ClawZ: Control lawsin Z

R. Arthan
Lemma 1 Ltd, UK
rda@lemma-one.com

Abstract

ClawZ is a prototype tool whose objective is to link the
Simulink® control engineering tool, from MathWorks, with
the ProofPower® dialect of Z. It provides a bridge be-
tween the use of Simulink to define control law diagrams
and a tool to formally prove compliance between Ada and
Z. The tool has been used as part of the formal proof of
a Non-linear Dynamic Inversion flight control system com-
prising 37 pages of diagrams, 45 pages of Z and 1200 lines
of non-comment Ada.

1 Introduction

ClawzZ (pronounced Claws) is a research prototype
whose objective is to link the Simulink [1] system with the
ProofPower [2] dialect of Z [3] and, in particular, to pro-
vide a bridge between the use of Simulink to define con-
trol law diagrams and the use of the Compliance Tool [4, 5]
component of ProofPower to formally prove compliance
between Ada programs and their Z specifications.

ClawZ operates by translating a Simulink model into a
Z specification. This Z specification can then be used in
conjunction with a library of supporting definitions to con-
struct a Compliance Argument which can then be formally
verified using ProofPower. Figure 1 illustrates the main
inputs and outputs of this process. A rectangle denotes a file
and the oval denotes a program.

The rest of this paper is structured as follows. Section 2
gives a more detailed technical overview of what ClawZ
does based on a simple example model. Section 3 describes
the use of the ClawZ translator to translate a Simulink mod-
el file into Z. Section 4 describes a complete compliance
argument based on the example presented in section 2. Sec-
tion 5 gives the proof scripts for the compliance argument
given in section 4. Section 6 descibes how the approach
can be extended to multirate control laws and control laws
whose implementations are distributed and running concur-
rently. Section 7 describes the relationship to other work.

P. Casdley, C. O’'Halloran, A. Smith
DERA Malvern, UK
{p.caseley, c.ohalloran,
a.smith} @eris.dera.gov.uk

Section 8 describes how ClawZ has scaled up to large con-
trol laws and the plans for the future.

Library Metadata Filej

Translator

ClawZz
Trandation

Trandator Steering Fi I%

ClawZ Library

i

package ...
procedure ...

Verification
Conditions

Compliance Argument

Z Trandation

Figure 1. ClawZ Process

2 Overview of ClawZ

2.1 Asimple Simulink model

To give an overview of the operation of ClawZ, it is help-
ful to give a simple example of a Simulink model. Figure 2
shows a model comprising an input port, In1 and an output
port Out! connected by a unit delay block, DelayBuffer.

This models a system which derives an output signal from
an input signal. The input signal, I say, is sampled at reg-
ular time intervals® to give a sequence of discrete inputs
Iy, 1,1y, The output signal, O say, will then comprise
the sequence 0,1y, 11, 1o, l.e., O isdefinedby Oy = 0
and O; = I;_; (i > 0).

CO—> : D

Inl Outl
DelayBuffer

Figure 2. A Simple Simulink Model

Control engineers use z-transforms (not to be confused
with the Z specification language) to transform a dynamic
system modelled as function of time to a function of an alge-
braic variable z. Operations such as integration and differ-
entiation then become simple multiplications by a function
of 2.

In the parlance of z-transforms, the unit delay operator
of our simple model corresponds to multiplication by <, so
Simulink labels the unit delay block in figure 2 with . In
a software implementation of the model, the unit delay cor-
responds to a buffer, so we have chosen to name the block
DelayBuffer.

2.2 ThemodelinZ

The purpose of ClawZ is to translate a Simulink model
into a Z specification. The Z translation of the model of
figure 2 is shown in figure 3. The model has resulted in two
Z schemas.

The first schema corresponds to the library block,
DelayBuffer. The name, unitdelay, of the model has been
used as a prefix for the schema name to reflect the position
of the block in the hierarchic structure of the model. The
schema unitdelay_ DelayBuffer is defined in terms of a li-
brary function UnitDelay_g with initial value zero. This
library of Z definitions will be discussed in more detail in
section 2.3 below.

