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Abstract. This paper reports on theorems and proof procedures for
working with the Z mathematical toolkit developed using the Proof-
Power system. This development has taken place in parallel with work
on ProofPower itself over the last 10 years.

Since the underlying mathematics is not completely trivial and is largely
independent of the theorem-proving technology, the body of theorems
proved and proof procedures found useful should be relevant to other
work on proof in Z. The work has also influenced the design of the
toolkit itself. For example, the definitions of the arithmetic operators
currently proposed for the draft ISO standard for Z are largely based on
our formulation.

1 Introduction

1.1 Background

Much work on proof automation has relied on the use of problem descriptions
tailored to meet the needs of the theorem-prover. When formal methods are
used in a systems engineering context, the style used to specify a problem is
often outside the control of the person attempting to carry out the proofs. To
be effective in such a context, a theorem-proving system must assist the user
with all the mathematical idioms that are likely to be encountered. This is not
an easy challenge.

In the context of the Z notation [12], a common feature of nearly all speci-
fications is that they make intensive use of the library of mathematical notions
known as the Z mathematical toolkit (or just the toolkit for short). Even such a
thing as the union operator for sets is defined in the toolkit rather than provided
as a fixture of the Z language. To be useful in practice, any theorem-proving sys-
tem for Z must therefore provide support for the toolkit.

The description of the toolkit in [12] does discuss proof in Z and includes
a number of laws about the objects in the toolkit. The discussion is concerned
with informal reasoning rather than formal machine-checked proof. The laws
provide a useful source of test problems — many of the more elementary laws
are amenable to completely automatic proof.



1.2 ProofPower

ProofPower began as a re-engineering by ICL of the Cambridge HOL tool [4].
It supports the same abstract logic as HOL and incorporates many features
that were felt to be important as a result of experience using HOL for proofs of
specification-to-model correspondence in highly assured secure systems develop-
ment.

ProofPower can support object languages other than HOL by a technique
known as semantic embedding. This concept is originally due to M.J.C Gordon
in the context of logics for programming languages [5]. The method is just as ap-
propriate for specification languages, and, given strong customer demand for the
Z notation, much work on ProofPower has been aimed at supporting proof in Z.
In 1993, a system was available offering support for a reasonably fully-featured
dialect of the Z language and including many theorems and proof procedures for
the toolkit.

ProofPower has evolved over the years, most recently in response to the
requirements of a tool commissioned by the Defence Research Agency, Malvern.
This Compliance Tool, implemented on top of ProofPower supports a notation
designed by the Defence Research Agency [11, 8]. The Compliance Notation is
used for the specification and verification of Ada programs in Z. The verification
conditions generated by the Compliance Tool pose a nice challenge for proof
automation, and this has been the target of much of the work in this area over
the last few years.

1.3 Guide to this Document

In this paper, we attempt to survey the ProofPower treatment of mechanized
proof with the toolkit. We will assume a nodding familiarity with the Z notation
as described in [12], but a detailed knowledge of the subtler points of the language
is not required. No knowledge of HOL is required, although at a couple of points
the methods described involve a little bit of mixed-language working.

ProofPower is an interactive tool. It is controlled using the functional pro-
gramming language Standard ML as a command language (the metalanguage).
The ProofPower paradigm for developing specifications and proofs is the evolu-
tionary, interactive, construction of documents containing both formal material
and narrative text. The formal material is checked and processed by the tool as it
is constructed. When development is complete, the file containing the document
can be processed off-line, e.g., to prove and store the theorems about a section
of the toolkit when a new version of the tool is built.

This paper is just such a ProofPower document. The formal material is
highlighted by a bar in the right margin. Input to the tool is introduced by
the tag “SML” in a small font. Output from the tool is introduced by the tag
“ProofPower Output”. Material with a marginal bar and no tag is simply being
quoted by way of information. Here’s an example which just shows ML in action
as a programming language:
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SML

(curry BasicIO.output std out o implode o map chr)
[72 , 101 , 108 , 108 , 111 , 32 , 87 , 111 , 114 , 108 , 100 , 33 , 10 ];

The above commands (which assuredly and deliberately violate every tenet
of good software engineering practice!) produce the following output:
ProofPower Output

Hello World !

The plan of this document is as follows. First of all, section 2 gives an overview
of how proofs are conducted in the Z language using ProofPower; then sections
3 to 9 survey the facilities provided for reasoning about the toolkit under the
following headings: Sets, Relations, Functions, Arithmetic, Finiteness, Sequences
and Others. Finally, section 10 gives some concluding remarks including some
tool-independent lessons which may be learnt from our work.

The organisation of the material in this document is slightly idealised and
does not reflect the precise way the toolkit is modularised in ProofPower or
in [12]. For example, the total function space arrow is discussed here under the
heading Functions, but in practice has to be defined very early on since many
of the definitions concerned with sets and relations use it.

Sections 2 to 6 contain many examples of simple proofs. These examples are
intended to give a flavour of how ProofPower is used and are chosen for sim-
plicity and to illustrate methods rather than any mathematical interest. In many
cases, a fact whose proof involves several steps when done from first principles
can be proved automatically using more advanced methods.

2 Reasoning in the Z Language

In sections 2.1 to 2.4 below, we describe briefly how reasoning is carried out
in Z using ProofPower. The description is given under the following headings:
Propositional Calculus, Predicate Calculus, Z Expression Constructs, and Equa-
tional Reasoning. It may seem striking that we make no mention of schemas or
the schema calculus. However, schemas are not used in the toolkit and so are
not relevant to our immediate concerns here. In fact, schemas and the schema
calculus are fully supported in ProofPower and most of the tools and methods
described here handle them in a uniform way.

2.1 Propositional Calculus

Almost any proof in Z will involve some reasoning about the propositional con-
nectives. Any adequate proof tool will make such work trivial, and our only
reason for going into it here is to introduce the style of proof supported by
ProofPower. ProofPower is in the LCF tradition [6]; as with other LCF-based
systems such as HOL [4], proofs are generally found using an interactive subsys-
tem, the subgoal package based on ideas due to Paulson [10].
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In an LCF-style system, the main user interface is provided by a strongly-
typed functional programming language serving as the command language, or
metalanguage. In the case of ProofPower, the metalanguage is Standard ML
[13] extended to allow fragments of logical syntax to be quoted in a convenient
fashion. To see this in action for Z, let us consider a very simple tautology:
α ⇒ α ∨ β. To embark on the proof of this, we execute a metalanguage com-
mand to invoke the subgoal package:

SML

set goal([], pZα ⇒ α ∨ βq);

The symbols pZ and q act as brackets to delimit the Z predicate α ⇒ α ∨ β.
The system responds by echoing back the problem which is our goal:

ProofPower Output

Now 1 goal on the main goal stack

(∗ ∗∗∗ Goal "" ∗∗∗ ∗)

(∗ ?` ∗) pZα ⇒ α ∨ βq

We can now attempt to progress the proof by applying tactics. A tactic is a
metalanguage function which attempts to reduce a goal by finding a list of zero
or more subgoals which entail it. Behind the scenes, the tactic also computes
a function value which can be used to verify this entailment once the subgoals
have been verified.

Like many other LCF-style systems, ProofPower provides a tactic imple-
menting a process referred to as stripping; this serves as a Swiss army knife for
whittling away at goals by analysis of their principal connective (in this case
⇒ ). We tell the subgoal package to apply this tactic (strip tac) using the met-
alanguage function called apply tactic or a for short:

SML

a(strip tac);

Omitting some of the red tape, the system’s response to this is:

ProofPower Output

(∗ 1 ∗) pZαq

(∗ ?` ∗) pZα ∨ βq

Here we have a goal with a simpler conclusion α ∨ β and an assumption
α. So the tactic has implemented the usual way of proving an implication: to
prove A ⇒ B , assume A, and then prove B on the basis of that assumption.
Continuing our attack, another application of strip tac transforms the goal to:
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ProofPower Output

(∗ 1 ∗) pZαq

(∗ ?` ∗) pZ¬ α ⇒ βq

Here, rather than generating a new assumption, strip tac has rewritten the
disjunction as an implication, which turns out to fit in well with the other trans-
formations it knows how to effect.

A final application of strip tac completes our search for a proof:
ProofPower Output

Tactic produced 0 subgoals:
Current and main goal achieved

What has happened here is that strip tac has attempted to transform the
goal in the usual way for an implication, by adding the antecedent ¬ α to the
assumptions and reducing the conclusion to the succedent β; as it attempts
to add the new assumption, it checks, inter alia, whether the new assumption
contradicts an existing assumption, finds that it does, and so deduces that the
transformed goal is an instance of the propositional axiom: A, ¬A ` B , and
so the proof is complete.

