
Analysis of Compiled Code:
A Prototype Formal Model

R.D. Arthan

Lemma 1 Ltd.
2nd Floor, 31A Chain Street,

Reading UK RG1 2HX
rda@lemma-one.com

Abstract. This paper reports on an experimental application of for-
mal specification to inform analysis of compiled code. The analyses with
which we are concerned attempt to recover abstraction and order from
the potentially chaotic world of machine code. To illustrate the kind of
abstractions of interest, we give a formal model of a simple microproces-
sor. This is based on a traditional state-based Z specification, but builds
on that to produce a behavioural model of the microprocessor. We use
the behavioural model to specify a higher-order notion: the concept of
a program whose control flow can be decomposed into basic blocks. Fi-
nally, we report on the use of our techniques in the development of tools
for analysis of compiled code for a real microprocessor.

1 Introduction

1.1 Background

Much of the emphasis in formal methods research has been into formalisation of
the process of specifying and designing systems. However techniques and tools
for analysing software engineering artefacts are of considerable importance. This
paper is intended to give a simple example of how notations such as Z may be
used to provide rigorous foundations for program analysis.

Because of its importance in safety-critical applications (such as avionics
systems), we are particularly concerned with analysis of compiled code. Rigorous
development methods greatly increase confidence in the outputs of the systems
engineering process. However, those outputs still require validation, typically by
inspection and testing. We believe that automated or semi-automated analysis
of compiled code will be of increasing importance for system validation and that
it deserves a rigorous mathematical foundation.

1.2 Program Analysis

The formal model that we present as an example of our approach is adapted
from a specification originally written in late 1997. At that time, Dr. Tom Lake

of Interglossa and the present author were doing some preliminary work on
techniques for analysing and verifying compiled code.

Our thinking was influenced by Interglossa’s suite of reverse engineering tools
called REAP. These tools carry out static analysis on assembly language code
to retrofit the kind of abstractions that one might expect to find in compiler-
generated code. Programs that pass the conditions imposed by the analysis con-
form to disciplines of control flow and data access of the sort typically obeyed
by a compiler.

In REAP, the analysis provides a semantic justification for a translation of
the assembly language code into a higher level language such as C. Our belief was
(and remains) that this kind of analysis should also justify a tractable approach
to formal reasoning about low level code.

1.3 Formal Model

To provide a formal underpinning of the kinds of analysis we have in mind re-
quires a formal model of the execution environment for the code being analysed.
Towards this goal, the present author wrote a behavioural model of a simple
but general microprocessor. The idea was that the control flow and data ac-
cess disciplines of interest can be formally defined as constraints on the possible
behaviours of particular programs.

Not all programs will conform to the disciplines that we impose; however,
those that do should be significantly more amenable to formal reasoning. In
safety-critical applications, we would claim that non-conforming programs should
be deemed unacceptable. This would be the analogue at the machine code level of
the use of “safe” high-level language subsets (such as SPARK-Ada). One would
expect compilers to generate conforming target code for most reasonable high
level language programs.

To demonstrate a simple form of control flow and data access discipline, we
formalise the notion of a basic blocks decomposition of a program running on the
microprocessor. If a basic blocks decomposition can be shown to be correct, then
we know that the program is not self-modifying and never executes data. In other
words, we can validly treat the program as running on a Harvard architecture
rather than the von Neumann architecture of the physical microprocessor.

1.4 Expressing Higher-Order Properties in Z

The basic blocks abstraction is a so-called higher-order property; i.e., it cannot be
expressed as a constraint on one state transition, but rather has to be expressed
in terms of complete execution histories. Traditional methods for using Z focus
on specification of a system as a state-transition machine, i.e., via first-order
properties alone. However, Z provides all the mathematical features needed to
specify higher-order properties and the schema calculus helps to abbreviate many
of the definitions. The approach is to construct a behavioural model of the system
in terms of a specification in the traditional style. This paper is intended both
to illustrate and to promote this approach to formal modelling.

