
¬
√
2 ∈ Q
—

3 Proofs in ProofPower-HOL

R.D. Arthan
Lemma 1 Ltd.

rda@lemma-one.com

20th March 2005 with subsequent revisions∗

Some while ago Freek Wiedijk proposed the irrationality of
√

2 as an interesting example to use in
a comparative study of different proof assistants. Freek received formalisations using many systems
and has prepared a report presenting the results. He was recently kind enough to draw my attention
to a draft of his very interesting introduction to the report. This kind thought led to a small flurry
of comments and then to the present contribution to the study using the ProofPower system. My
apologies to Freek for creating extra work at the last minute. Despite my efforts to delay him, Freek’s
report was published in book form in 2006 with a very nice foreword by Dana Scott [Seventeen Provers
of the World, LNAI 3600, Springer Verlag].

The formal material is based on the mathematical case studies in ProofPower-HOL that have been
under evolutionary development over the last few years. The present (March 2005) version of this
document does not yet form part of the official case studies, but parts of it are likely to be included in
them when one or two obvious gaps in the breadth of coverage have been filled (most conspicuously
the fundamental theorem of arithmetic). This note follows the mathematical case studies in including
theory listings for all the theories developed (in sections 6 to 10). We use a slightly different approach
in the discussion (giving the statements of the main results as ML quotations).

In retrospect, one of my main comments on Freek’s report amounted to my surprise that the theorem-
proving community only seemed to know one proof! The irrationality of

√
2 has several proofs and

so, in the interests of variety, three proofs are presented here. Proof 1 is an ancient, but seemingly
not so widely known, “geometrical” proof that requires no number theory. This proof is amenable
to some interesting generalisations, but we do not look into that here (see, for example, The Book of
Numbers by John H. Conway and Richard K. Guy). Proof 2 and proof 3 are the well-known proofs
based on divisibility. Perhaps the least well-known thing about the well-known proofs is that there
are two of them! We present them in reasonably full generality (showing in one case that the square
root of any prime number is irrational, and in the other, that, if the square root of an integer is
rational than the square root is actually an integer). Following Freek’s rules, we are careful to derive
the specific conclusion that

√
2 is irrational from the general proofs.

∗Revised 11th November 2013 to be compatible with the latest version of the ProofPower mathemical case studies.
Revised 23rd November 2022 to include the nice depiction of proof 1 as a proof without words mentioned in the foreword
to Freek Wiedijk’s book and to avoid inconvenient redeclaration of ML names.

1

1 Common Definitions

The problem clearly needs to be formalised in terms of the 5 symbols forming the title of this
document. Of these, logical negation, the number 2 and the membership sign are supplied for free.
The square root function is defined in the theory of analysis from the mathematical case studies with
the following defining property:

` ∀ x• 0. ≤ x ⇒ 0. ≤ Sqrt x ∧ Sqrt x ̂ 2 = x

The proofs use no facts of analysis other than this definition. We need to define the set of rational
numbers. The definition is common to all three proofs: after all, we want the three proofs all to
prove exactly the same thing.

The following red tape sets up a theory sqrt defs to hold this material.

SML

set pc "basic hol1";

open theory "analysis";

force delete theory "sqrt2 defs" handle Fail => ();

new theory "sqrt2 defs";

To state what is proved by the third proof, we need the set of integers as well as the set of rationals.
The definitions follow (in the usual ProofPower-HOL constant specification boxes where we give the
signature of the new constant and its desired defining property separated by a horizontal bar). The
consistency of these equational definitions is proved automatically.

HOL Constant

Z : R SET

Z = {x | ∃m : N•x = NR m ∨ x = ∼(NR m)}

Here NR is the function that injects the type of natural numbers into the type of reals.

HOL Constant

Q : R SET

Q = {x | ∃a b : N•¬b = 0 ∧ (x = a/b ∨ x = ∼(a/b))}

A handful of basic theorems about the square root function are developed in this theory, see the
listing for details.

2 Proof 1

Our first proof is very simple. It makes no reference to prime divisors or the like. It is inspired by
the construction depicted in figure 1. If we let x = BD and y = AB be respectively the diagonal and
side of the larger square, so that x/y =

√
2, DE = 2y − x and DF = x − y form the diagonal and

side of the smaller square. But then, if x and y were both integers, so also would be x−y and 2y−x
and we would have a contradiction, since we could repeat the construction to produce arbitrarily
small squares with integer sides.

2

In his foreword to Freek’s book, Dana Scott added a note giving a beautiful depiction of this proofs
as a “proof without words” due to Stanley Tennenbaum. See figure 2 for Tennenbaum’s diagram
together with some pictorial equations showing the reasoning: the big square is presumed to have
area equal to the sum of the areas of the two congruent hatched squares, which have been placed
inside the big square at diagonally opposite corners. But then the intersection of the hatched squares,
the doubly-hatched square in the figure must have its area equal to the sum of the areas of the two
small white squares. But if the big square and the two hatched squares have integer side-lengths,
then so do all the squares, showing that their can be no minimal pair of positive integers x and y
with x2 = 2y2.

This proof translates very simply into algebra. To present the formalisation, we give the statements
of a selection of the lemmas proved. The theory listings towards the end of the document give the
output from ProofPower showing that these results have indeed been proved. The actual proof
scripts are included in the master source text of this document, but not in the printed form.

The main work in this proof is given in a series of 5 lemmas. The first lemma gives the key algebraic
facts about the geometrical construction. It also includes what amounts to the estimate that 1 <√

2 < 3/2, which is needed to show that when the inputs to the construction are positive integers,
then so are the outputs.

SML

val proof1 lemma1 = p

∀x y•
NR 0 ≤ x ∧ NR 0 < y ∧ x ̂ 2 = NR 2 ∗ y ̂ 2

⇒ y < x ∧ NR 2 ∗ x ≤ NR 3 ∗ y

∧ (NR 2 ∗ y − x) ̂ 2 = NR 2 ∗ (x − y) ̂ 2

q;

The second and third lemmas (see the theory listing in section 7) essentially just specialise the above
to the case where x and y are natural numbers.

All three proofs proceed by Fermat’s “method of infinite descent”. I.e., one shows that the existence
of a positive integer counter-example to a conjecture implies the existence of a smaller counter-
example. Thus in each case we have an “inductive step” that produces smaller counter-examples
from larger ones. The following lemma gives this step for the present proof:

BAF = BEF

2 = BD : BA = DF : DE

DEF = ABC =

B

CD

A

E

F

EF = ED

AB = BC

Figure 1: The Geometrical Construction

3

Figure 2: The Proof Without Words

SML

val proof1 lemma4 = p

∀m n•
NR m ̂ 2 = NR 2 ∗ NR n ̂ 2 ∧ 0 < n

⇒ ∃m1 n1•0 < n1 ∧ n1 < n ∧ NR m1 ̂ 2 = NR 2 ∗ NR n1 ̂ 2

q;

From this we conclude that the only natural number solution to m2 = 2n2 has n = 0.

SML

val proof1 lemma5 = p

∀n m• NR m ̂ 2 = NR 2 ∗ NR n ̂ 2 ⇒ n = 0

q;

The desired result follows easily from the above. We formalise it in two guises, the first guise is
explicit:

SML

val proof1 thm1 = p

∀a b• ¬b = 0 ⇒ ¬(a/b)̂2 = NR 2

q;

The second guise gives the result much as it is stated in the title of this note:

SML

val proof1 thm2 = p

¬Sqrt (NR 2) ∈ Q
q;

3 Divisibility

The other two proofs we give are the better known ones based on divisibility. They share common
material from the theory of divisibility. In this section we define the common notions. First we set
up a theory to hold the definitions. See section 8 for the listing of this theory.

4

SML

open theory "fin set";

force delete theory "divisibility" handle Fail => ();

new theory "divisibility";

We have a choice about whether to develop the theory for the natural numbers or for the integers. On
the one hand, it is more pleasant to work in a ring rather than a semi-ring, on the other hand negative
numbers are not very relevant to the main results, even when they are useful in the proofs. We vote
in favour of the natural numbers, and proceed to define the greatest common divisor function. This
is an implicit definition: the first of the two conjuncts in the defining property say that the greatest
common divisor is a common divisor and the second says that it is the greatest one (i.e., it is maximal
with respect to the divisibility ordering of the natural numbers). We have several choices about how
to capture formally the notion “m is divisible by n”. We opt to state it as m Mod n = 0.

HOL Constant

Gcd : N → N → N

(∀m n• 0 < m ∧ 0 < n

⇒ 0 < Gcd m n

∧ m Mod Gcd m n = 0

∧ n Mod Gcd m n = 0)

∧ (∀m n d• 0 < d

∧ m Mod d = 0

∧ n Mod d = 0

⇒ Gcd m n Mod d = 0)

Now we define the set of prime numbers:

HOL Constant

Prime : N SET

Prime = {p | 1 < p ∧ ∀m n• p = m∗n ⇒ m = 1 ∨ n = 1}

The important fact we need about prime numbers is the fact that a number is prime iff. it is greater
than 1 and whenever it divides a product it divides one of the factors. The right-to-left direction of
this is simple. It is for this the other direction that we need to develop the theory of the g.c.d.

SML

val prime thm = p

∀p• p ∈ Prime

⇔ 1 < p

∧ (∀m n• (m∗n) Mod p = 0 ⇒ m Mod p = 0 ∨ n Mod p = 0)

q;

The bulk of the theory then comprises the supporting lemmas and theorems we need to prove that
the definition of greatest common divisor is consistent and to reason about it (see the theory listing
in section 8 for full details). The most common textbook account exhibits the g.c.d. of m and n as
the smallest positive value of the form am+bn. This requires a and b to range over negative integers.
A slightly less symmetrical alternative is to take the g.c.d. to be the smallest positive value of the

5

form (am) Mod n. This works over the natural numbers. The main result (after the consistency
theorem) is the following:

SML

val gcd eq mod thm = p

∀m n• 0 < m ∧ 0 < n ∧ 0 < m Mod n

⇒ ∃a• 0 < (a∗m) Mod n

∧ (∀b• 0 < (b∗m) Mod n ⇒ (a∗m) Mod n ≤ (b∗m) Mod n)

∧ Gcd m n = (a∗m) Mod n

q;

The final theorem in this theory for the current version of this document says that any integer greater
than 1 has a prime divisor.

SML

val prime divisor thm = p

∀m• 1 < m ⇒ ∃p n•p ∈ Prime ∧ m = p∗n
q;

From this, it is a very short step to the fundamental theorem of arithmetic, but that is not needed
for present purposes.