In the usual LCF style, we can now extract the theorem we have proved for
subsequent use. This step can be thought of as invoking the verification function
computed behind the scenes by the tactics. This causes a theorem, i.e., a value of
metalanguage type THM , to be computed. The LCF architecture ensures that
any value of this type is a valid consequence of the axioms which are currently in
force. The following metalanguage fragment causes the theorem to be bound to
a metalanguage variable for future reference and to be saved away in a database:
SML

val thm1 = save pop thm"thm1";

The system responds with:
ProofPower Output

Now 0 goals on the main goal stack
val thm1 = ` α ⇒ α ∨ β : THM

Mere iteration of the tactic strip tac is a complete decision procedure for
propositional tautologies. Here for example, is the proof of a less trivial tautology,
using a so-called tactical, REPEAT , to carry out the iteration.
SML

set goal([],pZ
(φ x ∨ ψ x ) ∧ (φ y ∨ ψ y) ∧ (φ z ∨ ψ z )

⇒ (φ x ∧ φ y) ∨ (φ x ∧ φ z ) ∨ (φ y ∧ φ z )
∨ (ψ x ∧ ψ y) ∨ (ψ x ∧ ψ z ) ∨ (ψ y ∧ ψ z ) q);

a(REPEAT strip tac);
val thm2 = save pop thm"thm2";
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ProofPower Output

Now 0 goals on the main goal stack
val thm2 = ` (φ x ∨ ψ x ) ∧ (φ y ∨ ψ y) ∧ (φ z ∨ ψ z )

⇒ φ x ∧ φ y ∨ φ x ∧ φ z ∨ φ y ∧ φ z
∨ ψ x ∧ ψ y ∨ ψ x ∧ ψ z ∨ ψ y ∧ ψ z : THM

The output from the tool when a proof is complete brings joy to the eyes
of an interactive user, but doesn’t import much new information when seen on
the printed page. The output just tells us that the proof is complete and shows
the ML binding of a name to the new theorem. In the sequel, I will generally
suppress the less informative parts of the output and just mark the tactic which
completes a proof with an ML comment “(∗ Done! ∗)”. As the final steps in
some of the proofs are also suppressed, the names, thm1, thm2 etc. used for the
example theorems do not form a consecutive sequence in the printed document.

2.2 Predicate Calculus

The most elementary method provided by ProofPower for working with the
predicate calculus in Z augments the approach to the propositional calculus de-
scribed above with automatic treatment of existential assumptions and universal
conclusions. Tactics are provided for working with universal assumptions and ex-
istential conclusions. Let’s see this in action on propositions *10.5 and *10.51
from Principia Mathematica [1].
SML

set goal([],(∗ ∗10 .5 ∗) pZ(∃x :V • φx ∧ ψx ) ⇒ (∃y :V • φy) ∧ (∃z :V • ψz )q);
a(REPEAT strip tac);

This gives us two subgoals, the first being as follows:
ProofPower Output

(∗ 3 ∗) pZx ∈ V q

(∗ 2 ∗) pZφ xq

(∗ 1 ∗) pZψ xq

(∗ ?` ∗) pZ∃ y : V • φ yq

Here stripping has automatically carried out a natural style of reasoning:
to prove (∃x : V • A) ⇒ B , assume x ∈ V is such that A holds of it and
prove B on the basis of that assumption. In this case, B is a conjunction and
stripping continues by splitting the problem into a subgoal for each conjunct.
What stripping cannot do is invent the existential witness required to complete
the proof. However, we can easily see that x will do the job and the tactic z ∃ tac
allows us to progress the proof further.
SML

a(z ∃ tacpZxq);
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This transforms the conclusion of the goal to
ProofPower Output

(∗ ?` ∗) pZx ∈ V ∧ true ∧ φ xq

and repeated stripping will complete the proof, since the goal is now a propo-
sitional tautology. (The apparently spurious “ ∧ true” here comes from part of
the existential quantification which has been elided in this problem. The gen-
eral form in Z is “∃ declarations | predicate • predicate”, and here we see the
default value taken when the first predicate is omitted.)

The treatment of universal assumptions is seen in the treatment of *10.51:
SML

set goal([],(∗ ∗10 .51 ∗) pZ¬(∃x :V • φx ∧ ψx ) ⇒ (∀y :V • φy ⇒ ¬ ψy)q);
a(REPEAT strip tac);

The stripping process pushes negations through quantifiers before they arrive
in the assumptions, so this produces the following goal:
ProofPower Output

(∗ 3 ∗) pZ∀ x : V • ¬ (φ x ∧ ψ x )q
(∗ 2 ∗) pZy ∈ V q

(∗ 1 ∗) pZφ yq

(∗ ?` ∗) pZ¬ ψ yq

We now need to specialise the universally quantified assumption to y. This
is done as follows:
SML

a(z spec nth asm tac 3 pZyq) (∗ Done! ∗);

which immediately completes the proof. What has happened is that the re-
sult, ¬ (φ y ∧ ψ y), of specialising assumption 3 has been stripped into the
assumptions automatically. En route this predicate will have been converted
into ¬ φ y ∨ ¬ ψ y causing a case split, each case then being an instance of a
propositional axiom.

The style of predicate calculus proof discussed above gives a complete method
for theorems of the predicate calculus (relying of course on human ingenuity
to find witnesses). For simple examples such as the above, one would hope
that the system would provide more automated assistance. A completely au-
tomatic approach to simple predicate calculus problems is provided by a simple
resolution-based decision procedure, which we can access via a tactic interface
called prove tac or via a rule called prove rule. The following is the one line
proof of *10.51:
SML

val thm5 = save thm("thm5",
prove rule[]pZ(∃x :V • φx ∧ ψx ) ⇒ (∃y :V • φy) ∧ (∃z :V • ψz )q);
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ProofPower Output

val thm5 = ` (∃ x : V • φ x ∧ ψ x )
⇒ (∃ y : V • φ y) ∧ (∃ z : V • ψ z ) : THM

2.3 Z Expression Constructs

Support for the various expression constructs of the Z language is provided in
ProofPower by tactics and rules appropriate to the construct in question. For
example, the tactic z app eq tac supports reasoning from first principles, so to
speak, about equations involving function applications. Let’s use it to begin a
proof about application of a singleton function:
SML

set goal([], pZ{(1 , 2 )} 1 = 2q);
a(z app eq tac);

This results in the following goal:
ProofPower Output

(∗ ?` ∗) pZ(∀ f a : U | (1 , f a) ∈ {(1 , 2 )} • f a = 2 )
∧ (1 , 2 ) ∈ {(1 , 2 )}q

I.e., to prove that {(1 , 2 )} applied to 1 gives 2, we must show that {(1 , 2 )}
is single-valued at 1 and contains the pair (1 , 2 ).

Many of the rather low-level facilities for the various expression constructs are
integrated into more general purpose facilities such as stripping; users typically
do not need to worry about the fine details. For example, stripping will complete
the above proof, using rules such as X ∈ {Y } ⇔ X = Y to eliminate the
set display which appears in the goal.

The user can control the overall style of a proof step by selecting an appro-
priate proof context. Proof contexts are named packages of parameter settings
for the general purpose rules and tactics. So far, we have been working in a proof
context which is not particularly “aggressive” in its treatment of equations be-
tween sets. For example, consider the following beginning of a proof:
SML

set goal([], pZ{x , y} = {1 ,2} ⇒ x ∈ {1 ,2 ,3}q);
a(strip tac THEN strip tac);

This does good a good job of eliminating the membership of the set display,
but doesn’t help much with the equation:
ProofPower Output

(∗ 1 ∗) pZ{x , y} = {1 , 2}q

(∗ ?` ∗) pZx = 1 ∨ x = 2 ∨ x = 3q
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If we undo the last step, set up a different proof context and try again, we
get a little further:
SML

undo 1 ;
set pc"z language ext";
a(strip tac THEN strip tac);

which results in:
ProofPower Output

(∗ 1 ∗) pZ∀ x1 : U • x1 ∈ {x , y} ⇔ x1 ∈ {1 , 2}q

(∗ ?` ∗) pZx = 1 ∨ x = 2 ∨ x = 3q

Specialising the assumption to x, and further stripping will now complete
the proof.

2.4 Equational Reasoning

The basic facts about many Z language constructs are actually provided as what
are called conversions. A conversion is an inference rule coded as a function whose
argument is an HOL term (e.g., a Z predicate or expression), say t, and whose
result is a theorem of the form ` t = t ′ or ` t ⇔ t ′. For example, let’s
look at a conversion called z × conv that expands a cartesian product as a set
comprehension:
SML

val thm8 = save thm("thm8", z × conv pZA × B × Cq);

ProofPower Output

val thm8 = ` A × B × C = {t 1 : A; t 2 : B ; t 3 : C} : THM

Conversions like the above one are provided mainly for the programmer
rather than the user conducting an interactive proof. However, it can be con-
venient to have them to hand while doing proofs, particularly when a very fine
degree of control is required. The system provides facilities for building new
conversions from old, based on ideas originally due to Larry Paulson [9]. These
facilities give a powerful general framework for programming equational reason-
ing.