2

1.5 Specification of Program Analyses

Many algorithms have the characteristic that it is much easier to specify the
solution to be found than it is to design and specify an algorithm that finds it.
Milner’s type inference for ML, [6] is an example. Discovering properties like the
basic blocks abstraction by automatic analysis often involves techniques such as
abstract interpretation which are algorithmically complex.

We believe it is important to have rigorous specifications of what the results
of such analyses mean. The specification of the basic blocks abstraction in this
paper is intended to demonstrate that it is possible to give rigorous and con-
cise definitions of the requirements on a program analysis without giving the
implementation detail.

1.6 Structure of the Paper

The rest of this paper is organised as follows:

– Section 2 gives a model of the simple microprocessor. This is a behavioural
model, i.e., it characterises a program running on the microprocessor by
its input/output relation. As an aside, we show how the behavioural model
allows us to formalise the concept of refinement.

– Section 3 specifies the notion of a decomposition of a program into basic
blocks. This demonstrates a simple, but not untypical, example of the kind
of property that advanced program analysis techniques are used to find.

– Section 4 gives some concluding remarks including a list of the shortcomings
of the simple model we present here and a discussion of how some of these
were addressed in a real-life example. An index to the Z specification is given
at the end of this section.

2 Processor Model

In this section we give a complete behavioural model of a somewhat idealised
microprocessor. In a real example, we would have rather more work to do tran-
scribing the manufacturer’s data sheets along the lines of the Z framework we
set up here. However, the work has not been found to be excessive on an actual
example.

Our approach is first to develop a state-transition model of the microproces-
sor using the traditional Z style for specifying a sequential system [8, 9]. This is
not dissimilar in spirit to the specification in chapter 9 of [3], although we choose
to abstract away some of the details such as instruction decoding. We then use
the state-transition model to construct a behavioural model — a specification of
the observable behaviour of the microprocessor formulated as a relation between
input and output streams. In more detail, the plan of the specification is as
follows:

3

– First of all, in section 2.1, we give our model of the registers and memory
of the microprocessor. These provide “data types” that are used throughout
the rest of the specification.

– In section 2.2, we define the state space of the microprocessor.
– In section 2.3, we describe a kind of abstract syntax for the instruction set

of the microprocessor.
– In section 2.4, we specify in the traditional Z style how the instructions of

section 2.3 are executed.
– In section 2.5 we pull together the operations defined in section 2.4 into a

single schema, TICK, describing one processor execution cycle.
– Finally, in section 2.6 we define sets to represent input and output streams

and use the schema TICK to construct the behavioural model.

The specification is written in the dialect of Z supported by the ProofPower
system, [2, 5], which was used to prepare and type-check all the Z in this docu-
ment. The global variables in the Z are listed in the index in section 4 and are
shown in a bold font at the point of their definition.

2.1 Register and Memory Model

The following otherwise unspecified positive numbers give the maximum values
of a memory word and of a memory address.

MAX WORD, MAX ADDR : N1

The following sets give the types for words in memory and memory addresses:

WORD =̂ 0 .. MAX WORD

ADDR =̂ 0 .. MAX ADDR

There is a set of registers, possibly empty. Some of these may be memory-
mapped. We can identify memory-mapped registers by their addresses and other
registers by numbers outside the address space.

REGISTER : F Z

A storage location is then either a register or an address (or possibly both).

