
A Typed Formulation of the Semantics of Z

R.D. Arthan
rda@lemma-one.com

3rd August 2005

Abstract

This document is a companion to Ian Toyn’s presentation of the semantics of Z that
is now in the ISO Z standard. It contains a reformulation of the semantics within the
ProofPower-Z dialect of Z that has been type-checked using ProofPower. The purpose
of the document is to act as a check on the definition of the semantics. It also highlights
certain points of interest in the required structure of the semantic universe UZ .

Change History
Version 1 Issued as Z document reference D-235, correspond-

ing to the first complete version of the semantics.
20/05/1998

Version 2 Issued as Z document reference D-256, addressing
comments received from various members of the
standards committe and corresponding to the se-
mantics as they appeared in a contemporary draft
of the standard.

10/05/2000

Version 3 Accommodating a small change to the ProofPower
Z toolkit (U has been rechristened as U).

18/02/2005

Version 4 Bringing the specification into line with the 2002
ISO standard, and including a proposed change to
the semantics of schema universal quantification.

03/08/2005

1 INTRODUCTION

In 1998, Ian Toyn and I developed a definition of the semantics of the kernel sublanguage
of Z. With some modifications as a result of review, this work is now captured in the ISO Z
standard. The definition is written in first-order set theory using a surface syntax borrowed
from Z itself.

An advantage of using the Z-like surface syntax is that with only small adjustments, and
without having to define a large number of auxiliary functions, the definition can be viewed as

1

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 2

a Z specification and so can be analysed using tools that support Z. As a step in this direction,
this document presents a reformulation of the semantic definitions in the ProofPower-Z dialect.

Processing the specification with ProofPower reveals that the semantic definitions are now
well-typed in some sense. It is, presumably, useful to know this, since preparing this Z version
revealed several minor errors and highlighted some issues. The Z formulation also points up
the places at which the type constraints of Z kick in to ensure that the semantic equations
are well-defined.

This document is subject to the following cautionary remarks:

• No attempt has been made to make the formal material in this document intelligible
independently of the narrative in the ISO Z standard: please do not start here!

• In several places, I have simply said that things are done in the same order as the original.
The intention is that you can put the two documents side by side and compare, and you
may well need to do that in order to understand what has been done here.

• Meaning has been sacrificed in favour of surface syntax in this document. A reason-
ably close syntactic correspondence between the original and the Z version has been
maintained by trickery that would detract from semantic analysis of the semantics.

• The transcription into Z has not been done by automated means. Errors of transcription
that are not detected by Z type-checking may well persist.

• The current version of this document corresponds to the semantics given in the 2002
ISO Standard for Z (ISO/IEC 13568:2002).

• Some observations concerning on the 2002 ISO Standard have been included. See sec-
tions 3.2, 4.6 and 4.6.13 below.

The remainder of this document is organised as follows:

Section 2 describes our version of the semantic universe. Because we have to obey the Z type
discipline, several transfer functions are needed to stand in for the untyped constructions
of the original.

Section 3 gives a Z definition of the kernel abstract syntax sufficient for present needs.

Section 4 gives a few preliminaries that enable us to give the equations in a syntax like that
of the original and then gives the Z axioms that model the semantic equations.

Section 5 lists the type assignment generated by ProofPower for the specification.

Section 6 gives an index to the global variables declared in the specification. Global variables
are generally shown in bold face at the point of their declaration.

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 3

2 SEMANTIC UNIVERSE

Our setup for the semantic universe is necessarily slightly different from the untyped original.
First we introduce UZ as a given set and then introduce its subsets NAME and W:

[UZ]

NAME, W : P UZ

NAME ⊆ W

W is a model of a world of pure sets — each member of W itself represents a set of elements
of W. To describe this situation in Z, one possibility would be to introduce a binary relation
on W corresponding to the membership relation in the world of sets. In the present context,
it is technically more convenient to introduce a function, η, that maps an element A ∈ W
to the subset of W that A represents. We call η(A) the extent of A. Since we expect the
world of sets to be extensional, i.e., we expect two sets to be equal if and only if they have the
same elements, η will be an injective function. We also expect that, for any A ∈ W, there
will be a unique element of W representing the power set of A. Accordingly, we introduce a
function, PW , that sends a set A ∈ W to the member of W that represents its power set.
The expected interrelationship of the extent and power set functions gives rise to the defining
property in the following:

η : W � P W;

PW : W � W

∀ w : W• η(|η(PW w)|) = P(η w)

Z having reserved superscription for something else, instead of Ak, we use the notation A ↑ k
for the k-fold cartesian product of a set A:

fun 10 ↑
[X]

↑ : (P X × N) → P (seq X)

∀A : PX ; k : N• A ↑ k = (1 ..k) → A

Now we define functions that transfer between various typed constructions on W and the
untyped universe UZ . There are three such constructions corresponding to the semantic
values of bindings (β), finite sets (φ), tuples (χ), and generics (γ). All but the last of these
constructions can be carried out within W itself. We give axioms relating the first four to one
another and to the extent operator, η. No property is required of γ other than that it be an
injection.

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 4

β : (NAME 7 7→ W) � W;

φ : F W � W;

χ :
⋃{k : N1• W ↑ k} � W;

γ :
⋃{k : N1• (W ↑ k) → W} � UZ

∀i : NAME ; w : W; t : NAME 7 7→ W•
i 7→ w ∈ t ⇔ χ 〈i , w〉 ∈ η(β t);

∀a: F W; w : W• w ∈ a ⇔ w ∈ η(φ a);

∃ ν : N � W • ∀s :
⋃{k : N1• W ↑ k}; i : N; w : W•

i 7→ w ∈ s ⇔ χ 〈ν i , w〉 ∈ η(χ s)

Small names (lower-case Greek letters) have been deliberately chosen for the various transfer
functions above. All such functions would be represented by the identity function in an
untyped universe. So when comparing this document with the original, if you see a lower-case
Greek letter or a composite of Greek letters and possibly their inverses, you can simply ignore
it. The inverses crop up at precisely those points where the type rules imply that an object
will have a certain form (say a binding) and so will be in the domain of the appropriate inverse
function (β∼).

3 SYNTAX

We need to develop a Z model of the abstract syntax which forms the domain of the semantic
bracket functions. The treatment below is completely customised for the task at hand. E.g.,
type annotations are only inserted where they are actually used.

We make use of fixity declarations and exploit the fact that ProofPower does not require the
chevrons in a free type definition. Within each category, the various alternatives are listed
in the same order as the corresponding semantic equations are given in the original, q.v.
Occasionally, we introduce additional syntactic categories (e.g., for an individual declaration)
just to gain a surface syntax effect. Dependencies between the categories mean that the
categories are treated in the opposite order to the original (bottom-up rather than top-down).

3.1 Type

fun :t ,
[t ...]t ,
(× ...)×,
λt ... •t

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 5

TY PE ::= given NAME
| generic NAME
| Pt TYPE
| (× seq TYPE)×
| [t seq DECL]t
| λt seq NAME •t TYPE

& DECL ::= NAME :t TYPE

3.2 Expression and Predicate

fun geninst [g ...]g ,
{e ... }e ,
{c •c }c,
(e ...)e ,
(t ...)t ,
(b ...)b ,
µd •d ,
[v]v ,
[s |s]s ,

o
oe ,

¬e ,
∧e ,

∀s •s ,
[r ...]r ,
==b ,
o
od ,
/r ,
∈p ,

∀p •p ,
∧p

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 6

EXPRESSION ::= var NAME
| geninst NAME [g seq EXPRESSION]g
| {e seq EXPRESSION }e

| {c EXPRESSION •c EXPRESSION }c

| Pp EXPRESSION
| (t seq EXPRESSION)t

| (b seq BIND)b

| µd EXPRESSION •d EXPRESSION
| [v DEC]v
| [s EXPRESSION |s PREDICATE]s
| ¬e EXPRESSION
| EXPRESSION ∧e EXPRESSION
| ∀s EXPRESSION •s EXPRESSION
| EXPRESSION [r seq RENAME]r
| EXPRESSION o