Like most other LCF style systems, ProofPower provides a repertoire of
general purpose term-rewriting tools, packaged as tactics, conversions and rules.
These are the most common way of carrying out equational reasoning in an
interactive proof. The user’s input to these tools is a list of theorems providing
equations for use as rewrite rules. Designing theorems which work together as
useful rewrite systems is an important part of providing effective proof support
for a body of definitions such as the toolkit.
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Like so many other facilities in ProofPower, the rewriting tools are param-
eterised by the proof context. For example, many of the facts about Z language
constructs which we saw handled by stripping in section 2.3 above, are also
available by rewriting using an empty list of theorems:
SML

val thm9 = save thm("thm9", rewrite conv [] pZx ∈ {a, b, c}q);

ProofPower Output

val thm9 = ` x ∈ {a, b, c} ⇔ x = a ∨ x = b ∨ x = c : THM

3 Sets

The toolkit begins with the basic vocabulary of set theory, together with a few
miscellanea. The operators in question are listed in the following table:

∅ The empty set
6=, 6∈ negated equality, negated membership
∪, ∩, \ (binary) union, intersection and set difference
⊆, ⊂ non-strict and strict inclusion⋃

,
⋂

distributed union and intersection
first, second First and second elements of a pair

P1 set of non-empty subsets of a set

Like many of the operators defined in the toolkit, these operators are generic.
Here, for example, is the defining property of the union operator expressed as a
ProofPower theorem (in a slightly simplified form):

val thm10 =
` pZ [X ] (( ∪ )[X ] ∈ P X × P X → P X
∧ (∀ S , T : P X • ( ∪ )[X ] (S , T ) = {x : X | x ∈ S ∨ x ∈ T}))

Here, the “[X]” introducing the generic theorem acts as a universal quanti-
fier, with X ranging over sets. The full name of the union operator is “ ∪ ”
according to the Z conventions and, in principle, the meaning of “( ∪ )[A]”,
could depend crucially on the value of A. Now, in practice, no-one ever explic-
itly provides a generic actual parameter for an operator like union. Instead, one
just writes things like “{1 , 2} ∪ {3 , 4}” and leaves the Z type checker to infer
that what one means is “( ∪ )[Z] ({1 , 2}, {3 , 4})”. This is mostly harm-
less from a mathematical point of view, since the actual value of the generic
parameter is immaterial for most operators providing it is big enough.

The universal quantification appearing inside the defining property for the
union operator is slightly problematic in that it introduces a conditional rewrite
rule. Before one can use the equation which is the core of the definition to rewrite
a term of the form ( ∪ )[X ] (A, B), one must establish that A and B are
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indeed subsets of X. This is a general problem with equational reasoning in Z
— a universally quantified equation will always give a conditional rewrite rule,
although in many useful cases, the condition is mathematically, if not logically,
trivial. In ProofPower, the situation is eased by the use of a special generic
constant U , which is used to denote the set of all values of some type. For
example, when a given set G is introduced its defining property is G = U . The
rewriting tools are aware that a declaration of the form v : U does not impose a
condition when used in a universal quantification. So quantification over U allows
us to express unconditional rewrite rules. Here, for example, is the U -instance
of the defining property for union:

val thm11 =
` ( ∪ ) ∈ P U × P U → P U
∧ (∀ S , T : P U • S ∪ T = {x : U | x ∈ S ∨ x ∈ T}) : THM

(Note how the U -instance of the union operator is now written in the familiar
infix form). This form of the defining property can now be used as a rewrite rule,
as we may see by executing the following fragment of ML:

SML

val thm12 = rewrite conv [thm11 ] pZ{1 , 2} ∪ {3 ,4}q;

ProofPower Output

val thm12 = ` {1 , 2} ∪ {3 , 4} =
{x : U | (x = 1 ∨ x = 2 ) ∨ x = 3 ∨ x = 4} : THM

The first step in handling a typical body of generic definitions in Z is to de-
rive rewrite rules to expand away those definitions, at least in the most common
cases. As we have seen, in ProofPower, this can typically be done by proving
the U -instances of the definitions. However, one finds that blindly expanding def-
initions is rarely the preferred method of proof in practice. What one must do
is identify the forms of conjecture which occur most often and provide methods
exploiting domain-specific information to help with those forms. For the elemen-
tary theory of sets, it is natural to focus on conjectures of the form t ∈ A,
A = B , A ⊆ B , and A ⊂ B , where A and B are expressions formed using
the vocabulary of set theory. Proof contexts are provided to help with problems
of this type. These are based on theorems such as the following:

` ∀ z : U ; s : U ; t : U • z ∈ s ∪ t ⇔ z ∈ s ∨ z ∈ t
` ∀ z : U ; s : U ; t : U • z ∈ s ∩ t ⇔ z ∈ s ∧ z ∈ t
` ∀ a : U • a ∪ {} = a ∧ {} ∪ a = a ∧

a ∪ U = U ∧ U ∪ a = U ∧ a ∪ a = a
` ∀ a : U • a ∩ {} = {} ∧ {} ∩ a = {} ∧

a ∩ U = a ∧ U ∩ a = a ∧ a ∩ a = a
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The styles of reasoning supported are a so-called algebraic style, in which
set notation is only traded in for logic when the form of the problem strongly
suggests doing so, and a so-called extensional style, in which equations and other
relations between sets are aggressively converted into logic. The extensional style
may be seen in the following proof:
SML

set goal([], pZ(A ∪ B) = (A \ B) ∪ (A ∩ B) ∪ (B \ A)q);
set pc"z sets ext";
a(rewrite tac[]);

This produces the following goal:
ProofPower Output

(∗ ?` ∗) pZ∀ x1 : U
• x1 ∈ A ∨ x1 ∈ B
⇔ x1 ∈ A ∧ ¬ x1 ∈ B ∨
x1 ∈ A ∧ x1 ∈ B ∨
x1 ∈ B ∧ ¬ x1 ∈ Aq

Note how all the set-theoretic vocabulary has been eliminated, resulting in a
predicate calculus conjecture (which can easily be solved by stripping). In fact,
the extensional proof context provides a decision procedure for a useful class of
set-theoretic trivia, and when such are needed (e.g., as lemmas to help in a more
complex proof), they can readily be proved automatically. For example, if the
above lemma were required, one might use:
SML

val thm14 = save thm("thm14", pc rule1 "z sets ext" prove rule[]
pZ(A ∪ B) = (A \ B) ∪ (A ∩ B) ∪ (B \ A)q);

which uses the proof context to carry out an automatic proof resulting in:
ProofPower Output

val thm14 = ` A ∪ B = (A \ B) ∪ A ∩ B ∪ B \ A : THM

The algebraic style of reasoning is the preferred style when one wants to retain
the vocabulary of set theory during a proof. This paradigm is very common when
one is building up a theory. First of all, to develop the basic facts of the theory,
one needs methods like the extensional style for set theory, which eliminate the
vocabulary of the theory in favour of more primitive notions. When one moves on
to more complex theorems either within the theory itself or in building another
theory, one generally wants to preserve the vocabulary of the theory and so
conduct proofs at a higher conceptual level.

Natural examples of the algebraic method would take up too much space in
the present document. By way of a contrived example, let us prove a theorem
which one feels ought to be an easy consequence of thm14 above. First of all, let
us continue to work with the extensional proof context:
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SML

set goal([], pZA ∩ B = {} ⇒ (A ∪ B) = (A \ B) ∪ (B \ A)q);
a(REPEAT strip tac);

ProofPower Output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 2 ∗) pZ∀ x1 : U • x1 ∈ A ∩ B ⇔ x1 ∈ {}q
(∗ 1 ∗) pZx1 ∈ Bq

(∗ ?` ∗) pZ¬ x1 ∈ Aq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 3 ∗) pZ∀ x1 : U • x1 ∈ A ∩ B ⇔ x1 ∈ {}q
(∗ 2 ∗) pZx1 ∈ Aq

(∗ 1 ∗) pZx1 ∈ Bq

(∗ ?` ∗) pZ¬ x1 ∈ Aq

Now these subgoals can readily be proved, but our hope of using thm14 above
to help would have to be abandoned. Let’s go back and work in the algebraic
proof context instead:
SML

undo 1 ;
set pc"z sets alg";
a(REPEAT strip tac);

ProofPower Output

(∗ 1 ∗) pZA ∩ B = {}q

(∗ ?` ∗) pZA ∪ B = (A \ B) ∪ B \ Aq

We should now be able to use thm14 as a rewrite rule to progress the proof:
SML

a(rewrite tac[thm14 ]);

ProofPower Output

(∗ 1 ∗) pZA ∩ B = {}q

(∗ ?` ∗) pZ(A \ B) ∪ A ∩ B ∪ B \ A = (A \ B) ∪ B \ Aq
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Rewriting with the assumptions and the algebraic laws about sets embodied
in the proof context now completes the proof:
SML

a(asm rewrite tac[]) (∗ Done! ∗);

4 Relations

This section of the toolkit deals with binary relations represented as sets of pairs.
The operators introduced are listed in the following table (in which operands R,
X, Y are provided as needed to suggest the syntax of the operator):

7→ maplet (a variant syntax for pairing: x 7→ y = (x , y))
X ↔ Y set of all relations between X and Y
dom, ran domain and range of a relation

id identity relation
o, o

9 right-first and left-first relational composition
C, B range and domain restriction
−C, −B range and domain anti-restriction
⊕ relational overriding
R∼ relational inverse

R(|X |) relational image
R+, R∗ transitive and reflexive-transitive closure

The treatment of the relational operators in ProofPower follows a simi-
lar strategy to the treatment of the set-theoretic operators described in the
previous section. First of all, theorems are proved which enable the relational
vocabulary to be eliminated in favour of set theory and logic. In conjunction
with the support for set-theoretic operators, these theorems are used to provide
an extensional proof context, which will prove many of the basic facts about
relations automatically and will assist in semi-automatic proof of less tractable
problems. As with sets a less expansionist, so-called algebraic proof context is
also provided.