The second schema unitdelay represents the wiring of
the diagram in figure 2. Its declaration part declares the
three blocks which appear in the diagram (input port, u-
nit delay block, and output port). The predicate part of the
schema gives equations indicating that the output and input
of the unit delay block are wired to the output port and input
port respectively.

1This is a discrete model. Simulink also supports continuous models
and hybrids. Currently, ClawZ is mainly applicable to discrete models.

z

| unitdelay_DelayBuffer = UnitDelay_g(X0 = 0)

z
__unitdelay

In1? : U;
DelayBuffer : unitdelay_ DelayBuffer;
Outl!: U

DelayBuffer.Out1! = Outl!;
In1? = DelayBuffer.In1?

Figure 3. The Simple Model in Z

2.3 Overview of the ClawZ library

As the simple example has shown, the semantics of
Simulink library blocks like the unit delay block is carried
into Z by a library of Z definitions. These definitions are
typically generic functions, which when applied to appro-
priate arguments result in operation schemas following the
usual Z conventions augmented with a special convention
for handling initial values.

Figure 4 shows the definition of the library function
UnitDelay_g that is used in the translation of our simple
example. The function is generic with respect to the type,
X, of the inputs and outputs of the unit delay block. In our
example, X = Z.

The function is parametrised by a Z binding giving the
initial value of the state; applying the function to a particular
binding, say (X0 = 0), as was done in figure 3, results in
a schema equivalent to the one shown in figure 5.

As can be seen in figure 5, the ClawZ library function-
s adopt the convention of including the initial value of the
state of a schema as a component in the schema. In our
example, the initial value of 0 has been picked up from
the “initial condition” parameter of the Simulink unit delay
block in figure 2.

z

—[X]
UnitDelay_g : [X0 : X] —
P [In1?, initial_state, state, state’, Outl! : X]

V pars : [X0 : X] e
UnitDelay_g pars =
[In1?, initial_state, state, state’, Outl! : X |
initial_state = pars. X0 A
Outl! = state A
state’ = In1?]

Figure 4. The Unit Delay Library Block in Z

Informa Z

__unitdelay_ DelayBuffer
In1?, initial_state, state, state', Outl! : Z

initial_state = 0;
Outl! = state
state' = In1?

Figure 5. The Unit Delay Library Block Instan-
tiated

3 Using the translator
3.1 Files Used by the Translator

As suggested in figure 1, the ClawZ translation process
involves four files. The first is the Simulink model file. This
is the file produced when a Simulink model is saved and is
the main input to the translation process. The suffix “.mdl|”
is normally used for this file, e.g., “unitdelay.mdl”.

The second file involved in the translation process con-
tains the Z translation of the Simulink model and is the out-
put of ClawZ. This is the file where the translator writes
the Z translation of the model. The output file is written
in ProofPower ASCII format to make it easy to transport
between systems. To convert it to the ProofPower ex-
tended character set, the program “conv_ext ended” can
be used which is supplied with the ProofPower document
preparation package.

The third file involved in the translation process is the
library metadata file. This file contains a description of the
library blocks supported by ClawZ in a format that allows
the translator to select the most appropriate Z translation for
a library block. The full Z definitions of the library block-
s, such as UnitDelay_g in figure 4, are held in a separate
file. If the model uses blocks that are not supported by the
supplied library, the library can be extended by the user.

The fourth file involved in the translation process is the
translator steering file. This file controls the way the trans-
lator maps Simulink names to Z identifiers. It is optional: if
no translator steering file is provided, then the translator will
use a default algorithm for the mapping. More information
on this file is given in section 3.3 below.

3.2 ClawZ diagnostic output

When ClawZ translates a Simulink diagram it produces
various error and/or warning messages.

The translation process has two main phases: a parsing
phase when the model and other input files are read and
checked and a semantic phase in which the model is anal-
ysed and translated. At the end of the semantic phase, the Z
translation is written to the output file.

Errors during the parsing phase are generally fatal, al-
though some warning messages may be generated. Typical-
ly a parsing error might indicate that the model had come
from an incompatible version of Simulink or might arise
from an error in the translator steering file or the library
metadata file.