LOCATION =̂ REGISTER ∪ ADDR

The store is a total function mapping storage locations (either register iden-
tifiers or memory addresses) to words:

STORE =̂ LOCATION → WORD

Some of the memory may be ROM. The set of ROM addresses is some subset
of the address space:

4

ROM : P ADDR

Some of the store (memory or registers) may be given over to memory-
mapped I/O. The following two sets are the locations which serve as input and
output ports. They may overlap with each other but not with the ROM:

IN PORTS, OUT PORTS : P LOCATION

IN PORTS ∩ ROM = OUT PORTS ∩ ROM = ∅

2.2 Processor State

The processor has one special register: the program counter, PC. For simplicity,
we model the contents of the program counter as a component of the processor
state in its own right, rather than assigning a location in the store for it, as we
do for other registers. This simplification does mean that the program counter
cannot be memory-mapped, but that is appropriate for the vast majority of
modern microprocessor types.

The processor state is thus given by the following schema:

PROCESSOR STATE

pc : ADDR;
store : STORE

2.3 Instruction Set

We will give a “syntax” for instructions which actually embeds most of the
semantics of computational and test instructions. A computation is any total
function on processor states delivering a result comprising a location and a word;
the location indicates where the word is to be stored.

COMPUTATION =̂
PROCESSOR STATE → (LOCATION × WORD)

A test is any set of words: a word w satisfies test t iff. w ∈ t.

TEST =̂ P WORD

Informally, the syntax and semantics of the instruction set is as shown in the
following table:

5

Instruction Operands Description
Compute comp Perform computation comp giv-

ing a pair (l, w);
Store w at location l.

StorePC loc Store the contents of PC at loc.
Jump addr Assign addr to PC.
CondJump loc, test, addr1, addr2 If the contexts of location loc sat-

isfy test, then assign addr1 to PC,
otherwise assign addr2 to PC.

LoadPC loc Assign the contents of loc to PC.

For simplicity, we specify that if any instruction attempts to write to the
ROM, then the write is ignored. This aspect of the model would need to be
reconciled with the actual behaviour of a particular microprocessor configuration
in a real world example.

The conditional jump instruction, CondJump, is unlike most, if not all, real
microprocessors in having an “if-then-else” effect, rather than “if-then”. This
is technically convenient in the sequel and simply requires us to encode the
usual “if-then” behaviour using an “else-branch” which jumps to the instruction
immediately after the conditional jump.

The StorePC and LoadPC instructions would be used by a compiler to imple-
ment subroutine call and return. Most real microprocessors offer a combination
of StorePC and some kind of jump instruction as a single “jump-to-subroutine”
or “call” instruction.

The instruction set is modelled by the following Z free type1

INSTRUCTION ::=
Compute (COMPUTATION)

| StorePC (LOCATION)
| Jump (ADDR)
| LoadPC (LOCATION)
| CondJump (LOCATION × TEST × ADDR × ADDR)

2.4 Instruction Execution

We now describe the state change caused by execution of a single instruction
using an operation schema for each type of instruction. These operations have
an input parameter which is the instruction being executed. Each operation only
fires if the parameter is the instruction dealt with by that operation.

A Compute instruction is executed by carrying out the computation in the
current state to give a location-word pair (l, w) then updating the store by

1 The ProofPower dialect of Z does not currently support the chevron brackets
around the sets in the branches of a free type required in other Z dialects.

6

writing w to location l, provided l is not in ROM. If l is in ROM, then by the
assumptions made in section 2.3, the store is unchanged2.

COMPUTE

instr? : INSTRUCTION ;
∆PROCESSOR STATE

∃ comp : COMPUTATION ; l : LOCATION ; w : WORD
| instr? = Compute comp
• (l , w) = comp (θPROCESSOR STATE)
∧ pc′ = (pc + 1) mod MAX ADDR
∧ (l 6∈ ROM ∧ store ′ = store ⊕ {l 7→ w} ∨ l ∈ ROM ∧ store ′ = store)

A StorePC instruction causes the current value of the program counter to be
written to the store in the location given by the operand of the instruction. The
rule about attempts to write to ROM is the same as for the Compute instructions.