As an example of the extensional method for relations, let’s prove a simple
fact about the two relational composition operators:
SML

set pc"z rel ext";
set goal([], pZR o

9 S = S o Rq);
a(strip tac);

This produces the following subgoal:
ProofPower Output

(∗ ?` ∗) pZ∀ x1 : U ; x2 : U • (x1 , x2 ) ∈ R o
9 S ⇔ (x1 , x2 ) ∈ S o Rq
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Here extensionality has been used to eliminate the equality of two relations
in favour of a universally quantified membership assertions. Note how the system
has introduced a pair (x1, x2) of variables rather than a single variable; intro-
duction of a single variable ranging over pairs turns out to lead one down blind
alleys in many cases, so the pair of variables is much preferred. Let us proceed
a bit further with the proof:

SML

a(REPEAT N 6 strip tac) (∗ strip 6 times ∗);

At this stage we have a goal split:

ProofPower Output

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ ?` ∗) pZ(x1 , x2 ) ∈ S o R ⇒ (x1 , x2 ) ∈ R o
9 Sq

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ ?` ∗) pZ(x1 , x2 ) ∈ R o
9 S ⇒ (x1 , x2 ) ∈ S o Rq

The next step of stripping will effectively expand the definition of o
9 and

transfer the resulting information to the assumptions.

SML

a(strip tac);

ProofPower Output

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZ(x1 , y) ∈ Rq

(∗ 1 ∗) pZ(y , x2 ) ∈ Sq

(∗ ?` ∗) pZ(x1 , x2 ) ∈ S o Rq

Another stripping step will expand the definition of o and so reduce the
problem to pure logic (in the sense that, while the goal still contains pairing and
membership, the meanings of those operators no longer affect the truth of the
goal):

SML

a(strip tac);
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ProofPower Output

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZ(x1 , y) ∈ Rq

(∗ 1 ∗) pZ(y , x2 ) ∈ Sq

(∗ ?` ∗) pZ∃ y : U • (x1 , y) ∈ R ∧ (y , x2 ) ∈ Sq

Supplying the obvious witness y and stripping will now complete this branch
of the proof:

SML

a(z ∃ tacpZyq THEN REPEAT strip tac);

The other branch of the proof is very similar; but, there is an easier way:

SML

a(prove tac[]) (∗ Done! ∗);

In fact, the resolution-based proof procedure, when used in an appropriate
proof context, can carry out a completely automatic proof of a wide class of
theorems similar to the one we have just proved:

SML

val thm17 = save thm("thm17", prove rule[]pZ R o
9 S = S o R q);

ProofPower Output

val thm17 = ` R o
9 S = S o R : THM

The methods outlined above work well for everything in this section of the
toolkit except for the closure operators. The inductive nature of the definition
of the two closure operators necessarily complicates all but the most trivial
reasoning about them. Support for these operators is provided in the shape of
theorems which make it easy to expand their definitions. These have been found
adequate to date, although it must be pointed out that our applications of Z
have not often made extensive use of these operators.

5 Functions

This section of the toolkit deals with functions viewed as a special case of binary
relations. The only operators introduced are the function space arrows that are
such a distinctive feature of the Z notation. The arrows provided are shown in
the following table:
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X 7→ Y set of all partial functions from X to Y
X → Y set of all total functions from X to Y
X 7� Y set of all partial injections of X into Y
X � Y set of all total injections of X into Y
X 7� Y set of all partial surjections of X onto Y
X � Y set of all total surjections of X onto Y
X �� Y set of all bijections between X and Y

An important role played by the function arrows is in justifying reasoning
about function application. Very often the fact that an object belongs to some
function space is given to us by virtue of the declaration introducing the object.
We need convenient means of exploiting this feature of the usual Z style.

In section 2.3, we have already done some reasoning about a function ap-
plication from first principles using the tactic z app eq tac. To reason about a
function application f x, this tactic requires us to verify a a direct expression
in logic of the fact that f is functional at x. In principle, we can always appeal
to the definitions of the arrows to deduce the theorems required by the tactic.
However, in practice it is tedious and verbose to do so.

A family of theorems is provided to help exploit assumptions concerning
membership of function spaces. These work well with a technique called forward
chaining. Here’s an example:
SML

set goal([], pZf ∈ X → {y} ∧ x ∈ X ⇒ f x = y q);
a(REPEAT strip tac);

This gives us the following subgoal:
ProofPower Output

(∗ 2 ∗) pZf ∈ X → {y}q
(∗ 1 ∗) pZx ∈ X q

(∗ ?` ∗) pZf x = yq

To attack this, we will use the theorem z fun ∈ clauses, which is the fol-
lowing:

` ∀ f : U ; x : U ; X : U ; Y : U
• ((f ∈ X → Y ∨ f ∈ X � Y ∨ f ∈ X � Y ∨ f ∈ X �� Y ) ∧

x ∈ X ⇒ f x ∈ Y )
∧ ((f ∈ X 7→ Y ∨ f ∈ X 7� Y ∨ f ∈ X 7� Y ) ∧

x ∈ dom f ⇒ f x ∈ Y )

This logically entails a number of implications:

` ∀ X : U ; Y : U ; f : U ; x : U • f ∈ X → Y ⇒ x ∈ X ⇒ f x ∈ Y
` ∀ X : U ; Y : U ; f : U ; x : U • f ∈ X � Y ⇒ x ∈ X ⇒ f x ∈ Y

...
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Forward chaining is a technique which takes implicative theorems such as the
above, and searches in the assumptions for facts which match the antecedents
of the implication. A successful match gives rise to a consequence which is an
instance of the succedent of the implication. In this case, f ∈ X → Y matches
the first assumption (with Y instantiated to {y}) and x ∈ X matches the
second assumption (as is). The form of forward chaining tactic we will now use
strips any consequences it is able to derive into the list of assumptions. In this
case that completes the proof.
SML

a(all asm fc tac[z fun ∈ clauses]) (∗ Done! ∗);

To see this in slow motion let us go back a step and use a variant of forward
chaining which puts the derived consequences as antecedents of an implication
in the conclusion of the goal:
SML

undo 1 ;
a(ALL ASM FC T (MAP EVERY ante tac) [z fun ∈ clauses]);

This gives:
ProofPower Output

(∗ 2 ∗) pZf ∈ X → {y}q
(∗ 1 ∗) pZx ∈ X q

(∗ ?` ∗) pZf x ∈ {y} ⇒ f x = yq

Stripping f x ∈ {y} into the assumptions will now transform it into f x = y
en route, and so turn the goal into a tautology.

A body of theorems along the same lines as z fun ∈ clauses has long proved
useful in many situations where reasoning about function application is required
in practice. Some types of reasoning covered by these theorems is amenable to
greater automation. In particular, a prolog-like backwards-chaining algorithm
can prove many useful conjectures of the form e ∈ A by analysis of the function
applications and other language constructs which make up e. An algorithm of this
type has been implemented but is not yet on general release. Such an algorithm
has the potential for automating many proofs that the arguments of functions
lie in their domains. This is not dissimilar to the role of the so-called type
inference process in the Boyer-Moore theorem prover [2]. A limited interface to
the algorithm is made available in the Compliance Tool, where it is used to
automate proofs that the Z translations of Ada expressions belong to the Z sets
which model the corresponding Ada type. The algorithm and its interfaces have
not yet been tuned and tested for general purpose use.

As part of building up the theory of finiteness we have begun to develop an
approach to two issues with the function arrows. The first issue is that the total
function arrows other than → itself are defined in terms of the partial function
arrows. For example, the defining property of � is:
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` [X , Y ](X � Y = (X 7� Y ) ∩ (X → Y ))

In proofs, it is generally easier to work with total functions rather than partial
ones (and one always can, since any function is total on its domain).