The translator attempts to recover from errors during the
semantic phase. The most common error in this phase is
when the translator encounters a usage of a library block
that it cannot translate. In this circumstance, it generates an
error message and continues, effectively ignoring the prob-
lematic block. This enables an assessment of the coverage
of the supplied library for the model and a decision as to
whether it will be feasible to extend the library to cater for
the model.

The line number in the error message for an unsupported
block refers to the subsystem containing the block, not the
block itself, so generally a text editor will have to be used to
search for the block. The block name and type is included
in the error message.

3.3 Translator steering file
The translator steering file allows the translator’s algo-

rithm for mapping Simulink names into Z to be overridden.
The format of this file is as shown in the following example:

NameMappi ng {
Uni t Del ay
Zer oOr der Hol d

}

“Unit Del ay"
"Zer o- Order\ nHol d"

Each line in the body of the file contains a Z name fol-
lowed by a Simulink name (or list of same, separated by
underscores, constituting a hierarchic name reflecting the
position of a block within a model). The Simulink names
must be enclosed in quotation marks. The idea is that if
an association between a Z name and a Simulink name is
specified in this file, the translator will use the association
specified instead of its default algorithm for that Simulink
name.

Right at the end of the translation process, the translator
outputs a list of the Simulink names that it could not use
directly as Z names. This list is in the same format as the
translator steering file, so can be copied into a file and used
as the basis for a translator steering file giving the preferred
translation for these names (or any other names in the mod-
el).

4 Demonstrating compliance to the Z trans-
lation

In this section we give a Compliance Argument for an
implementation of our simple example. This will formally
argue that the implementation complies with the Z transla-
tion of the control law diagram.

Our plan is to implement the unit delay model using an
Ada package along the following lines (in which, for sim-
plicity, we have made the state variable global).

package UnitDelay is
del ay_buffer i nteger;
procedure step(sig_in : in integer;
sig_out : out integer);
end Unit Del ay;

To relate this to the Z specification, we need an interface
schema to relate the variables in the specification with the
program variables. To construct the interface schema, we
first of all define a schema declaring the relevant program
variables. Note that the Compliance Tool normalises Ada
names into upper case and uses a subscript 0 to distinguish
the before-values of program variables.

z

— UnitDelayProg Vars
| DELAY _BUFFER,, DELAY _BUFFER,
| S

|

IG_IN, SIG_OUT : INTEGER

Now we define the interface schema which relates the
input, output and state variables of the Z specification to
their corresponding program variables.

4
___UnitDelayInterface
unitdelay;
UnitDelayProgVars

In1? = SIG_IN;

Outl! = SIG_OUT;

DelayBuffer.state = DELAY _BUFFERy;
DelayBuffer.state’ = DELAY _BUFFER

We can now give the formal specification of the pack-
age, in which we existentially quantify over the schema
unitdelay so that only the program variables appear free in
the post-condition. The list of variables after the A symbol
are those variables whose values are allowed to change.

Compliance Notation
|package UnitDelay is
delay_buffer :
procedure step(sig_in :

integer;
in integer;
sig_out : out integer)
A DELAY _BUFFER, SIG_OUT
[3 unitdelay o UnitDelayInterface];
end UnitDelay;

Finally, we give the implementation of the package, i.e.
the package body. Note that the post-condition of proce-
dure step has been refined to a simpler form that just in-
volves program variables, which in turn has been refined
to a sequence of two Ada assignments. Verification Condi-
tions (VCs) that demand these refinements are correct are
generated by the Compliance Tool when the package body
is processed.

Compliance Notation
package body UnitDelay is
procedure step(sig_in : in integer;
sig_out : out integer)
A DELAY _BUFFER, SIG_-OUT
[DELAY _BUFFER = SIG_IN A
SIG_OUT = DELAY _BUFFER,]
18
begin
sig_out := delay_buffer;
delay_buffer := sig_in;
end step;
begin
A DELAY _BUFFER
[3 unitdelay o
DelayBuffer .initial _state = DELAY _BUFFER)
end UnitDelay;

Notice that a specification statement has been placed in
the package initialisation demanding that the initial value of
the program state variable is that specified in the Z specifi-
cation. This specification statement is then refined to code
which generates a further VVC.

Compliance Notation

|E delay_buffer = 0;

The compliance argument is now complete. It generates
four Verification Conditions (VCs). For completeness, the
script to prove these VCs is given in section 5 below.