STORE PC

instr? : INSTRUCTION ;
∆PROCESSOR STATE

∃ l : LOCATION | instr? = StorePC l
• pc′ = (pc + 1) mod MAX ADDR
∧ (l 6∈ ROM ∧ store ′ = store ⊕ {l 7→ pc} ∨ l ∈ ROM ∧ store ′ = store)

Jump A Jump instruction assigns a new value to the program counter, which
will cause a transfer of control on the next execution cycle.

JUMP

instr? : INSTRUCTION ;
∆PROCESSOR STATE

∃ a : ADDR | instr? = Jump a • pc′ = a ∧ store ′ = store

2 In many typical microprocessor configurations, attempting to write to ROM gives
“undefined” behaviour, this can readily be modelled by removing the disjunct
l ∈ ROM ∧ store ′ = store from the predicates of COMPUTE and STORE PC .

7

A CondJump instruction evaluates the test and assigns a new value to the
program counter according to the result of the test. This will cause the required
transfer of control on the next execution cycle.

COND JUMP

instr? : INSTRUCTION ;
∆PROCESSOR STATE

∃ l : LOCATION ; t : TEST ; a1 , a2 : ADDR
| instr? = CondJump (l , t , a1 , a2)
• (store l ∈ t ∧ pc′ = a1 ∨ store l 6∈ t ∧ pc′ = a2) ∧ store ′ = store

A LoadPC instruction assigns the contents of the indicated store location to
the program counter, which will cause a transfer of control on the next execution
cycle.

LOAD PC

instr? : INSTRUCTION ;
∆PROCESSOR STATE

∃ l : LOCATION | instr? = LoadPC l • pc′ = store l ∧ store ′ = store

2.5 CPU Execution Cycle

The instruction decode function maps a word-address pair to an instruction as
defined in section 2.3 above. The word is the value to be decoded; the address
is its location in the memory and is needed to decode instructions that use PC-
relative addressing. It is a partial function: some words may have an undefined
effect if the microprocessor attempts to execute them. The internal details of
the function are of no interest to us here, so we omit the predicate part of the
definition.

decode : WORD × ADDR 7→ INSTRUCTION

The schema TICK describes what happens in one execution cycle. This
schema is partial: if the instruction that PC points to has no decoding, the
pre-condition of the schema will be false.

8

TICK

∆PROCESSOR STATE

∃ instr? : INSTRUCTION
| (store pc, pc) 7→ instr? ∈ decode
• COMPUTE ∨ JUMP ∨ COND JUMP ∨ LOAD PC ∨ STORE PC

2.6 Behavioural Model

We now use the schema TICK to define a behavioural model of the micropro-
cessor. This is a description of its input/output behaviour with the details of its
internal structure as a state-transition machine abstracted away.

To define the behavioural model we need to define sets to represent the input
and output streams. An individual input or output is a function mapping the
relevant port addresses to words:

INPUT =̂ IN PORTS → WORD

OUTPUT =̂ OUT PORTS → WORD

An input or output stream is then a series of inputs or outputs indexed by
time (measured in CPU execution cycles).

TIME =̂ N

IN STREAM =̂ TIME → INPUT

OUT STREAM =̂ TIME → OUTPUT

We also need the notion of an execution history. This is a time-indexed series
of processor states:

HISTORY =̂ TIME → PROCESSOR STATE

The i/o history relation is the ternary relation that relates a triple comprising
an input stream, an output stream and an execution history precisely when the
following conditions hold: (i) the history values may be obtained by successively
placing the input values for each time period on the input ports and letting the
processor run for one clock tick; (ii) the outputs thus obtained at each time
period are the ones observed in the history.