The second issue is that within the definitions of some of the functional
properties such as injectivity, the toolkit tends to use a mixture of the idioms
x 7→ y ∈ f or (x , y) ∈ f or f x = y . For example, here are some of the
defining properties:

` [X , Y ](X → Y = {f : X ↔ Y | ∀ x : X • ∃1 y : Y • (x , y) ∈ f })
` [X , Y ](X 7→ Y =

{f : X ↔ Y |
∀ x : X ; y1 , y2 : Y • x 7→ y1 ∈ f ∧ x 7→ y2 ∈ f ⇒ y1 = y2})

` [X , Y ](X 7� Y = {f : X 7→ Y |
∀ x1 , x2 : dom f • f x1 = f x2 ⇒ x1 = x2})

The idiom involving the function application tends to lead to some unneces-
sary work. Theorems are provided for use as rewrite rules serving: (a) to eliminate
partial arrows in favour of total ones; (b) to simplify total arrows to the ordi-
nary total arrow together with a succinct statement of any extra information in
the arrow; and (c) to avoid unnecessary uses of function application. Here, for
example, are some of them:

ProofPower Output

` ∀ A : U ; B : U ; f : U • f ∈ A 7→ B ⇔ f ∈ dom f → B ∧ dom f ⊆ A
` ∀ A : U ; B : U ; f : U •

f ∈ A � B
⇔ f ∈ A → B

∧ (∀ x , y : U ; z : U • (x , z ) ∈ f ∧ (y , z ) ∈ f ⇒ x = y)
` ∀ A : U ; B : U ; f : U • f ∈ A � B ⇔ f ∈ A → B ∧ B ⊆ ran f

This latter approach has not yet been worked through comprehensively, but
enough has been done to facilitate derivation of theorems such as the following
composition rules for bijectivity:

` ∀ A : U ; B : U ; C : U ; f : U ; g : U
• f ∈ A �� B ∧ g ∈ B �� C ⇒ g o f ∈ A �� C

` ∀ A : U ; B : U ; C : U ; D : U ; f : U ; g : U
• f ∈ A �� B ∧ g ∈ C �� D ∧ A ∩ C = {} ∧ B ∩ D = {} ⇒

f ∪ g ∈ A ∪ C �� B ∪ D

Theorems like these are required in developing the theory of finiteness and are
surprisingly tedious to establish without a systematic approach. For the second
of the two, blind expansion of definitions would produce 48 distinct subgoals.
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6 Arithmetic

This section of the toolkit provides the sets and operators for integer arithmetic
listed in the following table:

Z, N, N1 The sets of integers, naturals, and positive naturals
∼ , +, − arithmetic negation, addition, subtraction

∗, div, mod multiplication, division and modulus
<, ≤, >, ≥ ordering relations

abs absolute value
succ successor function
Ri relational iteration

i .. j integer range (or interval)

The theory of these operators is sufficiently complex to merit some internal
structure in its description. We shall describe it in sections 6.1 to 6.7 below
under the following headings: The Definitions, Additive Structure, Multiplica-
tive Structure, Division and Modulus, Computation, Linear Arithmetic, Other
Operators.

6.1 The Definitions

A first difficulty with this section of the toolkit is that defining properties for the
basic arithmetic operators are not given in [12]. It is clear what the operators
are intended to be (since [12] does give laws that fix the meaning of div and
mod and there’s not much doubt about the rest). However, for our purposes the
omitted definitions must be supplied.

The defining properties chosen for use in ProofPower are fairly succinct,
work well in practice and can be easily related to appropriate mathematical the-
ory. A treatment closely based on this approach is currently tabled for inclusion
in the evolving standard for Z.

The following four properties are used to characterise the additive structure
of the integers.

` ∀ i , j , k : Z •
(i + j ) + k = i + j + k

∧ i + j = j + i
∧ i + ∼ i = 0
∧ i + 0 = i

` ∀ h : P Z • 1 ∈ h ∧ (∀ i , j : h • i + j ∈ h ∧ ∼ i ∈ h) ⇒ h = Z)
` N =

⋂
{s : P Z | 0 ∈ s ∧ {i : s • i + 1} ⊆ s}

` ∼ 1 6∈ N : THM

The first of these properties says that the integers form a group under addi-
tion; the second says that any subgroup h of the integers containing 1 is equal

20



to the whole group; the third says that the natural numbers form the smallest
set containing 0 and closed under addition of 1; the final property says that
∼ 1 is not a natural number. Together these properties imply that the additive
group of the integers is an infinite cyclic group generated by 1; this condition
completely characterises the additive structure of the integers (see, e.g., [3] for
a proof of this characterisation).

Note in connection with the first of these properties that the binary operators
in the ProofPower dialect of Z are right-associative. I.e., 1+2+3 means 1+(2+3)
not (1 + 2) + 3. It has been recognised that this departure from the traditional
view is inappropriate and we hope for later versions of ProofPower to allow
both left- and right-associative operators.

Subtraction is defined in terms of addition and negation:

` ∀ i , j : Z • i − j = i + ∼ j

The ordering relations for the integers can be characterised in terms of the
addition, subtraction and N. The definitions used in ProofPower define ≤ in
this way and then define the other forms in terms of ≤:

` ∀i , j : Z •
(i ≤ j ⇔ j − i ∈ N)

∧ (i < j ⇔ i + 1 ≤ j )
∧ (i ≥ j ⇔ j ≤ i)
∧ (i > j ⇔ j < i))

The multiplicative structure of the integers is then characterised as follows:

` ∀ i , j , k : Z •
(i ∗ j ) ∗ k = i ∗ j ∗ k

∧ i ∗ j = j ∗ i
∧ i ∗ (j + k) = i ∗ j + i ∗ k
∧ 1 ∗ i = i

This says that multiplication is the (necessarily unique) operation which
together with addition makes the integers into a commutative ring with unit
element 1.

Space prevents us listing the defining properties for the remaining opera-
tors. However, there is plenty of interest in developing the theory of what we
have already described and particular points about the other operators will be
mentioned as they are encountered in the sequel.

6.2 Additive Structure

Under the additive structure of the integers we include the sets N and N1, the
operators, +, − and ∼ and the ordering relations, ≤, <, > and ≥.
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The main objective is to develop support for (a) induction and (b) reasoning
by cancellation of like terms. Of these two, cancellation laws (and convenient
ways of using them) are actually much more widely applicable than induction.
However both are important as are sundry other methods (e.g., using order-
theoretic properties of the ordering relations).

The first step is to provide, as theorems for use as rewrite rules, the associative
law for addition. ProofPower treats an equation as a rewrite rule in the left-to-
right direction. By providing the following two theorems (z plus assoc thm and
z plus assoc thm1 ), we are providing the commands: “Brackets to the right!”
and “Brackets to the left!”, as a by-product of standard conventions of the
system:

` ∀ i , j , k : U • (i + j ) + k = i + j + k
` ∀ i , j , k : U • i + j + k = (i + j ) + k

(Here U = Z; recent versions of the system would allow us equally well to
use Z instead of U here, but for historical reasons the actual theorems provided
are stated using U).

To show the associativity theorems in action, I have asked the system to
display more brackets than are strictly necessary to make clear what is going
on:
SML

val thm19 = save thm("thm19",
rewrite conv [z plus assoc thm] pZ(a + b) + (i + j )q);

val thm20 = save thm("thm20",
rewrite conv [z plus assoc thm1 ] pZ(a + b) + (i + j )q);

ProofPower Output

val thm19 = ` ((a + b) + (i + j )) = (a + (b + (i + j ))) : THM
val thm20 = ` ((a + b) + (i + j )) = (((a + b) + i) + j ) : THM

The next issue to address is the commutative law. The problem with com-
mutativity is that the rewrite rule x+y = y+x will necessarily loop indefinitely.
The rewriting tools in ProofPower make two tiny improvements over their pre-
decessors in related systems: firstly, if a term is unchanged by a rewrite, then
the rewrite is rejected; secondly, and more importantly here, free variables in a
theorem supplied by a rewrite rule are not taken as candidates for instantiation.
This latter feature underlies the surprising utility of the following theorem called
z plus order thm:

` ∀ i : U
• ∀ j , k : U
• ((j + i) = (i + j ))
∧ ((((i + j ) + k) = (i + (j + k)))
∧ ((j + (i + k)) = (i + (j + k))))
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The idea here is that if i is specialised to some expression, t, of interest, then
rewriting with z plus order thm has the very useful effect of making t float
round to the beginning of any expression formed using addition in which it is
contained:
SML

val thm21 = save thm("thm21",
z ∀ elimpZ99q z plus order thm);

val thm22 = save thm("thm22",
rewrite conv [thm21 ] pZ(n + m + 99 ) + mq);

ProofPowerOutput

val thm21 = ` 99 ∈ U ∧ true
⇒ (∀ j , k : U
• j + 99 = 99 + j
∧ (99 + j ) + k = 99 + j + k
∧ j + 99 + k = 99 + j + k) : THM

val thm22 = ` (n + m + 99 ) + m = 99 + (n + m) + m : THM

Note that the rewriting tools preprocess the theorems supplied as arguments
in an attempt to squeeze out as many equations as possible. In this case, they
will automatically eliminate the vacuous antecedent to the implication in thm21
and then extract the three equations that remain.