5 Proofs of the verification conditions

We now prove the VCs generated from the compliance
argument above. First we use the Compliance Notation
proof support tools to set up a proof context in which to
work. This makes the Z translation of the control law di-
agram and the Z schemas declared during the compliance
argument available for proof.

SML
| all_cn_make_script_support”unitdelay_pc";

|push_pc" unitdelay_pc";

Now we begin the proofs.

SML
|set_goa1(
|[], get_conjecture" —"" vcUNITDELAYbody_1");

ProofPower Output

|Now 1 goal on the main goal stack
|
| * kkk Goal """ xxx %)
|
I

x 7F %) Ttrue = true”

This trivial VC arises from the empty preconditions and
is proved just by stripping. This proof tactic includes re-
moving universal quantifiers from the conclusion and mov-
ing antecedents into the assumptions. The conclusion is lit-
erally stripped of content, hence the name of the tactic. In
this case the conclusion will become ¢rue and hence the VC
is proved. The a is an abbreviation for apply _tactic. The
resulting theorem is then saved.

SML
a(REPEAT strip-_tac);
save_pop_thm" vcUNITDELAYbody_1";

SML
set_goal(

[, get_conjecture" —"" vcUNITDELAYbody 2");

ProofPower Output

Now 1 goal on the main goal stack
(x xxx Goal "" #¥x %)

(* 7+ x) 'V DELAY _BUFFER,
DELAY _BUFFER, : INTEGER,;
SIG_IN : INTEGER,;
SIG_OUT : INTEGER
| true N DELAY _BUFFER = SIG_IN
A SIG_.OUT = DELAY _BUFFER,
o 1 unitdelay o UnitDelayInterface™

This VC is ensuring that the program-oriented post-
condition used for the procedure step in the package body
meets the post-condition derived from the Simulink mod-
el as used in the package specification. We apply the usu-
al simplifications for Compliance Notation VCs (which in-
clude rewriting with all applicable definitions in our present
proof context) and then strip the goal. We then have an exis-
tential goal with an obvious witness: the only possible bind-
ing that meets the constraints of the interface schema. After
supplying this witness, we have only to expand with the
definition of UnitDelay_g, which requires a little work be-
cause it is generic. The function z_gen_pred_elim is used
to instantiate the generic definition of UnitDelay_g in sec-
tion 2.3 with type Z.

SML
a(cn_vc_simp_tac[] THEN REPEAT strip_tac);
a(z_3_tacl (In1? = SIG_IN,
DelayBuffer = (
state = DELAY_BUFFER,,
state’ = DELAY_BUFFER,
In1? = SIG_IN,
Out1! = SIG_OUT,
initial_state = 0),
Out1! = SIG._OUT)");
a(cn_vc_simp_tac[] THEN
asm_rewrite_tac[z_gen_pred_elim[ergPZj]
cn_UnitDelay_g thm]);
|save_pop_thm" vcUNITDELAYbody_2";

SML
set_goal(
[, get_conjecture" —" " vcUNITDELAYbody.3");

ProofPower Output

Now 1 goal on the main goal stack
(x xxx Goal "" #xx x)

(* 7 x) 'V DELAY_BUFFER : INTEGER;
SIG_IN : INTEGER
o SIG_IN = SIG_IN A
DELAY _BUFFER =
DELAY _BUFFER™

This third VC is the one that ensures the body of the
procedure step satisfies the post-condition in the procedure
header. Stripping proves it immediately.

SML
|a(REPEAT strip_tac);
|save_pop_thm" vcUNITDELAYbody_3";

SML

|set_goal([], get_conjecture" —""vc_1_1");

ProofPower Output
|Now 1 goal on the main goal stack

(* **x Goal KKK k)
(x 7= %) Ttrue =
(3 unitdelay o
DelayBuffer.initial _state = 0)™

This fourth and last VVC is ensuring that the package ini-
tialisation code satisfies its post-condition. The proof is
very similar to that of the second VC.