9

IO HISTORY

inputs : IN STREAM ;
outputs : OUT STREAM ;
history : HISTORY

∀ t : TIME ; TICK
| pc = (history t).pc
∧ store = (history t).store ⊕ inputs t
• pc′ = (history (t+1)).pc
∧ store ′ = (history (t+1)).store
∧ outputs t = OUT PORTS C store ′

The behaviour of a processor running a particular program is its input-output
relation and belongs to the following set:

BEHAV IOUR =̂ IN STREAM ↔ OUT STREAM

Now we can describe the behavioural model. This is explicitly parametrised
by the initial state, i.e. the program to be run.

behaviour : PROCESSOR STATE → BEHAVIOUR

∀ prog : PROCESSOR STATE ;
inputs : IN STREAM ;
outputs : OUT STREAM

• inputs 7→ outputs ∈ behaviour prog
⇔ (∃ history : HISTORY • history 0 = prog ∧ IO HISTORY)

Using the behavioural model, we may now specify rigorously various general
properties of programs. As an example, we can now characterise the programs
that never run out of control; they are precisely those whose behaviour is a total
relation:

total : PPROCESSOR STATE

total =
{prog : PROCESSOR STATE | dom(behaviour prog) = IN STREAM }

2.7 Discussion

The techniques we have used to define the function behaviour in this section
can readily be adapted to construct a behavioural model from almost any state-
based specification. We believe that this approach should be more widely used.

10

Notions like data and code refinement admit a very direct and clear formulation
for a behavioural model. The refinement relation, v , can be defined directly
in Z as follows:

v : BEHAVIOUR ↔ BEHAVIOUR

∀ b1 , b2 : BEHAVIOUR
• b2 v b1 ⇔ dom b1 ⊆ dom b2 ∧ dom b1 C b2 ⊆ b1

That is to say, behaviour b2 refines behaviour b1 if, and only if, (i) b2 is
defined for all inputs for which b1 is defined, and (ii) every output stream of b2
on an input admitted by b1 is also a possible output stream for b1 . These are
the usual liveness and safety properties that one requires in refinement.

Refinement rules for the underlying state-based specifications can then be
derived in Z as theorems from the above definition rather than posited and
justified by metalinguistic methods as is commonly done in the literature.

In the sequel, we will be interested in higher-order properties that have to
be expressed with some reference to the internal state. To define these, we will
use the i/o history relation. Methodologically, this reflects the following fact:
while externally observable behaviour is the ultimate thing of interest, program
analysis is carried out using implementation details (the program!); to capture
the requirements on a program analysis technique we need some view of those
details. We do expect an analysis to have useful consequences at the behavioural
level — for example, the basic blocks abstraction that we look at in the next
section is expressed in terms of the i/o history relation, but, when it holds, it
guarantees that the behaviour relation is total.

3 Basic Blocks Abstraction

3.1 Introduction

The notion of a basic block is well known in the world of compiler design. To
quote [1], a basic block is:

. . . a sequence of consecutive statements which may be entered only
at the beginning and when entered are executed in sequence without halt
or possibility of branch (except at the end of the basic block.

Compiler designers use decompositions of programs into a set of basic blocks
for various kinds of code optimisations. We are concerned with program analysis
techniques that deduce a decomposition of a machine code program into a set
of basic blocks.

Our intention is that the structure recovered by such a decomposition will
enable deeper semantic analyses to be carried out more easily. For example,
the REAP reverse engineering tools are able automatically to find program de-
compositions of a similar sort to the basic block decompositions described here.

11

These decompositions then justify a translation of machine code into a high level
language.

In general, an arbitrary program executing on our microprocessor may admit
no useful decomposition into basic blocks; indeed, the program may be self-
modifying — making it impossible to distinguish between code and data in the
store. However, programs generated by compilers or written by well-disciplined
assembly language programmers will normally admit a clear separation of code
and data and will have the code structured to admit a decomposition into a set of
basic blocks (corresponding to a flow-chart for the program). We are interested
in formalising the notion of such a decomposition.

3.2 Representing Basic Blocks

We will need to distinguish between instructions that can cause a transfer of
control and the non-jump instructions — those for which control just proceeds
to the next instructions.