4 Proof 2

Our second proof is the most widely-known one: if m2 = 2n2, then m is even, but then so is n, so
we can divide m and n by 2 to get a solution with smaller n. This gives a contradiction, because if
there is a solution for n positive, we get an infinite descending sequence of positive integers. This
proof generalises to show that

√
p is irrational for any prime p.

To quote the formal steps in the proof we need to construct a theory in which the common definitions
and the material on divisibility is available. The lemmas and theorems making up the proof are later
stored in this theory. See section 9 for the listing.

SML

open theory "divisibility";

force delete theory "sqrt2 proof2" handle Fail => ();

new theory "sqrt2 proof2";

new parent"sqrt2 defs";

The proof starts with the following lemma, the proof of which is easy given the results on divisibility.
This is almost identical to lemma 4 in the 1st proof, but with an arbitrary prime p in place of the
specific number 2. Of course, the method of proof is quite different: one observes that under the
stated conditions, p must divide both m and n and so dividing through by it gives a smaller solution.

SML

val proof2 lemma1 = p

∀p m n• p ∈ Prime ∧ m ∗ m = p ∗ n ∗ n ∧ 0 < n

⇒ ∃m1 n1•0 < n1 ∧ n1 < n ∧ m1 ∗ m1 = p ∗ n1 ∗ n1

q;

6

From this it follows that the only solution to m2 = pn2 in natural numbers m and n has n = m = 0.
Whence:

SML

val proof2 thm2 = p

∀p•p ∈ Prime ⇒ ¬Sqrt (NR p) ∈ Q
q;

Freek quite rightly insists that we actually prove that
√

2 is irrational, so we need to prove that it is
prime.

SML

val proof2 lemma3 = p

2 ∈ Prime

q;

Whence we draw the usual conclusion:

SML

val proof2 thm3 = p

¬Sqrt (NR 2) ∈ Q
q;

5 Proof 3

This is the most general of the three proofs we give: if m2 = kn2 for any natural numbers k, m and
n with k positive and n > 1, then any prime divisor of n is also a prime divisor of m. Thus by the
usual infinite descent the only solutions of this equation with k and n positive have n = 1, i.e., the
only solutions are when k = m2 is a square.

As in the previous section we need to create a theory in which the right vocabulary is available to
state the results: The lemmas and theorems making up the proof are later stored in this theory. See
section 10 for the listing.

SML

open theory "divisibility";

force delete theory "sqrt2 proof3" handle Fail => ();

new theory "sqrt2 proof3";

new parent"sqrt2 defs";

The first lemma is the following. It justifies the steps in the infinite descent.

SML

val proof3 lemma1 = p

∀k m n• 0 < k ∧ m ∗ m = k ∗ n ∗ n ∧ 1 < n

⇒ ∃m1 n1•0 < n1 ∧ n1 < n ∧ m1 ∗ m1 = k ∗ n1 ∗ n1

q;

The next step is rather different. The infinite descent bottoms out at 1, from which we we conclude
that if m2 = kn2 has a natural number solution with n positive, then k is a perfect square.

7

SML

val proof3 lemma2 = p

∀k n m• NR 0 < NR k ∧ NR 0 < NR n ∧ NR m ̂ 2 = NR k ∗ (NR n ̂ 2)

⇒ ∃i• NR i ̂ 2 = NR k

q;

With intermediate steps similar to the previous proofs, we arrive at the following:

SML

val proof3 thm2 = p

∀i• NR 0 ≤ i ∧ i ∈ Z ∧ Sqrt i ∈ Q ⇒ Sqrt i ∈ Z
q;

Yet again, we must exercise our skills on the specific number 2, which requires the following lemma
(easily proved using the numerical estimate that 1 <

√
2 < 2).

SML

val proof3 lemma3 = p

¬Sqrt (NR 2) ∈ Z
q;

From which we conclude for the third and final time our old friend:

SML

val proof3 thm3 = p

¬Sqrt (NR 2) ∈ Q
q;

8

6 THE THEORY sqrt2 defs

6.1 Parents

analysis

6.2 Children

sqrt2 proof1 sqrt2 proof3 sqrt2 proof2

6.3 Constants

Z R P
Q R P

6.4 Definitions

Z ` Z = {x |∃ m• x = NR m ∨ x = ∼ (NR m)}
Q ` Q = {x |∃ a b• ¬ b = 0 ∧ (x = a / b ∨ x = ∼ (a / b))}

6.5 Theorems

sqrt thm ` ∀ x• 0 . ≤ x ⇒ Sqrt x ̂ 2 = x
square even thm

` ∀ x• ∼ x ̂ 2 = x ̂ 2
sqrt eq thm ` ∀ x y• 0 . ≤ x ∧ x ̂ 2 = y ⇒ x = Sqrt y
sqrt egs thm ` Sqrt 0 . = 0 .

∧ Sqrt 1 . = 1 .
∧ Sqrt 4 . = 2 .
∧ Sqrt 9 . = 3 .

square square root mono thm1
` ∀ x y• 0 . ≤ x ∧ 0 . ≤ y ⇒ (x ̂ 2 < y ̂ 2 ⇔ x < y)

sqrt less thm
` ∀ x y• 0 . ≤ x ∧ 0 . ≤ y ⇒ (Sqrt x < Sqrt y ⇔ x < y)

9

7 THE THEORY sqrt2 proof1

7.1 Parents

sqrt2 defs

7.2 Theorems

proof1 lemma1 thm
` ∀ x y
• 0 . ≤ x ∧ 0 . < y ∧ x ̂ 2 = 2 . ∗ y ̂ 2
⇒ y < x
∧ 2 . ∗ x ≤ 3 . ∗ y
∧ (2 . ∗ y − x) ̂ 2 = 2 . ∗ (x − y) ̂ 2

proof1 lemma2 thm
` ∀ i j• j ≤ i ⇒ NR (i − j) = NR i − NR j

proof1 lemma3 thm
` ∀ m n
• NR m ̂ 2 = 2 . ∗ NR n ̂ 2 ∧ 0 < n
⇒ n < m
∧ 2 ∗ m ≤ 3 ∗ n
∧ NR (2 ∗ n − m) ̂ 2 = 2 . ∗ NR (m − n) ̂ 2

proof1 lemma4 thm
` ∀ m n
• NR m ̂ 2 = 2 . ∗ NR n ̂ 2 ∧ 0 < n
⇒ (∃ m1 n1
• 0 < n1 ∧ n1 < n ∧ NR m1 ̂ 2 = 2 . ∗ NR n1 ̂ 2)

proof1 lemma5 thm
` ∀ n m• NR m ̂ 2 = 2 . ∗ NR n ̂ 2 ⇒ n = 0

proof1 thm1 thm
` ∀ a b• ¬ b = 0 ⇒ ¬ (a / b) ̂ 2 = 2 .

proof1 thm1a ` ∀ a b
• ¬ b = 0 ⇒ ¬ (a / b) ̂ 2 = 2 . ∧ ¬ ∼ (a / b) ̂ 2 = 2 .

proof1 thm2 ` ¬ Sqrt 2 . ∈ Q

10

8 THE THEORY divisibility

8.1 Parents

fin set

8.2 Children

sqrt2 proof3 sqrt2 proof2

8.3 Constants

Gcd N → N → N
Prime N P

8.4 Definitions

Gcd ` ConstSpec
(λ Gcd ′

• (∀ m n
• 0 < m ∧ 0 < n
⇒ 0 < Gcd ′ m n
∧ m Mod Gcd ′ m n = 0
∧ n Mod Gcd ′ m n = 0)

∧ (∀ m n d
• 0 < d ∧ m Mod d = 0 ∧ n Mod d = 0
⇒ Gcd ′ m n Mod d = 0))

Gcd
Prime ` Prime

= {p|1 < p ∧ (∀ m n• p = m ∗ n ⇒ m = 1 ∨ n = 1)}

8.5 Theorems

min ∈ thm ` ∀ n a• n ∈ a ⇒ Min a ∈ a
min ≤ thm ` ∀ n a• n ∈ a ⇒ Min a ≤ n
times eq 0 thm

` ∀ m n• m ∗ n = 0 ⇒ m = 0 ∨ n = 0
times cancel thm

` ∀ k m n• 0 < k ∧ k ∗ m = k ∗ n ⇒ m = n
times eq eq 1 thm

` ∀ m n• 0 < n ∧ m ∗ n = n ⇒ m = 1
times eq 1 thm

` ∀ m n• m ∗ n = 1 ⇒ m = 1 ∧ n = 1
div mod 1 thm

` ∀ m• m Div 1 = m ∧ m Mod 1 = 0
m div mod m thm

` ∀ m• 0 < m ⇒ m Div m = 1 ∧ m Mod m = 0
zero div mod thm

` ∀ m• 0 < m ⇒ 0 Div m = 0 ∧ 0 Mod m = 0
less div mod thm

11

` ∀ m n• n < m ⇒ n Div m = 0 ∧ n Mod m = n
div mod times cancel thm

` ∀ k m n
• 0 < k
⇒ (m ∗ k + n) Div k = m + n Div k
∧ (m ∗ k + n) Mod k = n Mod k

mod clauses ` ∀ k m n
• 0 < k
⇒ (m ∗ k) Mod k = 0
∧ (k ∗ m) Mod k = 0
∧ (k ∗ m + n) Mod k = n Mod k
∧ (m ∗ k + n) Mod k = n Mod k
∧ (k + n) Mod k = n Mod k
∧ (n + k) Mod k = n Mod k
∧ 0 Mod k = 0
∧ k Mod k = 0
∧ m Mod k Mod k = m Mod k

mod eq 0 thm ` ∀ m n• 0 < n ⇒ (m Mod n = 0 ⇔ (∃ k• m = k ∗ n))
mod eq 0 mod eq 0 thm

` ∀ m n
• 0 < m ∧ 0 < n ∧ m Mod n = 0 ∧ n Mod m = 0 ⇒ m = n

mod plus homomorphism thm
` ∀ m n k
• 0 < k ⇒ (m + n) Mod k = (m Mod k + n Mod k) Mod k

mod times homomorphism thm
` ∀ m n k
• 0 < k ⇒ (m ∗ n) Mod k = (m Mod k ∗ n Mod k) Mod k

gcd consistent lemma1
` ∀ m n
• 0 < m ∧ 0 < n ∧ 0 < m Mod n
⇒ (∃ a
• 0 < (a ∗ m) Mod n
∧ (∀ b
• 0 < (b ∗ m) Mod n
⇒ (a ∗ m) Mod n ≤ (b ∗ m) Mod n))

gcd consistent lemma2
` ∀ m n a d
• 0 < m ∧ 0 < n ∧ 0 < d ∧ m Mod d = 0 ∧ n Mod d = 0
⇒ (a ∗ m) Mod n Mod d = 0

gcd consistent lemma3
` ∀ a b m n p r s
• a ∗ m = b ∗ (n + 1) + r ∧ m = p ∗ r + s
⇒ (∃ q• (q ∗ m) Mod (n + 1) = s Mod (n + 1))

gcd consistent lemma4
` ∀ a b m n p r s
• a ∗ m = b ∗ (n + 1) + r ∧ n + 1 = p ∗ r + s
⇒ (∃ q• (q ∗ m) Mod (n + 1) = s Mod (n + 1))

gcd consistent lemma5
` ∀ m n k a
• 0 < m

∧ 0 < n

12

∧ 0 < m Mod n
∧ 0 < (a ∗ m) Mod n
∧ (∀ b
• 0 < (b ∗ m) Mod n
⇒ (a ∗ m) Mod n ≤ (b ∗ m) Mod n)