Combined with appropriate cancellation rules for equality and the ordering
relations, this rather simple little device for using commutativity and associativ-
ity turns out to be effective for proving many of the basic facts about addition
one needs. Here is the cancellation rule for equality (z plus clauses):

` ∀ i , j , k : U •
(i + k = j + k ⇔ i = j )

∧ (k + i = j + k ⇔ i = j )
∧ (i + k = k + j ⇔ i = j )
∧ (k + i = k + j ⇔ i = j )
∧ (i + k = k ⇔ i = 0 )
∧ (k + i = k ⇔ i = 0 )
∧ (k = k + j ⇔ j = 0 )
∧ (k = j + k ⇔ j = 0 )
∧ i + 0 = i
∧ 0 + i = i
∧ ¬ 1 = 0
∧ ¬ 0 = 1

There are similar rules for the ordering relations.
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Subtraction is systematically catered for by using its definition in terms of
addition and negation (x − y = x + ∼ y). Arithmetic negation is easily han-
dled in the additive fragment of the theory by one or two trivial consequences
of the definitions such as:

` ∀ i : U • i + ∼ i = 0 ∧ ∼ i + i = 0

To see these simple but effective ideas at work, here is an example adapted
from the depths of a proof about the size of a range of integers. For clarity, we
have set the system up to display a profusion of brackets in the proof.

SML

set goal([],
pZa + ((x1 + i) + (∼ 1 )) ≤ a + (j + (((∼ i) + 1 ) + (i + (∼ 1 ))))

⇒ (x1 + (i + (∼ 1 ))) ≤ jq);
a(rewrite tac[z ≤ clauses]);

Note how standard algebraic collection and cancellation of like terms here
makes it clear that the predicates on either side of ⇒ here are the same. Our
approach to the proof is to rewrite both sides of the implication until they become
equal. We have already begun to do this by cancelling the two instances of a:

ProofPower Output

(∗ ?` ∗) pZ(((x1 + i) + (∼ 1 )) ≤ (j + (((∼ i) + 1 ) + (i + (∼ 1 )))))
⇒ ((x1 + (i + (∼ 1 ))) ≤ j )q

Moving instances of i to the fore here should give a chance for the 1 and its
negation to cancel out:

SML

a(rewrite tac[z ∀ elimpZiqz plus order thm]);

ProofPower Output

(∗ ?` ∗) pZ((i + (x1 + (∼ 1 ))) ≤ (i + (j + (((∼ i) + 1 ) + (∼ 1 )))))
⇒ ((i + (x1 + (∼ 1 ))) ≤ j )q

Now let’s make the cancellation happen:

SML

a(rewrite tac[z plus assoc thm, z plus minus thm, z plus0 thm]);

ProofPower Output

(∗ ?` ∗) pZ((i + (x1 + (∼ 1 ))) ≤ (i + (j + (∼ i))))
⇒ ((i + (x1 + (∼ 1 ))) ≤ j )q

Finally, let’s bring j to the front so that the second i can cancel out with its
negation. We can do this in one step:
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SML

a(rewrite tac[z ∀ elimpZjq
z plus order thm,z plus minus thm, z plus0 thm ])

(∗ Done! ∗);

This makes both sides of the implication the same and completes the proof.
A number of induction tactics are provided. These are implemented by a uni-

form mechanism which takes as input a theorem stating the induction principle.
These theorems are, by convention, given in a mixture of HOL and Z. Here for
example is a rather unusual induction theorem which says that if a property
holds of 1, and is preserved under negation and addition, then it holds for all
integers m.

` p∀ p• p pZ1q ∧ (∀ i• p i ⇒ p pZ∼ iq) ∧ (∀ i j• p i ∧ p j ⇒ p pZi + jq)
⇒ (∀ m• p m)q

Here the symbols p and q delimit an HOL term, within which embedded
fragments of Z are delimited by pZ and q.

The induction principle that has been found most widely useful is called
z ≤ induction tac. Let’s see it in action:
SML

set goal([],
pZf k = k ∧ (∀i :U • f (i + 1 ) = f i + 1 ) ⇒ (∀j :U • k ≤ j ⇒ f j = j )q);

a(REPEAT strip tac);

ProofPower Output

(∗ 3 ∗) pZf k = kq

(∗ 2 ∗) pZ∀ i : U • f (i + 1 ) = f i + 1q

(∗ 1 ∗) pZk ≤ jq

(∗ ?` ∗) pZf j = jq

The induction tactic takes as an argument the induction variable, in this case
j. It expects a term of the form x ≤ j in the assumptions; in this case x is k.
SML

a(z ≤ induction tac pZjq);

This gives us two subgoals; the first one is the base case (j = k):
ProofPower Output

...

(∗ 2 ∗) pZf k = kq

(∗ 1 ∗) pZ∀ i : U • f (i + 1 ) = f i + 1q

(∗ ?` ∗) pZf k = kq
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This is a propositional tautology:
SML

a(REPEAT strip tac);

ProofPower Output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 4 ∗) pZf k = kq

(∗ 3 ∗) pZ∀ i : U • f (i + 1 ) = f i + 1q

(∗ 2 ∗) pZk ≤ iq
(∗ 1 ∗) pZf i = iq

(∗ ?` ∗) pZf (i + 1 ) = i + 1q

The proof of the inductive step is completed by rewriting with the assump-
tions:
SML

a(asm rewrite tac[]) (∗ Done! ∗);

In addition to the above material, other types of theorem are also useful, e.g.,
to justify various sorts of case analysis. Also theorems expressing order-theoretic
properties of <, ≤ etc. are useful. Space prevents us giving detailed examples
here , but some typical theorems of these sorts can be exhibited:

` ∀ i : N • i = 0 ∨ (∃ j : N • i = j + 1 )
` ∀ i , j : U • i ≤ j ∨ j ≤ i
` ∀ i , j : U • i < j ∨ i = j ∨ j < i
` ∀ i , j , k : U | i < j ∧ j < k • i < k

6.3 Multiplicative Structure

Theorems for working with the associative and commutative properties of multi-
plication are provided in close analogy to those for addition. Use of these and the
distributive law supports a style of proof mimicking the process of “multiplying
out and cancelling like terms”. For example:
SML

set goal([], pZ(x + y) ∗ (x + y) + ∼(x∗y) = x∗x + x∗y + y∗yq);
a(rewrite tac[z times plus distrib thm]);
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ProofPower Output

(∗ ?` ∗) pZ((x ∗ x + y ∗ x ) + x ∗ y + y ∗ y) + ∼ (x ∗ y)
= x ∗ x + x ∗ y + y ∗ yq

Let us carry out a first stage of additive cancellation:
SML

a(rewrite tac[z plus assoc thm, z ∀ elimpZy∗yqz plus order thm,
z plus minus thm, z plus clauses]);

ProofPower Output

(∗ ?` ∗) pZy ∗ x = x ∗ yq

We now bring x say to the front of each of the two products here to show
that they are the same and so complete the proof:
SML

a(rewrite tac[z ∀ elimpZxqz times order thm]) (∗ Done! ∗);

6.4 Division and Modulus

For historical reasons, ProofPower has a rather idiosyncratic formulation of the
operators div and mod. This formulation makes the value of mod always non-
negative. This definition has some good mathematical properties, but disagrees
with [12]. On balance the formulation in [12] seems to be the one of choice, and
ProofPower may well be amended in this respect in a future release.

In any case, the type of theorems one wants about div and mod are theorems
which characterise them in terms of addition and multiplication. The following
two theorems have proved very useful (e.g., in developing the theory of the Ada
formulation of division and modulus for use in program verification).