NON JUMP INSTRUCTION =̂ ran Compute ∪ ran StorePC

A basic block comprises a (possibly empty) body of non-jump instructions
followed by an instruction (the coda of the basic block) that may cause a transfer
of control3. The basic block is labelled with the address in memory at which the
basic block starts. The following definition captures these aspects of a single
basic block. To make formal the full content of the definition given in section 3.1
above, we need to describe a relationship between a whole set of basic blocks
and a processor execution history: this is done in sections 3.3 and 3.4 below.

BASIC BLOCK

body : seq NON JUMP INSTRUCTION ;
coda : INSTRUCTION ;
label : ADDR

3.3 Instantaneous Basic Block Decompositions

A basic block decomposition comprises a set of basic blocks which we will require
to act as a correct description of the possible control behaviour of a program.
To define this requirement, we first define the notion of an instaneous basic block
decomposition. An instantaneous basic block decomposition is a relation between
a set of basic blocks and a processor state. We will develop our specification of
this relation in four stages.
3 It is important that we allow the coda to be a non-jump instruction. E.g., using C

as an assembly language, consider the program fragment: “R1 = 1; L: R1 *= R2;

R2 -= 1; if(R2 > 0) goto L;”. A basic block decomposition of this must take the
computation instruction “R1 = 1;” as the coda of a basic block with an empty body.

12

1. The basic blocks must correctly describe the instructions encoded in some
portion of the memory,

INST BBD1
blocks : P BASIC BLOCK ;
PROCESSOR STATE

∀ b : blocks
• (∀i :dom b.body•

(store (b.label + i − 1), (b.label + i − 1)) 7→ (b.body) i ∈ decode)
∧ (store(b.label + #(b.body)), (b.label + #(b.body))) 7→ b.coda ∈ decode

2. No two basic blocks may apply to the same piece of memory:
INST BBD2
blocks : P BASIC BLOCK ;
PROCESSOR STATE

∀ b1 , b2 : blocks
| ∃i : 0 .. #(b1 .body); j : 0 .. #(b2 .body)• b1 .label + i = b2 .label + j
• b1 = b2

3. The program counter must point to some instruction in one of the basic
blocks:

INST BBD3
blocks : P BASIC BLOCK ;
PROCESSOR STATE

∃ b : blocks • pc ∈ b.label .. b.label + #(b.body)

4. If the processor has reached the end of a basic block, then the next value of
the program counter must be the label of one of the basic blocks:

INST BBD4
blocks : P BASIC BLOCK ;
PROCESSOR STATE

∀ PROCESSOR STATE ′; b : blocks | TICK ∧ pc = b.label + #(b.body)
• pc′ ∈ {c : blocks• c.label}

13

The conjunction of the above four schemas gives us our definition of an
instantaneous basic blocks decomposition.

INST BBD =̂
INST BBD1 ∧ INST BBD2 ∧ INST BBD3 ∧ INST BBD4

Any state of the microprocessor in which the current and next values of the
program counter point to valid instructions admits at least one instantaneous
basic block decomposition: namely the degenerate decomposition with just two
basic blocks, one for the current instruction and one for the next instruction.

3.4 Correct Basic Block Decompositions

For a basic block decomposition to be useful it must persist over successive exe-
cution states. We therefore define a correct basic block decomposition for a given
initial state (i.e., a given program) to be one which will work as an instantaneous
decomposition for ever.

correct bbd : PROCESSOR STATE → PP BASIC BLOCK

∀ prog : PROCESSOR STATE ; blocks : P BASIC BLOCK
• blocks ∈ correct bbd prog
⇔ (∀ inputs : IN STREAM •

∃ outputs : OUT STREAM ; history : HISTORY •
IO HISTORY

∧ (history 0).pc = prog .pc
∧ (history 0).store = prog .store ⊕ inputs 0
∧ (∀ t : TIME ; PROCESSOR STATE

| pc = (history t).pc
∧ store = (history t).store ⊕ inputs t
• INST BBD))