oe TYPE
& BIND ::= NAME ==b EXPRESSION
& DEC ::= NAME o

od EXPRESSION
& RENAME ::= NAME /r NAME
& PREDICATE ::= EXPRESSION ∈p EXPRESSION

| truep

| ¬p PREDICATE
| PREDICATE ∧p PREDICATE
| ∀p EXPRESSION •p PREDICATE

Observation A: In earlier version of this document, the type ascriptions were only given
on the specific constructs that needed them (i.e., schema negation, schema conjunction and
schema universal conjunction). However, the proposed amendment to the semantic equation
for schema universal conjunction (see section 4.6.13 below) requires a type ascription on the
second operand as well as on the expression as a whole. The above now reflects the ISO
Standard in allowing a type ascription to be attached to any form of expression.

3.3 Paragraph

fun [d ...]d ,
GENAX ... (g

o
og)g ,

[` ...]`

PARAGRAPH ::= [d seq NAME]d
| AX EXPRESSION
| GENAX seq NAME (g EXPRESSION o

og TYPE)g

| `d PREDICATE
| [` seq NAME]` PREDICATE

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 7

3.4 Section

fun section parents ... end ... END

SECTION ::= section NAME parents seq NAME end seq PARAGRAPH END

3.5 Specification

SPECIFICATION ::= spec (seq SECTION)

3.6 Decoration

The semantics use the reserved strokes ♥ and ♠ to distinguish given type names from generic
formal parameter names. The function decor is used to apply ordinary decorations (strokes)
and these special decorations to names. To declare this function we define a given type of
strokes (corresponding to the syntactic category STROKE in the lexis) and extend it with the
two reserved strokes to give a free type, DECORATOR representing a set which does not have
an official name in the standard.

[STROKE]

DECORATOR ::= stroke STROKE | ♥ | ♠

We can now declare decor . Note that both the arrows are injections: each DECORATOR
determines its own unique injection of the set of names into itself.

decor : DECORATOR � NAME � NAME

4 SEMANTICS

Now after just a few more preliminaries, we can get down to business. Section 4.1 gives the
preliminaries and then sections 4.2 to 4.7 give the semantic equations in exactly the same
order as the original.

4.1 Preliminaries

We define Model and SectionModels just as in the original and introduce the name of the
prelude

Model =̂ NAME 7 7→ UZ

SectionModels =̂ NAME 7 7→ PModel

prelude : NAME

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 8

Now we introduce the semantic brackets. In principle, we could give just one or more large
axiomatic descriptions containing all the equations. That would be appropriate if one wished
to model the semantics of the semantics more accurately than we do. Our goal is to stay near
the surface syntax of the original, so we will introduce the semantic equations as individual
axioms.

fun [[Z]]Z ,
[[S]]S ,
[[D]]D ,
[[P]]P ,
[[E]]E ,
[[T]]T

[[Z]]Z : SPECIFICATION → SectionModels ;

[[S]]S : SECTION → SectionModels → SectionModels ;

[[D]]D : PARAGRAPH → Model ↔ Model ;

[[P]]P : PREDICATE → P Model ;

[[E]]E : EXPRESSION → Model → W;

[[T]]T : TYPE → Model → PUZ

In principle, in Z, which doesn’t allow free variables in axioms, each equation should be
individually universally quantified over its free variables. This would clutter our presentation.
Instead we declare all the syntactic jokers as global variables. This makes our description
logically too weak, but suffices for type-checking purposes.

m, n : N;

i, i1, im, in, j1, jm, jn : NAME ;

τ , τ 1, τm, τn : TYPE ;

s1, sn : SECTION ;

d1, dn : PARAGRAPH ;

e, e1, e2, en : EXPRESSION ;

p, p1, p2 : PREDICATE

Finally, we need some help with the equations that involve sequences of syntactic constructs.
Z does not support the elliptical notation that is used in the original. However, we can pretend
that it does. To do this, we will weaken the specification but preserve the surface syntax by
taking n = m = 3. We then use the notations “...”, “...” and “...”, which by a little sleight of
hand we have made into ProofPower-Z names, in place of the ellipses of the original.