⇒ m Mod ((a ∗ m) Mod n) = 0
∧ n Mod ((a ∗ m) Mod n) = 0

Gcd consistent
` Consistent

(λ Gcd ′

• (∀ m n
• 0 < m ∧ 0 < n
⇒ 0 < Gcd ′ m n
∧ m Mod Gcd ′ m n = 0
∧ n Mod Gcd ′ m n = 0)

∧ (∀ m n d
• 0 < d ∧ m Mod d = 0 ∧ n Mod d = 0
⇒ Gcd ′ m n Mod d = 0))

gcd eq mod thm
` ∀ m n
• 0 < m ∧ 0 < n ∧ 0 < m Mod n
⇒ (∃ a
• 0 < (a ∗ m) Mod n
∧ (∀ b
• 0 < (b ∗ m) Mod n
⇒ (a ∗ m) Mod n ≤ (b ∗ m) Mod n)

∧ Gcd m n = (a ∗ m) Mod n)
prime 0 less thm

` ∀ p• p ∈ Prime ⇒ 0 < p
gcd prime thm

` ∀ m p• 0 < m ∧ p ∈ Prime ⇒ Gcd m p = 1 ∨ Gcd m p = p
prime thm ` ∀ p

• p ∈ Prime
⇔ 1 < p
∧ (∀ m n
• (m ∗ n) Mod p = 0
⇒ m Mod p = 0 ∨ n Mod p = 0)

prime divisor thm
` ∀ m• 1 < m ⇒ (∃ p n• p ∈ Prime ∧ m = p ∗ n)

13

9 THE THEORY sqrt2 proof2

9.1 Parents

sqrt2 defs divisibility

9.2 Theorems

proof2 lemma1 thm
` ∀ p m n
• p ∈ Prime ∧ m ∗ m = p ∗ n ∗ n ∧ 0 < n
⇒ (∃ m1 n1
• 0 < n1 ∧ n1 < n ∧ m1 ∗ m1 = p ∗ n1 ∗ n1)

proof2 lemma2 thm
` ∀ p n m
• p ∈ Prime ∧ NR m ̂ 2 = NR p ∗ NR n ̂ 2 ⇒ n = 0

proof2 thm1 ` ∀ p a b• p ∈ Prime ∧ ¬ b = 0 ⇒ ¬ (a / b) ̂ 2 = NR p
proof2 thm1a ` ∀ a b

• p ∈ Prime ∧ ¬ b = 0
⇒ ¬ (a / b) ̂ 2 = NR p ∧ ¬ ∼ (a / b) ̂ 2 = NR p

proof1 thm2 thm
` ∀ p• p ∈ Prime ⇒ ¬ Sqrt (NR p) ∈ Q

proof2 lemma3 thm
` 2 ∈ Prime

proof2 thm3 thm
` ¬ Sqrt 2 . ∈ Q

14

10 THE THEORY sqrt2 proof3

10.1 Parents

sqrt2 defs divisibility

10.2 Theorems

proof3 lemma1 thm
` ∀ k m n
• 0 < k ∧ m ∗ m = k ∗ n ∗ n ∧ 1 < n
⇒ (∃ m1 n1
• 0 < n1 ∧ n1 < n ∧ m1 ∗ m1 = k ∗ n1 ∗ n1)

proof3 lemma2 thm
` ∀ k n m
• 0 . < NR k ∧ 0 . < NR n ∧ NR m ̂ 2 = NR k ∗ NR n ̂ 2
⇒ (∃ i• NR i ̂ 2 = NR k)

proof3 lemma3 thm
` ¬ Sqrt 2 . ∈ Z

proof3 thm1 thm
` ∀ k a b
• ¬ b = 0 ∧ (a / b) ̂ 2 = NR k
⇒ (∃ i• NR i ̂ 2 = NR k)

proof3 thm2 ` ∀ i• 0 . ≤ i ∧ i ∈ Z ∧ Sqrt i ∈ Q ⇒ Sqrt i ∈ Z
proof3 thm3 ` ¬ Sqrt 2 . ∈ Q

15

Index

div mod 1 thm . 11
div mod 1 thm . 27
div mod times cancel thm 12
div mod times cancel thm 27
div mod unique thm1 25
gcd consistent lemma1 12
gcd consistent lemma1 29
gcd consistent lemma2 12
gcd consistent lemma2 30
gcd consistent lemma3 12
gcd consistent lemma3 30
gcd consistent lemma4 12
gcd consistent lemma4 31
gcd consistent lemma5 12
gcd consistent lemma5 32
Gcd consistent . 13
gcd def . 33
gcd eq mod thm . 6
gcd eq mod thm . 13
gcd eq mod thm . 33
gcd prime thm . 13
gcd prime thm . 33
Gcd . 5
Gcd . 11
less div mod thm . 11
less div mod thm . 27
min ∈ thm . 11
min ∈ thm . 25
min ≤ thm . 11
min ≤ thm . 25
mod clauses . 12
mod clauses . 28
mod eq 0 mod eq 0 thm 12
mod eq 0 mod eq 0 thm 28
mod eq 0 thm . 12
mod eq 0 thm . 28
mod plus homomorphism thm 12
mod plus homomorphism thm 29
mod times homomorphism thm 12
mod times homomorphism thm 29
m div mod m thm . 11
m div mod m thm . 27
prime 0 less thm . 13
prime 0 less thm . 33
prime def . 25
prime divisor thm . 6
prime divisor thm . 13
prime divisor thm . 36

prime lemma1 . 34
prime lemma2 . 35
prime thm . 5
prime thm . 13
prime thm . 35
Prime . 5
Prime . 11
proof1 lemma1 thm . 10
proof1 lemma1 thm . 22
proof1 lemma1 . 3
proof1 lemma2 thm . 10
proof1 lemma2 thm . 22
proof1 lemma3 thm . 10
proof1 lemma3 thm . 22
proof1 lemma4 thm . 10
proof1 lemma4 thm . 23
proof1 lemma4 . 4
proof1 lemma5 thm . 10
proof1 lemma5 thm . 23
proof1 lemma5 . 4
proof1 thm1a . 10
proof1 thm1a . 23
proof1 thm1 thm . 10
proof1 thm1 thm . 23
proof1 thm1 . 4
proof1 thm2 thm . 14
proof1 thm2 . 4
proof1 thm2 . 10
proof1 thm2 . 24
proof2 lemma1 thm . 14
proof2 lemma1 thm . 38
proof2 lemma1 . 6
proof2 lemma2 thm . 14
proof2 lemma2 thm . 38
proof2 lemma3 thm . 14
proof2 lemma3 thm . 39
proof2 lemma3 . 7
proof2 thm1a . 14
proof2 thm1a . 38
proof2 thm1 . 14
proof2 thm1 . 38
proof2 thm2 thm . 39
proof2 thm2 . 7
proof2 thm3 thm . 14
proof2 thm3 thm . 39
proof2 thm3 . 7
proof3 lemma1 thm . 15
proof3 lemma1 thm . 40

16

proof3 lemma1 . 7
proof3 lemma2 thm . 15
proof3 lemma2 thm . 41
proof3 lemma2 . 8
proof3 lemma3 thm . 15
proof3 lemma3 thm . 41
proof3 lemma3 . 8
proof3 thm1 thm . 15
proof3 thm1 thm . 42
proof3 thm2 . 8
proof3 thm2 . 15
proof3 thm2 . 43
proof3 thm3 . 8
proof3 thm3 . 15
proof3 thm3 . 43
rats def . 18
sqrt def . 18
sqrt egs thm . 9
sqrt egs thm . 19
sqrt eq thm . 9
sqrt eq thm . 19
sqrt less thm . 9
sqrt less thm . 20
sqrt thm . 9
sqrt thm . 18
square even thm . 9
square even thm . 18
square square root mono thm1 9
square square root mono thm1 20
times cancel thm . 11
times cancel thm . 26
times eq 0 thm . 11
times eq 0 thm . 26
times eq 1 thm . 11
times eq 1 thm . 26
times eq eq 1 thm . 11
times eq eq 1 thm . 26
zero div mod thm . 11
zero div mod thm . 27
Q . 2
Q . 9
Z def . 18
Z . 2
Z . 9

17

A Common Definitions — Proofs

Prove the consistency of the definition of the square root (using the exponential and logarithm
functions for the witness):

SML

open theory "sqrt2 defs";

set merge pcs["′Z", "′R", "′sets alg", "basic hol1"];

The existence of square roots has already been proved in the the theory of analysis. We just have to
use the existence theorem to provide a witness.