3.5 Discussion

A program possessing a correct basic block decomposition is necessarily total —
a fact that is wired into the definition above in a fairly direct way. Moreover,
programs that have such decompositions are much nicer than those that don’t;
in particular, the basic blocks give a clear distinction between code and data in
memory; a program with a correct basic block decomposition will neither modify
its code nor execute its data4.
4 This “Harvard” property could be expressed directly in terms of the behavioural

model without introducing the basic blocks. We have introduced the basic blocks
precisely because the program analysis techniques of interest produce decompositions
of this sort as part of their output and we are concerned with formalising exactly
what that output means.

14

The notion of a correct basic block decomposition as specified above is di-
rectly applicable to embedded systems that run a fixed program held in ROM. It
would also apply with a little elaboration to a system that loads a fixed program
into RAM at boot time — the above definition would need to be modified to
allow the basic block decomposition not to take effect until the execution cycles
that load the program are complete.

A multiprocessing operating system cannot be expected to satisfy the above
definition directly; however, the virtual machine provided by an operating sys-
tem to each process could well permit a correct basic block decomposition. For
example, of the hundreds of programs that can be run on the Linux system that
I am using to prepare this paper, only a handful of specialist programs (like
interactive compilers) would be expected to modify their own code.

4 Concluding Remarks

4.1 Limitations of the Processor Model

A number of important features of microprocessors in the real world have not
been addressed by the specification in this paper. To list a few:

Multi-word instructions: to handle these simply requires the decode function
to take as its argument a sequence of memory words and to return the num-
ber of memory words actually occupied by the decoded instruction for use in
adjusting the program counter while executing the non-jump instructions.

Multiple word lengths: most real microprocessors support several different
word lengths (e.g., 8-bit, 16-bit and 32-bit words for the Intel x86 and the
Motorola 680x0). Multiple word lengths can be dealt with quite simply in a
variety of ways (see chapter 9 of [3] for one approach).

Multiple reads & writes: instructions with a built-in loop, such as the Z80’s
block transfer instructions or the x86’s repeated string-to-string-copy in-
structions, could be handled by modifying the schema TICK to execute the
loop.

Pipelining: In some RISC processors and microcode engines, side-effects of
the decode/execute pipeline are visible to the programmer. In the SPARC 9
architecture for example, while a jump instruction of a certain type is being
executed, the instruction immediately following the jump is being decoded
and will be executed on the next cycle5. The pipeline would have to be
included explicitly in the execution model to cover such an architecture.

Interrupts: in a sense, handling interrupts amounts just to including the pro-
gram counter (and any other registers affected) as a possible input port.
However, to have abstractions like the basic block decomposition work cor-
rectly, it would probably be better to model interrupts as an additional kind
of instruction and to include the microprocessors interrupt lines in the model.

5 So, for example, subroutine exit on this architecture is implemented by a return-
from-subroutine instruction immediately followed by the instruction that restores
register values for the calling routine.

15

With the possible exception of interrupts, none of these features should prove
a major source of additional complexity. Moreover the extra complexity is mostly
in the traditional state-based part of the model, so that one may readily exploit
techniques that have been proposed in the literature (see [3] for a literature
guide). The SPARC 9 model which we outline in section 4.2 below addresses
both multiple word lengths and pipelining.

4.2 Recent Work

Interglossa have recently undertaken a research project sponsored by DERA,
Malvern to work on Chris Sennett’s Template Analysis [4] — a technique for
analysing the use of pointers in C code. The result of the Template Analysis is,
in effect, a type assignment for a C program in a type system that is “tighter”
than that imposed by the C language rules.

Part of Interglossa’s research was to push the type assignment resulting from
the Template Analysis through to the assembly language level, giving a way of
interpreting low-level entities in higher level terms. Based on the specification in
the present paper, Tom Lake developed a formalisation of the Sun Microsystems
SPARC 9 architecture to guide the research.