“...” and “...” are declared below as a generic value and a generic schema respectively. “...”
is used as a bound variable and so needs no declaration here (although, for want of a better
name, we use it for the single component of “...”). Given these declarations, we can use “...”
to represent an ellipsis used in a syntactic phrase inside semantic brackets, “...” to represent
an ellipsis standing for zero or more declarations, and “...” as a local variable for all the other
uses of ellipses.

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 9

[X]
... : X

...[X]

... : X

4.2 Specification

[[Z spec 〈s1 , ..., sn〉]]Z
=

([[S section prelude parents ... end ... END]]S o
9 [[S s1]]S o

9
... o

9 [[S sn]]S) ∅

4.3 Section

[[S section prelude parents end d1 , ..., dn END]]S
=

(λT : SectionModels• {prelude 7→ ([[D d1]]D o
9

... o
9 [[D dn]]D)(| ∅ |)})

[[S section i parents i1 , ..., im end d1 , ..., dn END]]S
=

(λT : SectionModels•T ∪ {i 7→
([[D d1]]D o

9
... o

9 [[D dn]]D)
(| {M 0 : T prelude; M 1 : T i1 ; ...; M m : T im ; M : Model

| M = M 0 ∪ ... ∪ M m • M }|)})

4.4 Paragraph

4.4.1 Given types paragraph

[[D [d i1 , ..., in]d]]D =
{M : Model ; w1 , ..., wn : W•

(M , M ∪ {i1 7→ w1 , ..., in 7→ wn} ∪
{decor ♥ i1 7→ w1 , ..., decor ♥ in 7→ wn})}

4.4.2 Axiomatic description paragraph

[[D AX e]]D = {M : Model ; t : W | t ∈ η([[E e]]E M)• (M , M ∪ (β∼) t)}

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 10

4.4.3 Generic axiomatic description paragraph

[[D GENAX i1 , ..., in (g e o
og Pt [t j 1 :t τ 1 , ..., jm :t τm]t)g]]D =

{M : Model ; u : W ↑ n → W
| ∀ w1 , ..., wn : W• ∃ w : W•

u〈w1 , ..., wn〉 ∈ η w
∧ ((M ⊕ {i1 7→ w1 , ..., in 7→ wn} ∪

{decor♠i1 7→ w1 , ..., decor♠in 7→ wn}) 7→ w) ∈ [[E e]]E
• (M , M ∪ (λ y : {j 1 , ..., jm}• γ(λx : W ↑ n• (β∼)(u x) y)))}

4.4.4 Conjecture paragraph

[[D `d p]]D = id Model

4.4.5 Generic conjecture paragraph

[[D [` i1 , ..., in]` p]]D = id Model

4.5 Predicate

4.5.1 Membership predicate

[[P e1 ∈p e2]]P = {M : Model | [[E e1]]E M ∈ η([[E e2]]E M) • M }

4.5.2 Truth predicate

[[P truep]]P = Model

4.5.3 Negation predicate

[[P ¬p p]]P = Model \ [[P p]]P

4.5.4 Conjunction predicate

[[P p1 ∧p p2]]P = [[P p1]]P ∩ [[P p2]]P

4.5.5 Universal quantification predicate

[[P ∀p e •p p]]P = {M : Model | ∀ t : η([[E e]]E M)• M ⊕ (β∼)t ∈ [[P p]]P • M }

4.6 Expression

Observation B: As remarked in section 3.2 above, the abstract syntax of expressions permits
a type ascription on any form of expression. However, the type ascriptions are simply to

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 11

be ignored on expressions other than schema negations, schema conjunctions and schema
quantifications. The following supplementary semantic equation captures this.