SML

(∗
push consistency goal pSqrtq;

a(prove ∃ tac THEN REPEAT strip tac);

a(cases tacpNR 0 ≤ x ′q THEN asm rewrite tac[]);

a(bc thm tac square root thm1 THEN REPEAT strip tac);

save consistency thm pSqrtq (pop thm());

∗)

SML

val sqrt def = get specpSqrtq;

val sqrt thm = tac proof (([],

p∀x• NR 0 ≤ x ⇒ Sqrt x ̂ 2 = xq),

REPEAT strip tac THEN all fc tac[sqrt def]);

val Z def = get specpZq;

val rats def = get specpQq;

SML

set goal([], p

∀x• NR 0 ≤ x ⇒ Sqrt x ̂ 2 = x

q);

a(REPEAT strip tac THEN all fc tac [sqrt def]);

val sqrt thm = save pop thm "sqrt thm";

SML

set goal([], p

∀x : R• (∼x) ̂ 2 = x ̂ 2

q);

a(rewrite tac [R N exp square thm]

THEN PC T1 "R lin arith" prove tac[]);

val square even thm = save pop thm "square even thm";

18

SML

set goal([], p

∀x y• NR 0 ≤ x ∧ x̂2 = y ⇒ x = Sqrt y

q);

a(REPEAT strip tac);

a(lemma tacpNR 0 ≤ yq);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(all var elim asm tac1 THEN rewrite tac[R N exp square thm]);

a(bc thm tac R 0 ≤ 0 ≤ times thm THEN REPEAT strip tac);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(lemma tacpx̂2 = Sqrt ŷ2 ∧ NR 0 ≤ Sqrt yq THEN1

(all fc tac [sqrt def] THEN asm rewrite tac[]));

a(fc tac[square root unique thm]);

a(PC T1 "R lin arith" asm prove tac[]);

val sqrt eq thm = save pop thm "sqrt eq thm";

SML

set goal([], p

Sqrt (NR 0) = NR 0

∧ Sqrt (NR 1) = NR 1

∧ Sqrt (NR 4) = NR 2

∧ Sqrt (NR 9) = NR 3

q);

a(REPEAT strip tac THEN conv tac eq sym conv

THEN bc thm tac sqrt eq thm THEN rewrite tac[R N exp square thm]);

val sqrt egs thm = save pop thm "sqrt egs thm";

SML

set goal([], p∀ x y•
NR 0 ≤ x ∧ NR 0 ≤ y

⇒ (x ̂ 2 < y ̂ 2 ⇔ x < y)q);

a(rewrite tac[R ≤ def] THEN REPEAT ∀ tac THEN ⇒ tac);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(ALL FC T1 fc ⇔ canon rewrite tac[square square root mono thm]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(all var elim asm tac1 THEN rewrite tac[R N exp square thm]);

a(lemma tacpNR 0 < x ∗ xq THEN1

(bc thm tac R 0 less 0 less times thm THEN REPEAT strip tac));

a(PC T1 "R lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(all var elim asm tac1 THEN rewrite tac[R N exp square thm]);

a(lemma tacpNR 0 < y ∗ yq THEN1

(bc thm tac R 0 less 0 less times thm THEN REPEAT strip tac));

a(PC T1 "R lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "4" ∗∗∗ ∗)

19

a(all var elim asm tac1 THEN rewrite tac[R N exp square thm]);

val square square root mono thm1 = save pop thm "square square root mono thm1";

SML

set goal([], p∀x y•NR 0 ≤ x ∧ NR 0 ≤ y

⇒ (Sqrt x < Sqrt y ⇔ x < y)

q);

a(REPEAT ∀ tac THEN ⇒ tac);

a(all fc tac[sqrt def]);

a(LEMMA Tpx < y ⇔Sqrt x̂2 < Sqrt ŷ2q rewrite thm tac

THEN1 asm rewrite tac[]);

a(ALL FC T1 fc ⇔ canon rewrite tac[square square root mono thm1]);

val sqrt less thm = save pop thm "sqrt less thm";

20

B Proof 1 — Proofs

SML

The first proof is based on a geometrical construction which viewed algebraically goes a follows: if
x2 = 2y2, then y ≤ x ≤ (3/2)y and (2y − x)2 = 2(x− y)2. Whence, if x and y are positive integers
with x2 = 2y2, then so also are x′ = 2y−x and y′ = x−y. But y′ < y which leads to a contradiction,
since if there is some solution to x2 = 2y2, there must be one for which y is minimal.

SML

open theory "sqrt2 defs";

force delete theory "sqrt2 proof1" handle Fail => ();

new theory "sqrt2 proof1";

set merge pcs["′Z", "′R", "′sets alg", "basic hol1"];

Now sneak up on the result in a series of lemmas.

Step 1: if x2 = 2y2, then y < x ≤ (3/2)y, and (2y − x)2 = 2(x− y)2:

SML

set goal([], proof1 lemma1);

a(rewrite tac[R N exp square thm] THEN contr tac);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(cases tacpy = xq THEN1 all var elim asm tac1);

(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
a(LEMMA Tpx∗x = NR 0q ante tac THEN1 PC T1 "R lin arith" asm prove tac[]);

a(rewrite tac[R times eq 0 thm] THEN PC T1 "R lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
a(lemma tacpx∗y < y∗yq THEN1

once rewrite tac[R times comm thm] THEN1

bc thm tac R times mono thm THEN1

PC T1 "R lin arith" asm prove tac[]);

a(lemma tacpx∗x ≤ x∗yq THEN1

bc thm tac R ≤ times mono thm THEN1

PC T1"R lin arith" asm prove tac[]);

a(LEMMA Tpy ∗ NR 0 < y∗yq (strip asm tac o rewrite rule[]) THEN1

bc thm tac R times mono thm THEN1

PC T1"R lin arith" asm prove tac[]);

a(all fc tac[R ≤ less trans thm]

THEN PC T1"R lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(lemma tacp(NR 3∗y)∗(NR 2∗x) < (NR 2∗x)∗(NR 2∗x)q THEN1

conv tac(RANDS C (eq match conv R times comm thm)) THEN1

bc thm tac R times mono thm THEN1

PC T1 "R lin arith" asm prove tac[]);

a(lemma tacp(NR 3∗y)∗(NR 3∗y) ≤ (NR 3∗y)∗(NR 2∗x)q THEN1

bc thm tac R ≤ times mono thm THEN1

PC T1"R lin arith" asm prove tac[]);

21

a(LEMMA Tpx ∗ NR 0 < x∗xq (strip asm tac o rewrite rule[]) THEN1

bc thm tac R times mono thm THEN1

PC T1"R lin arith" asm prove tac[]);

a(all fc tac[R ≤ less trans thm]

THEN PC T1"R lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(PC T1"R lin arith" asm prove tac[]);

val proof1 lemma1 thm = save pop thm "proof1 lemma1 thm";

Step 1: tiny fact about the conversion of naturals to reals

SML

set goal([], p∀i j•j ≤ i ⇒ NR(i − j) = NR i − NR jq);

a(rewrite tac[≤ def] THEN REPEAT strip tac THEN

all var elim asm tac1);

a(rewrite tac[∀ elimpi ′q plus order thm,

NR plus homomorphism thm]

THEN PC T1 "R lin arith" prove tac[]);

val proof1 lemma2 thm = save pop thm "proof1 lemma2 thm";

Step 3: this is step 1 pulled back to the natural numbers:

SML

set goal([], p∀m n•
NR m ̂ 2 = NR 2 ∗ NR n ̂ 2 ∧ 0 < n

⇒ n < m ∧ 2 ∗ m ≤ 3 ∗ n

∧ NR (2 ∗ n − m) ̂ 2 = NR 2 ∗ NR (m − n) ̂ 2

q);

a(REPEAT ∀ tac THEN ⇒ tac);

a(lemma tac pNR 0 ≤ NR m ∧ NR 0 < NR nq THEN1

asm rewrite tac[NR ≤ thm, NR less thm]);

a(ALL FC T (MAP EVERY ante tac) [proof1 lemma1 thm]);

a(rewrite tac[NR ≤ thm, NR less thm,

conv rule (ONCE MAP C eq sym conv)

NR times homomorphism thm] THEN REPEAT strip tac);

a(lemma tacpm ≤ 2∗n ∧n ≤ mq THEN1 PC T1 "lin arith" asm prove tac[]);

a(ALL FC T asm rewrite tac[proof1 lemma2 thm]);

val proof1 lemma3 thm = save pop thm "proof1 lemma3 thm";

Step 4: if m and n are positive integer solutions to m2 = 2n2, then there is a solution with smaller
n:

22

SML

set goal([], proof1 lemma4);

a(REPEAT strip tac THEN all fc tac[proof1 lemma3 thm]);

a(∃ tacp2∗n − mq THEN ∃ tacpm − nq THEN asm rewrite tac[]);

a(LEMMA T pn ≤ mq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1);

a(rewrite tac[∀ elimpiq plus order thm]);

a(PC T1 "lin arith" asm prove tac[]);

val proof1 lemma4 thm = save pop thm "proof1 lemma4 thm";

Step 5: the induction that shows the only natural number solutions to m2 = 2n2 has m = 0:
SML

set goal([], proof1 lemma5);

a(∀ tac THEN cov induction tacpn:Nq THEN REPEAT strip tac);

a(contr tac THEN lemma tac p0 < nq THEN1

PC T1 "lin arith" asm prove tac[]);

a(all fc tac[proof1 lemma4 thm]);

a(all asm fc tac[] THEN all var elim asm tac1);

val proof1 lemma5 thm = save pop thm "proof1 lemma5 thm";

. . . which gives what we wanted, expressed explicitly:
SML

set goal([], proof1 thm1);

a(REPEAT strip tac);

a(lemma tacp¬NR b = NR 0q THEN1

asm rewrite tac[NR one one thm]);

a(rewrite tac[R frac def] THEN ALL FC T rewrite tac[R over times recip thm]);

a(contr tac THEN LEMMA Tp

(NR a ∗ NR b −1) ̂ 2 ∗ NR b ̂ 2 = NR 2 ∗ NR b ̂ 2q ante tac

THEN1 asm rewrite tac[]);

a(rewrite tac[]);

a(LEMMA Tp∀x y z :R•(x∗y)̂2∗ẑ2 = (x∗z∗y)̂2q rewrite thm tac THEN1

(rewrite tac[R N exp square thm]

THEN PC T1"R lin arith" prove tac[]));

a(ALL FC T rewrite tac[R times recip thm]);

a(contr tac THEN all fc tac[proof1 lemma5 thm]);

val proof1 thm1 thm = save pop thm "proof1 thm1 thm";

A lemma extending the above to the case when a/b ≤ 0.
SML

set goal([], p

∀ a b• ¬ b = 0 ⇒ ¬(a/b)̂2 = NR 2 ∧ ¬(∼(a/b))̂2 = NR 2

q);

a(rewrite tac[proof1 thm1 thm, square even thm]);

val proof1 thm1a = save pop thm "proof1 thm1a";

23

The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).