SML
a(cn_ve_simp_tac[]);
a(z_3_tact(In1? = 0,
DelayBuffer = (
state = 0,
state’ = 0,
Inl? = 0,
Outi! 2 0,
initial state = 0),
Outl! = 0)7);
a(rewrite_tac[z_gen pred_elim[[USPZT
cn_UnitDelay_g_thm]);

save_pop_thm"ve_1_1";

That completes the proofs for the unit delay example.

6 Extending the approach using CSP

The translation currently performed by the ClawZ tool is
biased towards sequential code on a single processor. In-
deed neither the SPARK language nor the compliance tool
currently directly supports distributed applications or con-
currency. Further the ClawZ tool assumes single rate, dif-
fering execution rates are not part of the Z model produced
by the tool.

Unfortunately it is not unusual for a control law, for ex-
ample in a flight control system, to be distributed over a
number of microprocessors and communicate by means of
variables held in a globally accessible memory. This leads
to problems of race conditions in the computation of the
control law, for example a shared global variable can be
overwritten before it is read or stale data might be read.
These problems are solved by a cyclic scheduler with a s-
ingle global clock. This imposes the logical structure ex-
pressed in a control law diagram without losing advantages
of concurrency. The problem now becomes how to verify
the correctness of these schedulers with respect to the orig-
inal diagram.

The approach taken by the Systems Assurance Group at
DERA Malvern has been to combine the verification tech-
nology of the compliance tool with the verification tech-
nology of FDR for concurrent entities expressed in the lan-
guage of Communicating Sequential Processes, CSP [6]. A
CSP model has been developed that faithfully represents the
flow of control through the individual boxes or subsystems
of a control law diagram, even when parts are running at a
different rate to the rest of the diagram. The functionality
of the boxes or subsystems has been deliberately abstracted

away. In the CSP model a box can only fire when its inputs,
the outputs of previous boxes, are enabled by these previous
boxes firing. The inputs to the whole diagram are assumed
to be enabled. This model of the diagram acts as the speci-
fication against which an implementation can be verified.

The implementation is a set of subsystems that commu-
nicate synchronously due to the schedulers and a common
view of time. The output from a subsystem can occur with-
out synchronizing with any other output or input. The on-
ly synchronization that must occur is between schedulers
on the different microprocessors with a *tock’ of the global
clock. The CSP refinement checks the data flow in the dis-
tributed concurrent implementation is the same as the logi-
cal data flow in the original control law diagram.

The ClawZ tool will be extended to produce the descrip-
tions necessary for the CSP models as well as the comple-
mentary Z descriptions of the functionality of the subsys-
tems. The subsystems are implemented in Ada as scheduled
procedure calls, each of these procedures are separately ver-
ified using the compliance tool. The distributed scheduling
is verified using FDR, the refinement verification tool that
employs model checking .

7 Relationship to other work

There are three possible approaches to solving this prob-
lem: follow a method of “correct by construction”; demon-
strate that the implementation of the autocoder is correct; or
demonstrate compliance between a control law representa-
tion and code generated from it for each critical application.

The correct by construction approach is being investi-
gated by Lucas Aerospace under a contract from the UK
MOD [7]. A functional specification representing the con-
trol law diagram is transformed using already proven laws
into code. This is an ambitious approach which is equiv-
alent to developing a refinement calculus for control law
diagrams. It is not clear to what degree the transformations
could be automated, but potentially it could provide a very
useful tool for cost effective verified code generation. Un-
fortunately the commercial market is such that tools such as
Simulink and MATRIX,® [8] will be more widely adopted.
This is because of the extra and improved facilities which
they will provide on a regular basis in response to the mar-
ket.

To demonstrate that an autocoder is correct to the same
level of rigour as the correct by construction approach re-
quires proof. This is an arduous task of the same level of
difficulty as the correct by construction approach. This ap-
proach also suffers from the competition from COTS tools
such as Simulink.

The final approach of demonstrating compliance be-
tween an individual control law and its implementation has
been described in this paper and is at least an order of mag-

nitude easier, but needs to be repeated for each control law.
Tools such as Simulink also support automatic code gener-
ation. The advantage of tool generated code is that it does
it in a consistent manner. This means that machine support
can be developed which will ease the burden of proof, in
this limited domain, quite considerably. The main advan-
tage of the approach advocated is that it can be used with
COTS tools such as Simulink and MATRIX.