∀e:EXPRESSION \ (ran (¬e) ∪ ran (∧e) ∪ ran (∀s •s)) •
[[E e o

oe Pt τ]]E = [[E e]]E

4.6.1 Reference expression

[[E var i]]E = (λM : Model• M i)

4.6.2 Generic instantiation expression

[[E geninst i [g e1 , ..., en]g]]E =
(λM : Model •(γ∼)(M i) 〈[[E e1]]E M , ..., [[E en]]E M 〉)

4.6.3 Set extension expression

[[E {e e1 , ..., en }e]]E =
(λM : Model • φ{[[E e1]]E M , ..., [[E en]]E M })

4.6.4 Set comprehension expression

[[E {c e1 •c e2 }c]]E =
(λM : Model | ∀ t : η([[E e1]]E M)• (M ⊕ (β∼) t) ∈ dom[[E e2]]E

•(η∼){t1 : η([[E e1]]E M)• [[E e2]]E (M ⊕ (β∼) t1)})

4.6.5 Powerset expression

[[E Pp e]]E = (λM : Model• PW ([[E e]]E M))

4.6.6 Tuple extension expression

[[E (t e1 , ..., en)t]]E =
(λM : Model • χ〈[[E e1]]E M , ..., [[E en]]E M 〉)

4.6.7 Binding extension expression

[[E (b i1 ==b e1 , ..., in ==b en)b]]E =
(λM : Model • β{i1 7→ [[E e1]]E M , ..., in 7→ [[E en]]E M })

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 12

4.6.8 Definite description expression

{M : Model ; t1 : W
| t1 ∈ η([[E e1]]E M)
∧ (∀t3 : η([[E e1]]E M)

•[[E e2]]E (M ⊕ (β∼) t3) = [[E e2]]E (M ⊕ (β∼) t1))
•(M , [[E e2]]E (M ⊕ (β∼) t1))} ⊆ [[E µd e1 •d e2]]E

4.6.9 Variable construction expression

[[E [v i o
od e]v]]E = (λM : Model•(η∼){w : η([[E e]]E M)• β{i 7→ w}})

4.6.10 Schema construction expression

[[E [s e |s p]s]]E = (λM : Model•
(η∼){t : η([[E e]]E M) | M ⊕ (β∼) t ∈ [[P p]]P• t})

4.6.11 Schema negation expression

[[E (¬e e) o
oe Pt τ]]E = (λM : Model•

(η∼){t : [[T τ]]T M | ¬t ∈ η([[E e]]E M)• t})

4.6.12 Schema conjunction expression

[[E (e1 ∧e e2) o
oe Pt τ]]E =

(λM : Model
•(η∼)({t :[[T τ]]T M ; t1 : η([[E e1]]E M); t2 : η([[E e2]]E M)

| η t1 ∪ η t2 = η t • t}))

4.6.13 Schema universal quantification expression

[[E (∀s e1 •s e2) o
oe Pt τ]]E =

(λM : Model
•(η∼){t2 : [[T τ]]T M |
∀ t1 : η([[E e1]]E M)•

β((β∼)t1 ∪ (β∼)t2) ∈ η([[E e2]]E (M ⊕ (β∼)t1))• t2})

Observation C: It has been objected that the above requires the signature of e1 to be
contained in that of e2 not just compatible with it. Spivey made this extra restriction but the
syntactic rules in the Z Standard do not. The following variant appears to give the desired
semantics.

[[E (∀s e1 •s e2
o
oe Pt([t i1 :t τ 1 , ..., in :t τn]t))

o
oe Pt τ]]E =

(λM : Model
•(η∼){t : [[T τ]]T M |
∀ t1 : η([[E e1]]E M)•

β({i1 , ..., in} C (β∼)t1 ∪ (β∼)t) ∈ η([[E e2]]E (M ⊕ (β∼)t1))• t})

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 13

4.6.14 Schema renaming expression

[[E e [r j 1 /r i1 , ..., j n /r in]r]]E =
(λM : Model

•(η∼){t1 : η([[E e]]E M); t2 : W |
(β∼)t2 = {j 1 7→ i1 , ..., j n 7→ in}o

9 (β∼)t1 ∪ {i1 , ..., in} −C (β∼)t1

∧ (β∼) t2 ∈ (7→)
• t2})