SML

set goal([], p ¬Sqrt (NR 2) ∈ Q q);

a(rewrite tac[get specpQq] THEN REPEAT UNTIL is ∨ strip tac);

a(cases tac pb = 0q THEN asm rewrite tac[]);

a(contr tac THEN

(LEMMA T pSqrt(NR 2)̂2 = NR 2q ante tac THEN1

bc tac(map (rewrite rule[]) (fc canon (get specpSqrtq))))

THEN ALL FC T asm rewrite tac[proof1 thm1a]);

val proof1 thm2 = save pop thm "proof1 thm2";

24

C Divisibility — Proofs

The other two proofs we give are the better known ones based on divisibility. They share a great
deal of common material about primes, divisibility etc.
SML

open theory "divisibility";

set merge pcs["′sets alg", "basic hol1"];

SML

val prime def = get specpPrimeq;

SML

set goal([], p∀n a• n ∈ a ⇒ Min a ∈ aq);

a(∀ tac THEN cov induction tac pn:Nq THEN REPEAT strip tac);

a(cases tacp∃m• m < n ∧ m ∈ aq);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(all asm fc tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LEMMA T pMin a = nq asm rewrite thm tac);

a(bc thm tac(get specpMinq) THEN REPEAT strip tac);

a(spec nth asm tac 2 piq);

a(PC T1 "lin arith" asm prove tac[]);

val min ∈ thm = save pop thm"min ∈ thm";

SML

set goal([], p∀n a• n ∈ a ⇒ Min a ≤ nq);

a(∀ tac THEN cov induction tac pn:Nq THEN REPEAT strip tac);

a(cases tacp∃m• m < n ∧ m ∈ aq);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(all asm fc tac[]);

a(PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LEMMA T pMin a = nq rewrite thm tac);

a(bc thm tac(get specpMinq) THEN REPEAT strip tac);

a(spec nth asm tac 2 piq);

a(PC T1 "lin arith" asm prove tac[]);

val min ≤ thm = save pop thm"min ≤ thm";

SML

val div mod unique thm1 =

rewrite rule[taut rule

p∀p1 p2 p3• (p1 ⇒ p2 ⇒ p3) ⇔ (p1 ∧ p2 ⇒ p3)q]

(conv rule (ONCE MAP C (RAND C (RAND C (RANDS C eq sym conv))))

div mod unique thm);

25

SML

set goal([], p∀m n•m ∗ n = 0 ⇒ m = 0 ∨ n = 0q);

a(contr tac);

a(LEMMA Tp1 ≤ m ∧ 1 ≤ nq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1

THEN PC T1 "lin arith" asm prove tac[]);

val times eq 0 thm = save pop thm "times eq 0 thm";

SML

set goal([], p∀k m n•0 < k ∧ k ∗ m = k ∗ n ⇒ m = nq);

a(contr tac);

a((LEMMA Tpm ≤ n ∨ n ≤ mq (strip asm tac o rewrite rule[≤ def])

THEN1 rewrite tac[≤ cases thm])

THEN all var elim asm tac1);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(lemma tacpk∗i = 0q THEN1 PC T1 "lin arith" asm prove tac[]);

a(fc tac[times eq 0 thm] THEN all var elim asm tac1

THEN1 PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(lemma tacpk∗i = 0q THEN1 PC T1 "lin arith" asm prove tac[]);

a(fc tac[times eq 0 thm] THEN all var elim asm tac1

THEN1 PC T1 "lin arith" asm prove tac[]);

val times cancel thm = save pop thm "times cancel thm";

SML

set goal([], p∀m n•0 < n ∧ m ∗ n = n ⇒ m = 1q);

a(REPEAT strip tac THEN

bc thm tac (once rewrite rule[times comm thm] times cancel thm));

a(∃ tacpnq THEN asm rewrite tac[]);

val times eq eq 1 thm = save pop thm "times eq eq 1 thm";

SML

set goal([], p∀m n•m ∗ n = 1 ⇒ m = 1 ∧ n = 1q);

a(REPEAT ∀ tac);

a(cases tacpm = 0 ∨ n = 0 ∨ m = 1 ∨ n = 1q THEN TRY

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(LEMMA Tp2 ≤ m ∧ 2 ≤ nq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(LIST DROP NTH ASM T [3 , 4 , 5 , 6] discard tac);

a(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]);

val times eq 1 thm = save pop thm "times eq 1 thm";

26

SML

set goal([], p∀m•m Div 1 = m ∧ m Mod 1 = 0q);

a(∀ tac);

a(bc thm tac div mod unique thm1 THEN rewrite tac[]);

val div mod 1 thm = save pop thm "div mod 1 thm";

SML

set goal([], p∀m• 0 < m ⇒ m Div m = 1 ∧ m Mod m = 0q);

a(∀ tac THEN ⇒ tac);

a(bc thm tac div mod unique thm1 THEN asm rewrite tac[]);

val m div mod m thm = save pop thm "m div mod m thm";

SML

set goal([], p∀m•0 < m ⇒ 0 Div m = 0 ∧ 0 Mod m = 0q);

a(∀ tac THEN ⇒ tac);

a(bc thm tac div mod unique thm1 THEN asm rewrite tac[]);

val zero div mod thm = save pop thm "zero div mod thm";

SML

set goal([], p∀m n•n < m ⇒ n Div m = 0 ∧ n Mod m = nq);

a(REPEAT ∀ tac THEN ⇒ tac);

a(bc thm tac div mod unique thm1 THEN asm rewrite tac[]);

val less div mod thm = save pop thm "less div mod thm";

SML

set goal([], p∀k m n•0 < k ⇒ (m∗k + n) Div k = m + n Div k ∧ (m∗k + n) Mod k = n Mod kq);

a(REPEAT ∀ tac THEN ⇒ tac);

a(bc thm tac div mod unique thm1

THEN ALL FC T rewrite tac[mod less thm]);

a(rewrite tac[times plus distrib thm, plus assoc thm]);

a(bc thm tac div mod thm THEN REPEAT strip tac);

val div mod times cancel thm = save pop thm "div mod times cancel thm";

SML

set goal([], p∀k m n•
0 < k

⇒ (m∗k) Mod k = 0

∧ (k∗m) Mod k = 0

∧ (k∗m + n) Mod k = n Mod k

∧ (m∗k + n) Mod k = n Mod k

∧ (k + n) Mod k = n Mod k

∧ (n + k) Mod k = n Mod k

∧ 0 Mod k = 0

∧ k Mod k = 0

∧ (m Mod k) Mod k = m Mod k

27

q);

a(REPEAT ∀ tac THEN ⇒ tac);

a(rewrite tac[∀ elimpkq times comm thm]);

a(ALL FC T rewrite tac[

div mod times cancel thm, m div mod m thm, zero div mod thm]);

a(pure once rewrite tac[prove rule[]

pm∗k = m∗k + 0 ∧ k + n = 1∗k + n ∧ n + k = 1∗k + nq]);

a(ALL FC T pure rewrite tac[div mod times cancel thm]

THEN ALL FC T rewrite tac[zero div mod thm]);

a(lemma tacpm Mod k < kq THEN1 ALL FC T rewrite tac[mod less thm]);

a(ALL FC T rewrite tac[less div mod thm]);

val mod clauses = save pop thm "mod clauses";

SML

set goal([], p∀m n•
0 < n

⇒ (m Mod n = 0 ⇔ ∃k•m = k∗n)

q);

a(REPEAT strip tac);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(∃ tacpm Div nq);

a(ALL FC T (conv tac o LEFT C o once rewrite conv)[div mod thm]);

a(asm rewrite tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(all var elim asm tac1 THEN ALL FC T rewrite tac[mod clauses]);

val mod eq 0 thm = save pop thm "mod eq 0 thm";

SML

set goal([], p∀m n•
0 < m ∧ 0 < n ∧ m Mod n = 0 ∧ n Mod m = 0

⇒ m = n

q);

a(REPEAT strip tac THEN all fc tac[mod eq 0 thm]);

a(lemma tacp(k ′∗k)∗m = mq THEN1

(POP ASM T (fn th => conv tac (RIGHT C (rewrite conv [th])))

THEN asm rewrite tac[times assoc thm]));

a(all fc tac[times eq eq 1 thm]);

a(all fc tac[times eq 1 thm]);

a(all var elim asm tac1 THEN rewrite tac[]);

val mod eq 0 mod eq 0 thm = save pop thm "mod eq 0 mod eq 0 thm";

SML

set goal([], p∀m n k•0 < k ⇒ (m + n) Mod k = (m Mod k + n Mod k) Mod kq);

a(REPEAT strip tac);

a(all fc tac[div mod thm]);

28

a(TOP ASM T (ante tac o ∀ elimpmq));

a(POP ASM T (ante tac o ∀ elimpnq) THEN REPEAT strip tac);

a(REPEAT (POP ASM T (fn th => conv tac(LEFT C (once rewrite conv [th])))));

a(rewrite tac[pc rule1 "lin arith" prove rule[]

p∀a b c d•(a∗k + b) + (c∗k + d) = (a+c)∗k + b + dq]);

a(ALL FC T rewrite tac[div mod times cancel thm]);

val mod plus homomorphism thm = save pop thm "mod plus homomorphism thm";

SML

set goal([], p∀m n k•0 < k ⇒ (m ∗ n) Mod k = ((m Mod k) ∗ (n Mod k)) Mod kq);

a(REPEAT strip tac);

a(all fc tac[div mod thm]);

a(TOP ASM T (ante tac o ∀ elimpmq));

a(POP ASM T (ante tac o ∀ elimpnq) THEN REPEAT strip tac);

a(REPEAT (POP ASM T (fn th => conv tac(LEFT C (once rewrite conv [th])))));

a(rewrite tac[pc rule1 "lin arith" prove rule[]

p∀a b c d•(a∗k + b) ∗ (c∗k + d) = (a∗c∗k + a∗d +b∗c)∗k + b∗dq]);

a(ALL FC T rewrite tac[div mod times cancel thm]);

val mod times homomorphism thm = save pop thm "mod times homomorphism thm";

SML

set goal([], p∀m n•
0 < m ∧ 0 < n ∧ 0 < m Mod n

⇒ ∃a• 0 < (a∗m) Mod n

∧ ∀b• 0 < (b∗m) Mod n ⇒ (a∗m) Mod n ≤ (b∗m) Mod nq);

a(REPEAT strip tac);

a(PC T1 "predicates" lemma tac

p ∃i• i ∈ { i | ∃a•0 < (a∗m) Mod n ∧ i = (a∗m) Mod n } q);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(∃ tacpm Mod nq THEN REPEAT strip tac);

a(∃ tacp1q THEN asm rewrite tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(all fc tac[min ∈ thm]);

a(∃ tacpaq THEN REPEAT strip tac);

a(DROP NTH ASM T 4 discard tac);

a(PC T1 "predicates" lemma tac

p (b∗m) Mod n ∈ { i | ∃a•0 < (a∗m) Mod n ∧ i = (a∗m) Mod n } q

THEN1 (REPEAT strip tac THEN asm prove tac[]));

a(all fc tac[min ≤ thm]);

a(POP ASM T ante tac THEN asm rewrite tac[]);

val gcd consistent lemma1 = save pop thm"gcd consistent lemma1";