8 Conclusions

The ClawZ tool has been validated against a significan-
t flight control law supplied by the control theory group
at DERA Bedford, UK. The control law consisted of 37
pages (each denoting a subsystem) and comprised of ap-
proximately 275 basic library control blocks. The whole
control law diagram described the basic functionality need-
ed to provide flight control for a whole aircraft. When the
ClawZ tool was first run on this control law it was able to
translate 90% of the diagram. The remaining 10% was later
translated by updating the ClawZ library. Indeed the 1200
lines of Ada code implementing the diagrammatic specifi-
cation was formally proven correct using the Compliance
Tool. This required 60 person days of effort a dramatic re-
duction in effort, and therefore cost, over similar activities
in the past.

The ClawZ library has now been sufficiently extended to
translate the flight control law for the experimental VAAC
(Vectored thrust Aircraft Advanced flight Control) Harri-
er. The VAAC Harrier control law is 10 times larger than
the original control law supplied by DERA Bedford. These
case studies demonstrate that the ClawZ tool is robust and
scalable to realistic systems. It also demonstrates that the
ClawzZ library could be extended to include all the discrete
library blocks of Simulink and even used in the Simulink
manuals as a definition of their semantics. Indeed the com-
plete ClawZ translation of a control law diagram can be
used as its semantics.

Interestingly a small change to a control law diagram can
result in a very different Simulink “.mdI” (model) file when
saved. This file is an ASCII representation of the diagram
which Simulink can read back in to re-draw the diagram.
This makes a comparison of the two control laws (the orig-
inal and slightly changed control law) using conventional
differencing tools (tools which compare two files and re-
port on their differences) almost impossible. However the
ClawZ translation of the two control laws will reflect their
diagrams and therefore differ only slightly where the actu-
al functionality has changed. Differencing can therefore be
performed using their Z translations.

The current ClawZ tool although robust and scalable is
still limited to certain kinds of control systems. For example
it cannot cope with multirate control systems. A multirate

system contains blocks that are sampled at different rates,
ClawZ assumes the sampling rate is identical throughout
the system. The only other major issue facing ClawZ is that
an implementation of the control law could be distributed
and running concurrently. Both of these issues occur in real
aerospace control systems. Fortunately the current research
project is addressing both of these issues using CSP and
the FDR refinement checking tool. A solution requiring the
production of CSP, as well as Z, (a relatively small change
in the ClawZ tool) is close at hand.

Further information about ClawZ can be obtained
from URL http://www.lemma-one.com/clawz_docs/clawz_
docs.html

References

[1] Simulink, A tool for modeling, simulation and
implementation of control systems, see URL
http://www.mathworks.com.

[2] ProofPower, A tool for specifying and reasoning
in Z, available from Lemma 1 Ltd, c/o Inter-
glossa, 2nd Floor, 31A Chain St, Reading, Berk-
s RG1 2HX, UK, see URL http://www.lemma-
one.demon.co.uk/ProofPower.

[3] J Davies & J Woodcock, Using Z, Prentice Hall series
in computer science, 1996.

[4] C O’Halloran, R Arthan & D King, Using a formal
specification contractually, Formal Aspects of Com-
puting Journal, Springer, Vol 9, No 4, 1997.

[5] C O’Halloran & A Smith, Verification of Picture-
Generated Code, Proceedings of the 14th IEEE Inter-
national Automated Software Engineering Conference
(ASE), IEEE Computer Society, 1999.

[6] A W Roscoe, The Theory and Practice
of Concurrency, Prentice Hall series in
computer science, 1998. Also see URL
http://www.comlab.ox.ac.uk/oucl/publications/books
[/concurrency.

[7] P. Garbett et al, Secure Synthesis of Code: A Process
Improvement Experiment, proceedings of FM99.

[8] MATRIX,, A tool for modeling, simulation and
implementation of control systems, see URL
http://www.isi.com.

IEEE Copyright Notice

This material is presented on the World-Wide Web to en-
sure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this infor-
mation are expected to adhere to the terms and constraints
invoked by each author’s copyright. In most cases, these
works may not be reposted without the explicit permission
of the copyright holder.