4.7 Type

4.7.1 Given type

[[T given i]]T = (λM : Model• η(M i))

4.7.2 Generic parameter type

[[T generic i]]T = (λM : Model• η(M (decor ♠ i)))

4.7.3 Set type

[[T Pt τ]]T = (λM : Model• (η∼)(|P([[T τ]]T M)|))

4.7.4 Cartesian product type

There seems to be no particularly good way of preserving the syntax used in the original for
the cartesian product operator in W. Consequently we have changed the right-hand side of
the next equation to use a description of the cartesian product along the lines of that used
below for schema types.

[[T (× τ 1 , ..., τn)×]]T = (λM : Model•
{ f : {1 , ..., n} → W

| f 1 ∈ ([[T τ 1]]T M) ∧ ... ∧ f n ∈ ([[T τn]]T M) • χ f })

4.7.5 Schema type

[[T [t i1 :t τ 1 , ..., in :t τn]t]]T = (λM : Model•
{ t : {i1 , ..., in} → W

| t i1 ∈ ([[T τ 1]]T M) ∧ ... ∧ t in ∈ ([[T τn]]T M) • β t})

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 14

5 TYPES INFERRED

The following table shows the types inferred by ProofPower for the global variables of the
specification:
AX EXPRESSION ↔ PARAGRAPH
BIND P BIND
DEC P DEC
DECL P DECL
decor DECORATOR ↔ U ↔ U
DECORATOR P DECORATOR
dn PARAGRAPH
d1 PARAGRAPH
e EXPRESSION
EXPRESSION P EXPRESSION
en EXPRESSION
e1 EXPRESSION
e2 EXPRESSION
generic U ↔ TYPE
given U ↔ TYPE
i U
im U
in U
i1 U
jm U
jn U
j1 U
m Z
Model P (U ↔ U)
n Z
NAME P U
p PREDICATE
PARAGRAPH P PARAGRAPH
PREDICATE P PREDICATE
prelude U
p1 PREDICATE
p2 PREDICATE
RENAME P RENAME
SECTION P SECTION
spec (Z ↔ SECTION) ↔ SPECIFICATION
SPECIFICATION

P SPECIFICATION
STROKE P STROKE
stroke STROKE ↔ DECORATOR
sn SECTION
s1 SECTION
Theory P (U ↔ P (U ↔ U))
truep PREDICATE

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 15

TY PE P TYPE
var U ↔ EXPRESSION
U P U
W P U
♥

DECORATOR
♠

DECORATOR
(GENAX ... (g o

og)g)
(Z ↔ U) × EXPRESSION × TYPE ↔ PARAGRAPH

(geninst [g ...]g)
U × (Z ↔ EXPRESSION) ↔ EXPRESSION

(section parents ... end ... END)
U × (Z ↔ U) × (Z ↔ PARAGRAPH) ↔ SECTION

((b ...)b)
(Z ↔ BIND) ↔ EXPRESSION

((t ...)t)
(Z ↔ EXPRESSION) ↔ EXPRESSION

((× ...)×)
(Z ↔ TYPE) ↔ TYPE

([d ...]d)
(Z ↔ U) ↔ PARAGRAPH

([s |s]s)
EXPRESSION × PREDICATE ↔ EXPRESSION

([t ...]t)
(Z ↔ DECL) ↔ TYPE

([v]v)
DEC ↔ EXPRESSION

([` ...]`)
(Z ↔ U) × PREDICATE ↔ PARAGRAPH

(↑)[X]
P X × Z ↔ P (Z ↔ X)

(/r) U × U ↔ RENAME
(:t) U × TYPE ↔ DECL
(==b) U × EXPRESSION ↔ BIND
([r ...]r)

EXPRESSION × (Z ↔ RENAME) ↔ EXPRESSION
(∈p) EXPRESSION × EXPRESSION ↔ PREDICATE
(∧e o

oc)
EXPRESSION × EXPRESSION × TYPE ↔ EXPRESSION

(∧p) PREDICATE × PREDICATE ↔ PREDICATE
(o

od) U × EXPRESSION ↔ DEC
({c •c }c)