29

SML

set goal([], p∀m n a d•
0 < m ∧ 0 < n ∧ 0 < d

∧ m Mod d = 0 ∧ n Mod d = 0

⇒ ((a∗m) Mod n) Mod d = 0

q);

a(REPEAT strip tac);

a(all fc tac[mod eq 0 thm]);

a(ante tac(list ∀ elim[pa∗mq, pnq] div mod thm));

a(strip tac THEN LEMMA T

p(((a∗m) Div n)∗n + (a∗m) Mod n) Mod d = (a∗m) Mod dq ante tac

THEN1 POP ASM T (rewrite thm tac o eq sym rule));

a(ALL FC T once rewrite tac[mod plus homomorphism thm]);

a(all var elim asm tac1

THEN rewrite tac[conv rule (ONCE MAP C eq sym conv) times assoc thm]

THEN ALL FC T rewrite tac[mod clauses]);

val gcd consistent lemma2 = save pop thm"gcd consistent lemma2";

SML

set goal([], p∀a b m n p r s•
a∗m = b∗(n+1) + r

∧ m = p∗r + s

⇒ ∃q•(q∗m) Mod (n+1) = s Mod (n+1)q);

a(REPEAT strip tac);

a(∃ tacpn∗p∗a+1q);

a(scale nth asm tacpn∗pq 2);

a(rewrite tac[times assoc thm, times plus distrib thm] THEN

POP ASM T (asm rewrite thm tac o rewrite rule[times assoc thm]));

a(LEMMA T p

n∗p∗(b∗(n + 1) + r) + p ∗ r + s =

(n+1)∗(p∗b∗n + p∗r) + sq rewrite thm tac THEN1

PC T1 "lin arith" prove tac[]);

a(rewrite tac[rewrite rule[](∀ elimpn+1qmod clauses)]);

val gcd consistent lemma3 = save pop thm"gcd consistent lemma3";

SML

set goal([], p∀a b m n p r s•
a∗m = b∗(n+1) + r

∧ n + 1 = p∗r + s

⇒ ∃q•(q∗m) Mod (n+1) = s Mod (n+1)q);

a(REPEAT strip tac);

a(LEMMA Tp∀x•(x∗m) Mod (n + 1) = (x∗m + n + 1) Mod (n + 1)q

rewrite thm tac THEN1

rewrite tac[rewrite rule[](∀ elimpn+1qmod clauses)]);

a(∃ tacpn∗p∗aq);

30

a(scale nth asm tacpn∗pq 2);

a(rewrite tac[times assoc thm, times plus distrib thm] THEN

POP ASM T (rewrite thm tac o rewrite rule[times assoc thm]));

a(LEMMA Tp∀x•x + n + 1 = x + p∗r + sq rewrite thm tac THEN1

asm rewrite tac[]);

a(LEMMA T p

n∗p∗(b∗(n+1) + r) + p ∗ r + s =

(n+1)∗(p∗b∗n + p∗r) + sq rewrite thm tac THEN1

PC T1 "lin arith" prove tac[]);

a(rewrite tac[rewrite rule[](∀ elimpn+1qmod clauses)]);

val gcd consistent lemma4 = save pop thm"gcd consistent lemma4";

SML

set goal([], p∀m n k a•
0 < m ∧ 0 < n ∧ 0 < m Mod n

∧ 0 < (a∗m) Mod n

∧ (∀b• 0 < (b∗m) Mod n ⇒ (a∗m) Mod n ≤ (b∗m) Mod n)

⇒ m Mod ((a∗m) Mod n) = 0 ∧ n Mod ((a∗m) Mod n) = 0q);

a(REPEAT ∀ tac THEN ⇒ tac THEN

LEMMA T p1 ≤ nq

(strip asm tac o once rewrite rule[plus comm thm]

o rewrite rule[≤ def]) THEN1

PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN contr tac);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(ante tac(list ∀ elim[paq, p(a∗m) Div (i+1)q,

pmq, piq, pm Div ((a∗m) Mod (i+1))q,

p(a∗m) Mod (i+1)q,

pm Mod ((a∗m) Mod (i+1))q]gcd consistent lemma3));

a(asm tac (prove rule[]p0 < i + 1q));

a(ALL FC T rewrite tac[

conv rule(ONCE MAP C eq sym conv) div mod thm]);

a(lemma tacpm Mod ((a∗m) Mod (i + 1)) < (a∗m) Mod (i+1)q

THEN1 EXTEND PC T1 "′mmp1" all fc tac[mod less thm]);

a(lemma tacp(a∗m) Mod (i+1) < (i+1)q

THEN1 (bc thm tac mod less thm THEN REPEAT strip tac));

a(lemma tacpm Mod ((a∗m) Mod (i + 1)) < (i+1)q

THEN1 EXTEND PC T1 "′mmp1" all fc tac[less trans thm]);

a(ALL FC T rewrite tac [less div mod thm]);

a(contr tac);

a(DROP NTH ASM T 7 (ante tac o ∀ elimpqq));

a(asm rewrite tac[]);

a(PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(ante tac(list ∀ elim[paq, p(a∗m) Div (i+1)q,

31

pmq, piq, p(i+1) Div ((a∗m) Mod (i+1))q,

p(a∗m) Mod (i+1)q,

p(i+1) Mod ((a∗m) Mod (i+1))q]gcd consistent lemma4));

a(asm tac (prove rule[]p0 < i + 1q));

a(ALL FC T rewrite tac[

conv rule(ONCE MAP C eq sym conv) (div mod thm)]);

a(lemma tacp(i+1) Mod ((a∗m) Mod (i+1)) < (a∗m) Mod (i+1)q

THEN1 (bc thm tac mod less thm THEN REPEAT strip tac));

a(lemma tacp(a∗m) Mod (i+1) < (i+1)q

THEN1 (bc thm tac mod less thm THEN REPEAT strip tac));

a(lemma tacp(i+1) Mod ((a∗m) Mod (i + 1)) < (i+1)q

THEN1 all fc tac[less trans thm]);

a(ALL FC T rewrite tac [less div mod thm]);

a(contr tac);

a(DROP NTH ASM T 7 (ante tac o ∀ elimpqq));

a(asm rewrite tac[]);

a(PC T1 "lin arith" asm prove tac[]);

val gcd consistent lemma5 = save pop thm"gcd consistent lemma5";

SML

push consistency goal pGcdq;

a(prove ∃ tac THEN REPEAT strip tac);

a(cases tacpm ′ = 0q THEN1 all var elim asm tac1);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(∃ tacp0q THEN REPEAT strip tac THEN

ALL FC T rewrite tac[mod clauses]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(cases tacpn ′ = 0q THEN1 all var elim asm tac1);

(∗ ∗∗∗ Goal "2 .1" ∗∗∗ ∗)
a(∃ tacp0q THEN REPEAT strip tac THEN

ALL FC T rewrite tac[mod clauses]);

(∗ ∗∗∗ Goal "2 .2" ∗∗∗ ∗)
a(cases tacpm ′ Mod n ′ = 0q);

(∗ ∗∗∗ Goal "2 .2 .1" ∗∗∗ ∗)
a(∃ tacpn ′q THEN REPEAT strip tac THEN

ALL FC T rewrite tac[mod clauses]);

(∗ ∗∗∗ Goal "2 .2 .2" ∗∗∗ ∗)
a(lemma tacp0 < m ′ ∧ 0 < n ′ ∧ 0 < m ′ Mod n ′q

THEN1 PC T1 "lin arith" asm prove tac[]

THEN LIST DROP NTH ASM T [4 , 5 , 6] discard tac);

a(all fc tac [gcd consistent lemma1]);

a(all fc tac [gcd consistent lemma5]);

a(∃ tacp(a∗m ′) Mod n ′q THEN asm rewrite tac[]);

a(REPEAT strip tac);

a(bc thm tac gcd consistent lemma2

32

THEN REPEAT strip tac);

val = save consistency thm pGcdq (pop thm());

SML

val gcd def = get specpGcdq;

SML

set goal([], gcd eq mod thm);

a(REPEAT strip tac);

a(all fc tac[gcd consistent lemma1]);

a(∃ tacpaq THEN asm rewrite tac[]);

a(lemma tacpGcd m n Mod ((a ∗ m) Mod n) = 0q THEN1

(all fc tac[gcd consistent lemma5]

THEN all fc tac[∧ right elim gcd def]));

a(lemma tacp((a ∗ m) Mod n) Mod Gcd m n = 0q

THEN1 (bc thm tac gcd consistent lemma2

THEN all fc tac[∧ left elim gcd def]

THEN REPEAT strip tac));

a(lemma tacp0 < Gcd m nq

THEN1 (all fc tac[∧ left elim gcd def]));

a(all fc tac[mod eq 0 mod eq 0 thm]);

val gcd eq mod thm = save pop thm"gcd eq mod thm";

SML

set goal([], p∀p• p ∈ Prime ⇒ 0 < pq);

a(rewrite tac[prime def] THEN PC T1 "lin arith" asm prove tac[]);

val prime 0 less thm = save pop thm"prime 0 less thm";

SML

set goal([], p∀m p•
0 < m ∧ p ∈ Prime

⇒ Gcd m p = 1 ∨ Gcd m p = pq);

a(REPEAT strip tac

THEN all fc tac[prime 0 less thm]

THEN all asm ante tac);

a(rewrite tac[prime def] THEN REPEAT strip tac);

a(all fc tac[prime 0 less thm]);

a(lemma tac p0 < Gcd m pq THEN1 all fc tac[gcd def]);

a(LEMMA T pp Mod Gcd m p = 0q ante tac THEN1 all fc tac[gcd def]);

a(ALL FC T1 fc ⇔ canon rewrite tac[mod eq 0 thm]);

a(REPEAT strip tac);

a(LIST DROP NTH ASM T [5] fc tac);

a(all var elim asm tac1);

a(POP ASM T (ante tac o eq sym rule) THEN rewrite tac[]);

val gcd prime thm = save pop thm"gcd prime thm";

33

SML

set goal([], p∀p•
(∀m n• (m∗n) Mod p = 0

⇒ m Mod p = 0 ∨ n Mod p = 0)

∧ 1 < p

⇒ p ∈ Prime

q);

a(rewrite tac[prime def] THEN contr tac);

a(all var elim asm tac1);

a(DROP NTH ASM T 4 (ante tac o list ∀ elim[pmq, pnq]));

a(lemma tac p0 < m ∧ 0 < nq THEN1

(contr tac THEN lemma tacpm = 0 ∨ n = 0q

THEN TRY all var elim asm tac1 THEN

PC T1"lin arith" asm prove tac[]));

a(lemma tac p¬m∗n = 0q THEN1

(contr tac THEN all fc tac[times eq 0 thm]

THEN PC T1 "lin arith" asm prove tac[]));

a(lemma tac p0 < m∗n q THEN1

PC T1"lin arith" asm prove tac[]);

a(ALL FC T rewrite tac[m div mod m thm]);

a(cases tacpm < m∗nq THEN1

ALL FC T asm rewrite tac[less div mod thm]);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(cases tacpn < m∗nq THEN1