The specification of the SPARC 9 model together with “validity conditions”
and a description of the template typing for assembly code took about 30 pages
of Z. The validity conditions are similar in general spirit to the basic blocks
abstraction discussed above but extended to cover separation of data and code,
orderly control flow, and correct use of the stack and of global data.

In the technical document of 1997 in which the specification in this paper
was first written up, I wrote:

The specification could be used in two ways to model a real micropro-
cessor: (i) its ideas could be re-used to model the specifics of the micro-
processor; (ii) it could be used as a sort of microcode engine to describe
the semantics of the microprocessor.

On reading the Interglossa specification two years later, it was interesting to
see how these ideas had stood the test of time. For the SPARC 9 example, it
turned out to be easiest to do a mixture of (i) and (ii). The main framework for
the store model re-used the general ideas of section 2.1 above but recast to cover
the specific details of the SPARC 9 memory model. However, to simplify the
execution model, individual SPARC 9 instructions were handled as sequences of
“microcode instructions” very similar to those described in section 2.3.

4.3 Future Research

Lemma 1 and Interglossa hope to collaborate soon to continue this line of re-
search. There have been considerable advances in program analysis theory and
practice in recent years [7]. We are particularly interested in investigating how
program analysis techniques and formal specification and verification technology
can interact to make automated or semi-automated validation of compiled code
a viable method.

16

Acknowledgments

I am indebted to Tom Lake of Interglossa and to Mike Hill of the Defence and
Evaluation Research Agency, Malvern, for their assistance in the preparation
of this paper. The referees’ comments were most helpful and have resulted in
improvements both to the specification and to its presentation.

Index of Z Global Variables

ADDR . 2.1
BASIC BLOCK 3.2
BEHAV IOUR 2.6
behaviour . 2.6
COMPUTATION 2.3
Compute . 2.3
COMPUTE 2.4
CondJump . 2.3
COND JUMP 2.4
correct bbd . 3.4
decode . 2.5
HISTORY . 2.6
INPUT . 2.6
INSTRUCTION 2.3
INST BBD1 3.3
INST BBD2 3.3
INST BBD3 3.3
INST BBD4 3.3
INST BBD 3.3
IN PORTS 2.1
IN STREAM 2.6
IO HISTORY 2.6
Jump . 2.3

JUMP . 2.4
LoadPC . 2.3
LOAD PC . 2.4
LOCATION 2.1
MAX ADDR 2.1
MAX WORD 2.1
NON JUMP INSTRUCTION . 3.2
OUTPUT . 2.6
OUT PORTS 2.1
OUT STREAM 2.6
PROCESSOR STATE 2.2
REGISTER 2.1
ROM . 2.1
StorePC . 2.3
STORE PC 2.4
STORE . 2.1
TEST . 2.3
TICK . 2.5
TIME . 2.6
total . 2.6
WORD . 2.1
v . 2.7

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[2] R.D. Arthan. Mechanizing Proof for the Z Toolkit. To appear; available on the
World Wide Web at http://www.lemma-one.com/papers/papers.html, presented
at the Oxford Workshop on Automated Formal Methods, June 1996.

[3] Jonathan Bowen. Formal Specification and Documentation using Z: a Case Study
Approach. International Thomson Computer Press, 1996.

[4] M.G. Hill and C.T. Sennett. Final Report of Integrity Methods for Commercial
Software, DERA Technical Report DERA/CIS/CIS3/TR980138/1.0. Technical
report, Defence Evaluation and Research Agency, Malvern, 1998.

[5] D.J. King and R.D. Arthan. Development of Practical Verification Tools. Ingenuity
— the ICL Technical Journal, 1996.

17

[6] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

[7] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, 1998.

[8] J.M. Spivey. The Z Notation: A Reference Manual, Second Edition. Prentice-Hall,
1992.

[9] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice/Hall International, 1996.

18