EXPRESSION × EXPRESSION ↔ EXPRESSION
({e ... }e)

(Z ↔ EXPRESSION) ↔ EXPRESSION
(¬e o

oe)
EXPRESSION × TYPE ↔ EXPRESSION

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 16

(∀p •p)
EXPRESSION × PREDICATE ↔ PREDICATE

(∀s •s o
os)

EXPRESSION × EXPRESSION × TYPE ↔ EXPRESSION
(λt ... •t)

(Z ↔ U) × TYPE ↔ TYPE
(µd •d)

EXPRESSION × EXPRESSION ↔ EXPRESSION
([[D]]D)

PARAGRAPH ↔ (U ↔ U) ↔ U ↔ U
([[E]]E)

EXPRESSION ↔ (U ↔ U) ↔ U
([[P]]P)

PREDICATE ↔ P (U ↔ U)
([[S]]S)

SECTION
↔ (U ↔ P (U ↔ U))

↔ U ↔ P (U ↔ U)
([[T]]T)

TYPE ↔ (U ↔ U) ↔ P U
([[Z]]Z)

SPECIFICATION ↔ U ↔ P (U ↔ U)
...[X] X
...[X] P [... : X]
¬p PREDICATE ↔ PREDICATE
β (U ↔ U) ↔ U
φ P U ↔ U
γ ((Z ↔ U) ↔ U) ↔ U
η U ↔ P U
χ (Z ↔ U) ↔ U
τ TYPE
τm TYPE
τ n TYPE
τ 1 TYPE
Pp EXPRESSION ↔ EXPRESSION
Pt TYPE ↔ TYPE
PW U ↔ U
`d PREDICATE ↔ PARAGRAPH

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 17

6 INDEX

AX . 6
β . 4
BIND . 6
•c . 6
•d . 6
•p . 6
•s . 6
•t . 5
χ . 4
DEC . 6
DECL . 5
decor . 7
DECORATOR . 7
{c . 6
{e . 6
}c . 6
}e . 6
d1 . 8
dn . 8
e . 8
end . 7
END . 7
e1 . 8
e2 . 8
en . 8
η . 3
EXPRESSION . 6
∀p . 6
∀s . 6
γ . 4
GENAX . 6
generic . 5
geninst . 6
given . 5
i . 8
∈ p . 6
i1 . 8
im . 8
in . 8
j1 . 8
jm . 8
jn . 8
↑ . 3

λt . 5
∧e . 6

∧p . 6
¬e . 6
¬p . 6
m . 8
o
o d . 6
o
o e . 6
o
o g . 6
Model . 7
[[D . 8
]]D . 8
[[E . 8
]]E . 8
[[P . 8
]]P . 8
[[S . 8
]]S . 8
[[T . 8
]]T . 8
[[Z . 8
]]Z . 8
µd . 6
n . 8
NAME . 3
p . 8
PARAGRAPH . 6
parents . 7
φ . 4
PREDICATE . 6
prelude . 7
... 8
... 8
Pp . 6
Pt . 5
PW . 3
UZ . 3
W . 3
p1 . 8
p2 . 8
RENAME . 6
== b . 6
(b . 6
)b . 6
[d . 6
]d . 6
(g . 6

Lemma 1 Ltd. A Typed Formulation of the Semantics of Z 18

)g . 6
[g . 6
]g . 6
/r . 6
[r . 6
]r . 6
|s . 6
[s . 6
]s . 6
: t . 5
[t . 5
]t . 5
(t . 6
)t . 6
(× . 5
)× . 5
[v . 6
]v . 6
[` . 6
]` . 6
section . 7
SECTION . 7
SectionModels . 7
spec . 7
SPECIFICATION . 7
s1 . 8
sn . 8
stroke . 7
STROKE . 7
τ . 8
τ1 . 8
τm . 8
τn . 8
truep . 6
TY PE . 5
var . 6
` d . 6