(ALL FC T asm rewrite tac[less div mod thm] THEN

PC T1 "lin arith" asm prove tac[]));

a(LEMMA Tp2 ≤ mq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1"lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN PC T1"lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LEMMA Tp2 ≤ nq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1"lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN PC T1"lin arith" asm prove tac[]);

val prime lemma1 = pop thm ();

SML

set goal([], p∀p m n•
p ∈ Prime ∧ (m∗n) Mod p = 0

⇒ m Mod p = 0 ∨ n Mod p = 0

q);

a(REPEAT ∀ tac THEN ⇒ tac);

a(all fc tac[prime 0 less thm]);

a(cases tacpm = 0 ∨ n = 0q THEN TRY

(all var elim asm tac1 THEN

ALL FC T rewrite tac[mod clauses]));

34

a(lemma tacp0 < m ∧ 0 < nq THEN1 PC T1 "lin arith" asm prove tac[]);

a(cases tacpGcd m p = pq THEN1

(POP ASM T (once rewrite thm tac o eq sym rule) THEN

all fc tac[gcd def] THEN REPEAT strip tac));

a(cases tacpGcd n p = pq THEN1

(POP ASM T (once rewrite thm tac o eq sym rule) THEN

all fc tac[(∧ left elim gcd def)]

THEN REPEAT strip tac));

a(lemma tacpGcd m p = 1 ∧ Gcd n p = 1q THEN1

(fc tac[gcd prime thm]

THEN LIST DROP NTH ASM T [1 , 2] fc tac

THEN REPEAT strip tac));

a(rewrite tac[pc rule1 "lin arith" prove rule[]

p∀a•a = 0 ⇔ ¬0 < aq]);

a(contr tac);

a(all fc tac[gcd eq mod thm]);

a(LIST DROP NTH ASM T [1 , 4] (MAP EVERY ante tac));

a(asm rewrite tac[]);

a(LIST DROP NTH ASM T (interval 1 14) discard tac);

a(conv tac (ONCE MAP C eq sym conv) THEN contr tac);

a(LEMMA Tp((a ′ ∗ m)∗(a ∗ n)) Mod p = 1q ante tac THEN1

ALL FC T once asm rewrite tac[mod times homomorphism thm]);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(DROP NTH ASM T 5 (strip asm tac o rewrite rule[prime def]));

a(ALL FC T asm rewrite tac[less div mod thm]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LEMMA Tp((a ′ ∗ a)∗(m ∗ n)) Mod p = 0q ante tac THEN1

(ALL FC T once asm rewrite tac[mod times homomorphism thm]

THEN ALL FC T asm rewrite tac[mod clauses]));

a(conv tac(ONCE MAP C anf conv) THEN PC T1 "lin arith" prove tac[]);

val prime lemma2 = pop thm ();

SML

set goal([], prime thm);

a(REPEAT strip tac THEN LIST [

POP ASM T (strip asm tac o rewrite rule[prime def])

THEN asm rewrite tac[],

all fc tac[prime lemma2],

all fc tac[prime lemma1]]);

val prime thm = save pop thm "prime thm";

SML

set goal([], prime divisor thm);

a(∀ tac THEN cov induction tacpm:Nq);

a(REPEAT strip tac);

35

a(cases tacpm ∈ Primeq THEN1

(∃ tacpmq THEN ∃ tacp1q THEN asm rewrite tac[]));

a(POP ASM T (strip asm tac o rewrite rule[prime def]));

a(cases tacpm ′ = 0q THEN1

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(lemma tacp1 < m ′q THEN1 PC T1 "lin arith" asm prove tac[]);

a(cases tacp¬m ′< mq);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(cases tacpn = 0q THEN1

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(LEMMA Tp2 ≤ nq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LIST DROP NTH ASM T [8] all fc tac);

a(∃ tacppq THEN ∃ tacpn ′∗nq THEN asm rewrite tac[times assoc thm]);

val prime divisor thm = save pop thm "prime divisor thm";

36

D Proof 2 — Proofs

SML

open theory "sqrt2 proof2";

set merge pcs["′Z", "′R", "′sets alg", "basic hol1"];

This is the traditional proof intended to impress non-mathematicians.

The main lemma for this proof is that if p is prime and m and n are positive solutions to m2 = pn2,
then there is a solution with smaller n (obtained by dividing m and n by p):

SML

set goal([], proof2 lemma1);

a(REPEAT strip tac);

a(all fc tac[prime 0 less thm]);

a(lemma tacp(m∗m) Mod p = 0q THEN1

(ALL FC T asm rewrite tac[mod clauses]));

a(GET NTH ASM T 5 (strip asm tac o rewrite rule[prime thm]));

a(LIST GET NTH ASM T [1] fc tac);

(∗ ∗∗∗ Goal "1" which is the same as "2" ∗∗∗ ∗)
a(all fc tac[mod eq 0 thm]);

a(lemma tacp(n∗n) Mod p = 0q);

(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
a(ALL FC T1 fc ⇔ canon rewrite tac [mod eq 0 thm]);

a(∃ tacpk∗kq);

a(bc thm tac times cancel thm);

a(∃ tacppq THEN REPEAT strip tac);

a(DROP NTH ASM T 9 (rewrite thm tac o eq sym rule));

a(DROP NTH ASM T 2 rewrite thm tac THEN PC T1 "lin arith" prove tac[]);

(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
a(LIST DROP NTH ASM T [5 , 7] fc tac);

(∗ ∗∗∗ Goal "1 .2 .1" which is the same as all the 3 other outstanding goals! ∗∗∗ ∗)
a(POP ASM T ante tac THEN DROP NTH ASM T 3 ante tac);

a(LIST DROP NTH ASM T [1 , 2 , 3 , 8] discard tac);

a(ALL FC T1 fc ⇔ canon rewrite tac [mod eq 0 thm]);

a(REPEAT strip tac THEN all var elim asm tac1);

a(∃ tacpkq THEN ∃ tacpk ′q THEN REPEAT strip tac);

(∗ ∗∗∗ Goal "1 .2 .1 .1" ∗∗∗ ∗)
a(contr tac THEN lemma tacpk ′ = 0q

THEN TRY all var elim asm tac1

THEN PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "1 .2 .1 .2" ∗∗∗ ∗)
a(LEMMA Tp2 ≤ pq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN1 PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "1 .2 .1 .3" ∗∗∗ ∗)
a(bc thm tac times cancel thm);

37

a(∃ tacppq THEN REPEAT strip tac);

a(bc thm tac times cancel thm);

a(∃ tacppq THEN REPEAT strip tac);

a(PC T1 "lin arith" asm prove tac[]);

val proof2 lemma1 thm = save pop thm "proof2 lemma1 thm";

SML

set goal([], p∀p n m •
p ∈ Prime ∧ NR m ̂ 2 = NR p ∗ (NR n ̂ 2)

⇒ n = 0

q);

a(rewrite tac[R N exp square thm,

NR times homomorphism thm1 , NR one one thm]);

a(∀ tac THEN ∀ tac THEN cov induction tacpn:Nq THEN REPEAT strip tac);

a(contr tac THEN lemma tac p0 < nq THEN1

PC T1 "lin arith" asm prove tac[]);

a(all fc tac[proof2 lemma1 thm]);

a(all asm fc tac[] THEN all var elim asm tac1);

val proof2 lemma2 thm = save pop thm "proof2 lemma2 thm";

. . . giving us that the square roots of prime numbers are irrational, expressed explicitly:
SML

set goal([], p∀p a b•
p ∈ Prime ∧ ¬b = 0 ⇒ ¬(a/b)̂2 = NR p

q);

a(REPEAT strip tac);

a(lemma tacp¬NR b = NR 0q THEN1

asm rewrite tac[NR one one thm]);

a(rewrite tac[R frac def] THEN ALL FC T rewrite tac[R over times recip thm]);

a(contr tac THEN LEMMA Tp

(NR a ∗ NR b −1) ̂ 2 ∗ NR b ̂ 2 = NR p ∗ NR b ̂ 2q ante tac

THEN1 asm rewrite tac[]);

a(LEMMA Tp∀x y z :R•(x∗y)̂2∗ẑ2 = (x∗z∗y)̂2q rewrite thm tac THEN1

(rewrite tac[R N exp square thm]

THEN PC T1"R lin arith" prove tac[]));

a(ALL FC T rewrite tac[R times recip thm]);

a(contr tac THEN all fc tac[proof2 lemma2 thm]);

val proof2 thm1 = save pop thm"proof2 thm1";

A lemma extending the above to the case when a/b ≤ 0.
SML

set goal([], p

∀a b• p ∈ Prime ∧ ¬b = 0 ⇒ ¬(a/b)̂2 = NR p ∧ ¬(∼(a/b))̂2 = NR p

q);

a(rewrite tac[proof2 thm1 , square even thm]);

val proof2 thm1a = save pop thm "proof2 thm1a";

38

The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).

SML

set goal([], proof2 thm2);

a(rewrite tac[get specpQq] THEN REPEAT UNTIL is ∨ strip tac);

a(cases tac pb = 0q THEN asm rewrite tac[]);

a(lemma tacpNR 0 ≤ NR pq THEN1

(all fc tac[prime 0 less thm] THEN

asm rewrite tac[NR ≤ thm, ≤ def]));

a(contr tac THEN

(LEMMA T pSqrt(NR p)̂2 = NR pq ante tac THEN1

bc tac(map (rewrite rule[]) (fc canon (get specpSqrtq))))

THEN ALL FC T asm rewrite tac[proof2 thm1a]);

val proof2 thm2 thm = save pop thm "proof1 thm2 thm";

As Freek Wiedijk rightly insists, we must show that we can specialise this to
√

2, which means we
need to prove that 2 is prime. The ProofPower demo suite actually includes an automatic conversion
for testing for primality. Rather than reproduce that material here, we just prove that 2 is prime by
hand.

SML

set goal([], proof2 lemma3);

a(rewrite tac[prime def] THEN contr tac);

a(cases tacpm = 0q THEN1

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(cases tacpn = 0q THEN1

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(LEMMA Tp2 ≤ m ∧ 2 ≤ nq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]);

val proof2 lemma3 thm = save pop thm "proof2 lemma3 thm";

SML

set goal([], proof2 thm3);

a(bc thm tac proof2 thm2 thm THEN accept tac proof2 lemma3 thm);

val proof2 thm3 thm = save pop thm"proof2 thm3 thm";

39

E Proof 3 — Proofs

SML

open theory "sqrt2 proof3";

set merge pcs["′Z", "′R", "′sets alg", "basic hol1"];

This is the most general proof (about square roots of integers) and the one that generalises further
(to the statement that the integers are a integrally closed: i.e., that any rational solution to a monic
polynomial with integer coefficients is actually an integer).