` ∀ i , j , k : Z
| ¬ j = 0
• i div j = k ⇔ (∃ m : Z • i = k ∗ j + m ∧ 0 ≤ m ∧ m < abs j )

` ∀ i , j , k : Z
| ¬ j = 0
• i mod j = k ⇔ (∃ d : Z • i = d ∗ j + k ∧ 0 ≤ k ∧ k < abs j )

6.5 Computation

Numerical computation turns out to be tedious or impossible in surprisingly
many approaches to automated theorem-proving. Such a position is quite un-
acceptable both in doing mathematics and in applying a theorem prover to
real-world problems. ProofPower provides conversions to carry out evaluation
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of expressions formed from numeric literals and the arithmetic operators. To
demonstrate these, we use the proof context z library . This proof context pro-
vides a convenient packaging for these computational conversions and also gives
an interface to many of the other techniques described in this document. Here
it is in action:
SML

set pc"z library";
val thm26 = save thm("thm26",

rewrite conv []pZ(7∗11∗13 − 1 ) ∗ (2000 div 2 )q);

ProofPower Output

val thm26 = ` (7 ∗ 11 ∗ 13 − 1 ) ∗ 2000 div 2 = 1000000 : THM

The computational conversions which carry out the evaluation here are, per-
haps surprisingly, not oracles, i.e., the conversions derive their results by infer-
ence rather than brashly asserting them without any verification. Indeed Proof-
Power provides no facility for introducing oracles. The built-in rule of HOL on
which the conversions are based carries out addition of natural number literals.
This rule, which is the only oracle of its sort in the system, is used to imple-
ment the usual arithmetic operations for the natural numbers in HOL. These
are used in turn to develop computational conversions for a theory of integers
in HOL and the Z versions are then implemented via theorems establishing an
isomorphism between the HOL integers and the Z ones. The above calculation
actually involves some 547 primitive inference steps of which 69 are appeals to
the built-in rule for natural number addition. Nonetheless, the performance of
this approach seems to be adequate for all the purposes to which it has so far
been put.

6.6 Linear Arithmetic

The facilities for semi-automatic arithmetic reasoning that we have discussed so
far can be used effectively in many applications. However, some of the techniques
are a little tedious to apply and the various labour-saving tricks which can be
used to compensate are easy to forget.

A procedure which is occasionally useful is the conversion z anf conv which
implements an arithmetic normal form for expressions formed using the basic
arithmetic operators. For example, this conversion will automate the work we
did by hand in the example of section 6.3 above:
SML

val thm27 = save thm("thm27",
z anf convpZ(x + y) ∗ (x + y) + ∼(x∗y)q);

ProofPower Output

val thm27 = ` (x + y) ∗ (x + y) + ∼ (x ∗ y)
= x ∗ x + x ∗ y + y ∗ y : THM
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Building on the conversion for arithmetic normal forms, a fully automatic
approach to a useful class of problems is provided in the shape of a decision
procedure for (quantifier-free) linear arithmetic. Here linear arithmetic means
the theory of the additive arithmetic operators together with multiplication by
numeric literals. This is based on the algorithm described by Hodes in [7]. Let’s
see it in action on part of a larger problem, which is not itself a theorem of linear
arithmetic since its truth depends essentially on multiplication by variables.

SML

set pc"z library";
set goal([], pZ S 0 = 0 ∧ (∀i :N•S (i + 1 ) = S i + (i + 1 ))

⇒ (∀j :N• 2∗S j = j ∗ (j + 1 ))q);
a(REPEAT strip tac);

ProofPower Output

(∗ 3 ∗) pZS 0 = 0q

(∗ 2 ∗) pZ∀ i : N • S (i + 1 ) = S i + i + 1q

(∗ 1 ∗) pZ0 ≤ jq

(∗ ?` ∗) pZ2 ∗ S j = j ∗ (j + 1 )q

Note how the condition j ∈ N has been normalised by the proof context
into 0 ≤ j . This makes it convenient for us to proceed by induction:

SML

a(z ≤ induction tacpZjq);

ProofPower Output

...

(∗ ∗∗∗ Goal "1" ∗∗∗ ∗)

(∗ 2 ∗) pZS 0 = 0q

(∗ 1 ∗) pZ∀ i : N • S (i + 1 ) = S i + i + 1q

(∗ ?` ∗) pZ2 ∗ S 0 = 0 ∗ (0 + 1 )q

The base case is solved by rewriting with the assumptions (together with the
arithmetic evaluation carried out by dint of the proof context that we are using).

SML

a(asm rewrite tac[]);
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ProofPower Output

Tactic produced 0 subgoals:
Current goal achieved , next goal is:

(∗ ∗∗∗ Goal "2" ∗∗∗ ∗)

(∗ 4 ∗) pZS 0 = 0q

(∗ 3 ∗) pZ∀ i : N • S (i + 1 ) = S i + i + 1q

(∗ 2 ∗) pZ0 ≤ iq
(∗ 1 ∗) pZ2 ∗ S i = i ∗ (i + 1 )q

(∗ ?` ∗) pZ2 ∗ S (i + 1 ) = (i + 1 ) ∗ ((i + 1 ) + 1 )q

To turn the inductive step into a problem of linear arithmetic, we must apply
the conditional rewrite rule given by assumption 3. Forward chaining does the
work of specialising the assumption for us:
SML

a(ALL ASM FC T rewrite tac[]);

ProofPower Output

...

(∗ 1 ∗) pZ2 ∗ S i = i ∗ (i + 1 )q

(∗ ?` ∗) pZ2 ∗ (S i + i + 1 ) = (i + 1 ) ∗ ((i + 1 ) + 1 )q

We now apply the linear arithmetic proof procedure (which is packaged in a
proof context called z lin arith) to complete the proof.
SML

a(PC T1"z lin arith" asm prove tac[]) (∗ Done! ∗);

6.7 Other Operators

The arithmetic operators not covered by the methods discussed so far succumb
to relatively simple methods

A few basic facts such as the triangle inequality give adequate cover for the
absolute value function abs and the successor function is easily eliminated in
favour of addition.

The integer range function crops up quite often in declarations. Membership
of a range, e.g., x ∈ i .. j , can be eliminated in favour of a pair of inequalities,
i ≤ x ∧ x ≤ j .

Relational iteration might be worthy of some more specialised support, but
we have not yet felt the need. Direct reasoning from the definition has proved
satisfactory to date.
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7 Finiteness

This section of the toolkit provides the notions of finiteness and of the size of a
finite set. It introduces the operators listed in the following table:

F X set of all finite subsets of X
F1 X set of all non-empty finite subsets of X
# X size (i.e., number of elements) of a finite set X

X 7 7→ Y , X 7 7� Y sets of finite partial functions and finite partial injections

The finite powerset operator, F, has the following generic defining property.

` [X ](F X = {S : P X | ∃ n : N • ∃ f : 1 .. n → S • ran f = S})

Our first step is to recast this in terms of an inductive definition given by
the following theorem called z F thm1 ;

` [X ](F X =
⋂
{u : P P X | {} ∈ u ∧ (∀ x : X ; a : u • a ∪ {x} ∈ u)})

Note how this reduces the notion of finiteness to set theory, eliminating all
mention of arithmetic. Arguably, this would be a better definition for F, but our
approach is to take the toolkit as it comes and use theorem-proving to rectify
any shortfalls.

The proof of z F thm1 involves quite an amount of combinatorial reasoning
and a number of useful lemmas about functions and integer ranges are proved
en route. This all serves as a nice test of the support for the earlier sections of
the toolkit.

A fairly immediate consequence of z F thm1 is an induction principle: to
prove that a property, holds of all finite subsets of X, show that it holds of
the empty set and is preserved under singleton extensions. Using this induction
principle, we can prove the following theorem:

` [X ](F X = P X ∩ (F ))

This theorem allows us to separate concerns when reasoning about finiteness.
The idiom A ∈ (F ) (i.e., A ∈ FU ) just says that the set A is finite without
regard to what set A is contained in. We use this idiom systematically in the
rest of the theory.

Our next step is to attack the size function, #. The following theorem (called
z F size thm) underpins most reasoning about #:

` ∀ A : U ; f : U ; n : N | f ∈ 1 .. n �� A • A ∈ (F ) ∧ # A = n

I.e., to show A is finite with #A = n, it suffices to exhibit a bijection
between 1 .. n and A.

We can then show that finiteness is preserved by the usual set forming oper-
ators, and give rules for computing the size of unions etc. Typical theorems in
this part of the development are the following:
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` ∀ a : (F ); x : U | ¬ x ∈ a • # (a ∪ {x}) = # a + 1
` ∀ a, b : (F ) • a ∪ b ∈ (F ) ∧ # (a ∪ b) + # (a ∩ b) = # a + # b

The first of these two can be proved using z F size thm and a direct com-
binatorial construction. The second is then proved using the first and finite set
induction.

Mainly as a test of the utility of the earlier material the current treatment
of finiteness concludes by proving the pigeon-hole principle:

` ∀ u : F (F ) | # (
⋃

u) > # u • ∃ a : u • # a > 1

In words: if u is a finite family of finite sets and the union of u has more
elements than u, then some a in u has more than one element.

No decision procedures for finiteness and counting have yet been provided.
However, mainly for use with Ada data types in the Compliance Tool, compu-
tational conversions are provided for some cases of the size operator.

8 Sequences

This section of the toolkit provides operations for working with sequences rep-
resented as finite functions with domains of the form 1 .. n. It introduces the
operators listed in the following table:

seq X set of all sequences of elements of X
seq1 X set of all non-empty sequences
iseq X set of all injective (i.e., repetition-free) sequences
a , a/ binary concatenation, distributed concatenation

head, last,
tail, front,
rev

lisp-like operators for sequences viewed as lists

s � X filter non-members of X out of sequence s

The set, seq X of all sequences with elements in X, has the following generic
definition.

