm]);

val proof3_thm?2 = save_pop_thm"proof3 _thm2";

And, using the fact that /2 is not an integer, we get the specific conclusion of the third proof:
SML
set_goal([], proof3_thm3);
a(contr_tac);
a(LEMMA-T "NR 0 < NR 27 asm_tac THEN1 rewrite_tac]));
a(lemma-tac "NR 2 € Z" THEN1
(rewrite_tac[Z_def] THEN 3_tac™27 THEN REPEAT strip_tac));
a(all_fc_tac[proof3_thm2]);
a(all_fc_tac[proof3_lemma3_thm]);
val proof3_thm3 = save_pop_thm"proof3 _thm3";
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SML

open_theory" sqrt2_defs";

output _theory{ out_file="57.th0.doc", theory="sqrt2_defs"};
open_theory" sqrt2_proof1";
output_theory{out_file="57.th1.doc", theory="sqrt2_proofl"};
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output _theory{ out_file="57.th2.doc", theory="divisibility" };
open_theory" sqrt2_proof2";
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open_theory" sqrt2_proof3";

output_theory{ out_file="57.th4.doc", theory="sqrt2_proof3"},
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