The main lemma for this proof is that if k is any positive number and m and n are solutions to
m2 = kn2 with n > 1, then there is a solution with smaller n (obtained by dividing m and n by any
prime factor of n):

SML

set goal([], proof3 lemma1);

a(REPEAT strip tac);

a(all fc tac[prime divisor thm]);

a(all fc tac[prime 0 less thm]);

a(lemma tac p(m∗m) Mod p = 0q THEN1

(asm rewrite tac[pc rule1"lin arith" prove rule[]

p∀x y z•x∗(p∗y)∗z = p∗x∗y∗zq] THEN

ALL FC T rewrite tac[mod clauses]));

a(fc tac[prime thm]);

a(LIST DROP NTH ASM T [2] fc tac);

(∗ ∗∗∗ Goal "1" same as "2" ∗∗∗ ∗)
a(DROP NTH ASM T 3 discard tac THEN all fc tac [mod eq 0 thm]);

a(∃ tacpk ′q THEN ∃ tacpn ′q THEN all var elim asm tac1

THEN REPEAT strip tac);

(∗ ∗∗∗ Goal "1 .1" ∗∗∗ ∗)
a(contr tac THEN1

(lemma tacpn ′ = 0q THEN TRY all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

(∗ ∗∗∗ Goal "1 .2" ∗∗∗ ∗)
a(LEMMA T p2 ≤ pq (strip asm tac o rewrite rule[≤ def])

THEN1 PC T1 "lin arith" asm prove tac[]);

a(cases tacpn ′ = 0q THEN1

(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]));

a(all var elim asm tac1 THEN PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "1 .3" ∗∗∗ ∗)
a(bc thm tac times cancel thm);

a(∃ tacppq THEN REPEAT strip tac);

a(bc thm tac times cancel thm);

a(∃ tacppq THEN REPEAT strip tac);

a(PC T1 "lin arith" asm prove tac[]);

val proof3 lemma1 thm = save pop thm "proof3 lemma1 thm";

40

SML

set goal([], proof3 lemma2);

a(rewrite tac[R N exp square thm,

NR times homomorphism thm1 , NR one one thm, NR less thm]);

a(REPEAT strip tac);

a(PC T1 "predicates" lemma tac

p∃y•y ∈ { y | 0 < y ∧ ∃x• x ∗ x = k ∗ y ∗ y }q
THEN1 (∃ tacpnq THEN REPEAT strip tac

THEN ∃ tacpmq THEN REPEAT strip tac));

a(all fc tac[min ∈ thm]);

a(cases tacp1 < Min { y | 0 < y ∧ ∃x• x ∗ x = k ∗ y ∗ y }q
THEN1 all fc tac[proof3 lemma1 thm]);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(PC T1 "predicates" lemma tac

pn1 ∈ { y | 0 < y ∧ ∃x• x ∗ x = k ∗ y ∗ y }q
THEN1 (REPEAT strip tac THEN ∃ tacpm1q THEN REPEAT strip tac));

a(all fc tac[min ≤ thm] THEN PC T1 "lin arith" asm prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(lemma tacpMin { y | 0 < y ∧ ∃x• x ∗ x = k ∗ y ∗ y } = 1q

THEN1 PC T1 "lin arith" asm prove tac[]);

a(∃ tacpxq THEN asm rewrite tac[]);

val proof3 lemma2 thm = save pop thm "proof3 lemma2 thm";

In this proof, to show that
√

2 is irrational, we must show that it is not an integer:

SML

set goal([], proof3 lemma3);

a(rewrite tac[Z def] THEN contr tac);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(ante tac (rewrite rule[sqrt egs thm]

(list ∀ elim[pNR 1q, pNR 2q] sqrt less thm)));

a(asm rewrite tac [NR less thm]);

a(ante tac (rewrite rule[sqrt egs thm]

(list ∀ elim[pNR 2q, pNR 4q] sqrt less thm)));

a(asm rewrite tac [NR less thm]);

a(PC T1 "lin arith" prove tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(asm tac (rewrite rule[sqrt egs thm]

(list ∀ elim[pNR 1q, pNR 2q] sqrt less thm)));

a(lemma tac pSqrt (NR 2) ≤ NR 0q THEN LIST

[asm rewrite tac[], PC T1 "R lin arith" asm prove tac[]]);

val proof3 lemma3 thm = save pop thm"proof3 lemma3 thm";

We now have the general result that rational square roots of prime numbers are integers, expressed
explicitly:

41

SML

set goal([], p∀k a b•
¬b = 0 ∧ (a/b)̂2 = NR k

⇒ ∃i• NR i ̂ 2 = NR k

q);

a(REPEAT strip tac);

a(cases tacpk = 0q THEN1

(∃ tacp0q THEN asm rewrite tac[R N exp square thm]));

a(lemma tacp¬NR b = NR 0q THEN1

asm rewrite tac[NR one one thm]);

a(swap nth asm concl tac 3);

a(rewrite tac[R frac def] THEN ALL FC T rewrite tac[R over times recip thm]);

a(contr tac THEN LEMMA Tp

(NR a ∗ NR b −1) ̂ 2 ∗ NR b ̂ 2 = NR k ∗ NR b ̂ 2q ante tac

THEN1 asm rewrite tac[]);

a(LEMMA Tp∀x y z :R•(x∗y)̂2∗ẑ2 = (x∗z∗y)̂2q rewrite thm tac THEN1

(rewrite tac[R N exp square thm]

THEN PC T1"R lin arith" prove tac[]));

a(ALL FC T rewrite tac[R times recip thm]);

a(lemma tacpNR 0 < NR k ∧ NR 0 < NR bq THEN1

(rewrite tac[NR less thm] THEN PC T1 "lin arith" asm prove tac[]));

a(contr tac THEN all fc tac[proof3 lemma2 thm]);

a(all asm fc tac[]);

val proof3 thm1 thm = save pop thm"proof3 thm1 thm";

The final result in terms of the square root function and the set Q (which requires us also to deal
with the possibility that a/b is negative).

SML

set goal([], proof3 thm2);

a(rewrite tac[rats def , Z def] THEN contr tac

THEN all var elim asm tac1);

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)
a(LEMMA TpSqrt (NR m)̂2 = NR mq ante tac THEN1

ALL FC T rewrite tac[sqrt thm]);

a(asm rewrite tac[] THEN contr tac THEN

all fc tac[proof3 thm1 thm]);

a(lemma tacpNR 0 ≤ NR iq THEN1

rewrite tac[NR ≤ thm]);

a(all fc tac[sqrt eq thm]);

a(DROP NTH ASM T 5 (ante tac o ∀ elimpiq));

a(asm rewrite tac[]);

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)
a(LEMMA TpSqrt (NR m)̂2 = NR mq ante tac THEN1

ALL FC T rewrite tac[sqrt thm]);

a(LEMMA Tp∀x :R•(∼x)̂2 = x̂2q asm rewrite thm tac THEN1

42

(rewrite tac[R N exp square thm] THEN

PC T1 "R lin arith" prove tac[]));

a(contr tac THEN all fc tac[proof3 thm1 thm]);

a(lemma tacpNR 0 ≤ NR iq THEN1

rewrite tac[NR ≤ thm]);

a(all fc tac[sqrt eq thm]);

a(DROP NTH ASM T 5 (ante tac o ∀ elimpiq));

a(asm rewrite tac[]);

(∗ ∗∗∗ Goal "3" ∗∗∗ ∗)
a(DROP NTH ASM T 4 ante tac);

a(pure once rewrite tac[R ≤ ≤ 0 thm]);

a(rewrite tac[NR ≤ thm]);

a(swap nth asm concl tac 1 THEN REPEAT strip tac);

a(∃ tacp0q THEN all var elim asm tac1 THEN asm rewrite tac[]);

a(POP ASM T (rewrite thm tac o eq sym rule));

a(rewrite tac[sqrt egs thm]);

(∗ ∗∗∗ Goal "4" ∗∗∗ ∗)
a(DROP NTH ASM T 4 ante tac);

a(pure once rewrite tac[R ≤ ≤ 0 thm]);

a(rewrite tac[NR ≤ thm]);

a(swap nth asm concl tac 1 THEN REPEAT strip tac);

a(∃ tacp0q THEN all var elim asm tac1 THEN asm rewrite tac[]);

a(POP ASM T (rewrite thm tac o eq sym rule));

a(rewrite tac[sqrt egs thm]);

val proof3 thm2 = save pop thm"proof3 thm2";

And, using the fact that
√

2 is not an integer, we get the specific conclusion of the third proof:

SML

set goal([], proof3 thm3);

a(contr tac);

a(LEMMA T pNR 0 ≤ NR 2q asm tac THEN1 rewrite tac[]);

a(lemma tac pNR 2 ∈ Zq THEN1

(rewrite tac[Z def] THEN ∃ tacp2q THEN REPEAT strip tac));

a(all fc tac[proof3 thm2]);

a(all fc tac[proof3 lemma3 thm]);

val proof3 thm3 = save pop thm"proof3 thm3";

43

Contents

1 Common Definitions 2

2 Proof 1 2

3 Divisibility 4

4 Proof 2 6

5 Proof 3 7

6 THE THEORY sqrt2 defs 9

6.1 Parents . 9

6.2 Children . 9

6.3 Constants . 9

6.4 Definitions . 9

6.5 Theorems . 9

7 THE THEORY sqrt2 proof1 10

7.1 Parents . 10

7.2 Theorems . 10

8 THE THEORY divisibility 11

8.1 Parents . 11

8.2 Children . 11

8.3 Constants . 11

8.4 Definitions . 11

8.5 Theorems . 11

9 THE THEORY sqrt2 proof2 14

9.1 Parents . 14

9.2 Theorems . 14

10 THE THEORY sqrt2 proof3 15

10.1 Parents . 15

10.2 Theorems . 15

A Common Definitions — Proofs 18

44

B Proof 1 — Proofs 21

C Divisibility — Proofs 25

D Proof 2 — Proofs 37

E Proof 3 — Proofs 40

SML

open theory"sqrt2 defs";

output theory{out file="57 .th0 .doc", theory="sqrt2 defs"};
open theory"sqrt2 proof1";

output theory{out file="57 .th1 .doc", theory="sqrt2 proof1"};
open theory"divisibility";

output theory{out file="57 .th2 .doc", theory="divisibility"};
open theory"sqrt2 proof2";

output theory{out file="57 .th3 .doc", theory="sqrt2 proof2"};
open theory"sqrt2 proof3";

output theory{out file="57 .th4 .doc", theory="sqrt2 proof3"};

45