` [X ](seq X = {f : N 7 7→ X | dom f = 1 .. # f })

The use of the finite function arrow here is a major source of difficulty in
the absence of a well-developed theory of finiteness. Fortunately, the theory
described in section 7 above makes it relatively straightforward to prove the
following much simpler characterisation.

` ∀ X : U • seq X =
⋃
{n : N • 1 .. n → X }

This theorem and some simple combinatorial arguments entail an induction
principle: to prove that a property holds of all sequences, show that it holds of
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the empty sequence and is preserved under extension of a sequence by concate-
nating with a singleton sequence. In fact, variants on this induction principle are
probably desirable but have not yet been included in the ProofPower treatment.

Elementary properties of concatenation such as associativity may then be
proved. Largely due to lack of demand in our applications, a comprehensive
treatment of the remaining operators has not yet been provided at the time of
writing.

It turns out that reasoning about sequences has a rather schizophrenic nature.
Sometimes the abstract view of sequences captured in the inductive principle
works fine, and then in the very next step one has to delve into the details
of a construction of a sequence as an explicit finite function. This is probably
indicative of shortfalls in both approaches; articulating and implementing a more
comfortable approach is an interesting area for future work.

9 Others

The remainder of the toolkit comprises some miscellanea concerned with indexed
families of sets (disjoint, partition) and sets of numbers (min, max), and a
theory of multisets, which it refers to as bags. No special support for these things
is currently provided in ProofPower, although much of the support for the
earlier material does apply to them; disjoint and partition at least are very
straightforwardly handled just using their definitions.

10 Concluding Remarks

In this final section, I draw some conclusions on what it takes to provide effective
mechanical support for proof with the Z mathematical toolkit. These remarks
attempt to focus on issues which are not specific to ProofPower.

10.1 Language and Logic

I take it as given that any proof tool for Z will have means for handling the basic
constructs of the language and so have concentrated in this paper on the extra
facilities required to make good progress with the toolkit. Nonetheless, it should
be pointed out that it is important to have systematic facilities for handling the
various language constructs. In a system like ProofPower these facilities are
largely the domain of people programming new proof procedures.

Purely logical reasoning is often trivial but always necessary and users of
a theorem-prover have a right to expect it to be easy. Propositional reasoning
should be fully automatic and a systematic approach for predicate reasoning
is required. A fully automatic procedure, e.g., based on resolution, is highly
desirable, even if it is limited to small problems. In ProofPower, the stripping
technique implements an evident goal-oriented sequent calculus approach to the
propositional structure of a problem which scales up into a component in a
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method for predicate calculus reasoning. A resolution based prover is available
and widely used.

The treatment of purely logical problems need to be well integrated with the
approaches to proof in specific domains. The proof context mechanism achieves
this in ProofPower by letting the designer of proof support for a particular
theory provide parameter settings which extend the power of techniques like
stripping to embrace domain-specific simplifications.

10.2 Sets, Relations and Functions

Sets, relations and functions are the bread and butter of most Z specifications.
The basic facts about sets and relations permit a straightforward reduction to
pure logic and any theorem-prover should make it convenient for the user to
exploit this. The extensional method provided by ProofPower for working with
the set-theoretic and relational operators achieves this nicely. A less “expansion-
ist” approach is convenient for working with the operators when they are used in
applications of set theory in other theories. In ProofPower the algebraic proof
contexts serve this purpose.

It is important to be able to exploit facts about membership of function
spaces when reasoning about function application. Theorems allowing this type
of reasoning are necessary and semi-automatic or automatic means for using
these theorems are highly desirable. The definitions of the function arrows give
rise to some mathematically trivial, but often logically tedious, difficulties. These
can be ameliorated by a systematic approach to recasting the definitions. A
prolog-like prover to solve the “type inference” problem of section 5 has good
potential, but in ProofPower currently requires some further engineering work.

10.3 Arithmetic

For basic support of the arithmetic operators, the basic methods of elementary
algebra such as multiplying out and cancelling like terms are vital as are many
other basic properties. Further automation in the shape of automatic tools pro-
viding suitable normal forms for arithmetic expressions are also very important.
Facilities for computing numeric literal expressions is essential and the further
development of the theory is greatly eased by automation of a significant frag-
ment like linear arithmetic.

10.4 Finiteness, Sequences and the Rest

When working with the later parts of the toolkit, one is putting to the test the
support for what has come before. Success with the earlier sections of the toolkit
will lead to success here.

Developing the theory of finiteness is mainly a question of carrying out the
not entirely trivial combinatorial arguments which underpin the naive theory of
counting. It is not yet clear whether any major fully automated techniques have
a role to play in this part of the toolkit.
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There has been a lot of work in other contexts on automatic reasoning about
lisp-like lists. This work does not apply directly to Z because it uses functions
to represent sequences. However, the Z approach has an excellent mathematical
pedigree. Reconciling the two points of view poses a challenge, but not I think
an insoluble one.

10.5 General Strategy

Our approach to each section of the toolkit broadly follows a general paradigm
for building a useful theory. First of all one tries to develop systematic methods
of tackling the basic vocabulary of the theory “from first principles”. In the case
of sets and relations, this is via a reduction to logic; in the case of arithmetic it
is via theorems which enable standard arguments from elementary algebra to be
worked through step by step.

The next step is to provide methods appropriate for applications of the the-
ory. These methods will generally avoid excessive expansion of definitions and
other transformations which detract from the user’s intuitions about the theory.
Methods based on actual and symbolic computation are particularly valuable,
if the theory admits them (cf. the discussion of the size operator in section 7
above). If the theory admits useful normal forms, then these should also be sup-
ported, but should not be forced on the user (since normal forms sometimes go
against the grain of a chosen line of argument).

Identifying useful classes of problem which admit automatic proof is worth-
while throughout the process. The difficulty of providing decision procedures will
obviously depend on the problem domain, many domains having been the subject
of quite extensive research over the years. Selection of the decision procedures
to provide involves several trade-offs. Ease of use and breadth of application
should feature high on ones list of criteria for a decision procedure, as should
the smoothness of integration with other methods.

Our experience has been that raw implementation of the “big” algorithms
(like resolution or the linear arithmetic prover) occupies only a small part of
the development effort. The bulk of our work has gone into ensuring a uniform
and integrated interface and in trying to minimise the number of blind alleys
(or at least dark corners) into which a carelessly designed proof tool can lead its
unsuspecting user.

Acknowledgments

I gratefully acknowledge the many contributions to ProofPower and its coverage
for the Z toolkit made by the former members of the High Assurance Team at
ICL: Kevin Blackburn, Adrian Hammon, Andrew Hayward, Barry Homer, Roger
Jones, David King, Gill Prout, Geoff Scullard and Roger Stokes.

The original development of ProofPower was jointly funded by ICL and
the UK Department of Trade and Industry. Subsequent developments have been
funded by ICL and by the Defence Research Agency, Malvern. ProofPower is
now being distributed and further developed by Lemma 1 Ltd.

35



References

1. A.N.Whitehead and B.Russell. Principia Mathematica. Cambridge University
Press, 1910. 3 vols.

2. R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
3. P.M. Cohn. Algebra, volume 1. John Wiley & Sons, Inc., 1974.
4. Michael J.C. Gordon. HOL:A Proof Generating System for Higher-Order Logic. In

G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis. Kluwer, 1987.

5. Michael J.C. Gordon. Mechanising Programming Logics in Higher Order Logic.
In G. Birtwistle and P. A. Subrahmanyam, editors, Proceedings of the 1988 Banff
Conference on Hardware Verification. Springer-Verlag, 1988.

6. Michael J.C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh
LCF. Lecture Notes in Computer Science. Vol. 78. Springer-Verlag, 1979.

7. Louis Hodes. Solving Problems by Formula Manipulation in Logic and Linear
Inequalities. Proceedins of the 4th International Joint Conference on Artificial
Intelligence, pages 553–559, 1971.

8. D.J. King and R.D. Arthan. Development of Practical Verification Tools. Ingenuity
— the ICL Technical Journal, 1996.

9. L.Paulson. A Higher-order Implementation of Rewriting. Science of Computer
Programming, 3:119–149, 1983.

10. L.Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cam-
bridge University Press, 1987. Cambridge Tracts in Theoretical Computer Science
2.

11. C. T. Sennett. Demonstrating the Compliance of Ada Programs with Z Specifi-
cations. In R.Shaw, editor, 5th Refinement Workshop, Workshops in Computing,
pages 88–118. Springer-Verlag/BCS-FACS, 1992.

12. J.M. Spivey. The Z Notation: A Reference Manual, Second Edition. Prentice-Hall,
1992.

13. ECS-LFCS-86-2. Standard ML. R. Harper, D.B. MacQueen, and R. Milner, Uni-
versity of Edinburgh, 1986.

36


