> mr

Version:
Date:
Reference:
Pages:

Prepared by:

Tel:
E-Mail:

©Lemma 1 Ltd.

ClawZ

Z, Library Implementation

10.6

26 January 2004
DAZ/ZED506
51

R.B.Jones
+44 1344 642507
RBJones@RBJones.com

Lemma 1 Ltd.
c¢/o Interglossa
2nd Floor

31A Chain St.
Reading

Berks

RG1 2HX

> mr

Lemma 1 Ltd.

DAZ/ZED506: ClawZ - Z Library Implementation

0 DOCUMENT CONTROL

0.1 Contents

0

DOCUMENT CONTROL

0.1 Contents.
0.2 Document Cross References
0.3 Changes History
0.4 Changes Forecast

GENERAL

1.1 Introduction.
1.2 Notation and Conventions .
1.3 Overview

CONTINUOUS
2.1 Memory

DISCRETE

3.1 Discrete State-Space
3.2 Discrete-Time Integrator . .
3.3 Discrete Transfer Function .
3.4 Unit Delay
3.5 Zero-Order Hold

FUNCTIONS AND TABLES
41 Fen
4.2 Look-Up Table
4.3 Look-Up Table (2-D)
44 S-Function.

MATH

51 Abs
5.2 Combinatorial Logic
5.3 Dot Product.
54 Gain
5.5 Logical Operator
5.6 Math Function
5.7 MinMax
5.8 Product
5.9 Relational Operator
510 Sign
5.11 Rounding Function
512 Sum
5.13 Trigonometric Function . .

NONLINEAR
6.1 Dead Zone.
6.2 Saturation

10
12
13

13
13
13
13
13

14
14
14
14
15
15
18
18
20
22
23
23
24
27

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 3

6.3 Switch e 29
7 SIGNALS AND SYSTEMS 29
7.1 Demux o o e e 29
7.2 From e 35
7.3 GOto . . o o s 36
7.4 Ground e 36
7.5 Merge 36
T.6 MUK . . . o e s, 38
7.7 Selector e 43
7.8 Terminator e 43
8 SOURCES 43
81 Constant e 44
9 SINKS 44
9.1 Display 44
0.2 SCOPE . . . e e 44
9.3 To Workspace 44
10 SUBSYSTEMS 44
10.1 Action Ports 45
10.2 I . . o e 45
10.3 SwitchCase 48
11 THE THEORY CLT 49
12 INDEX 50

0.2 Document Cross References

[1] LEMMA1/DAZ/DTD528. ClawZ — Detailed Design of ClawZ library. R.B. Jones, Lemma 1
Ltd., rbjones@rbjones. com.

[2] LEMMA1/DAZ/PLN029. Toolset Automation Enhancements — Proposal. R.D. Arthan, Lemma
1 Ltd., rda@lemma-one. com.

[3] LEMMA1/DAZ/ZED505. ClawZ - Z Library Specification. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

[4] LEMMA1/DAZ/ZED507. ClawZ - Extending the Z Library. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

0.3 Changes History

Issue 2.1 First issue to DERA.

Issue 5.1 Clawz Phase 3

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 4

Issue 6.1 Real ClawZ, first issue
Issue 7.1 Real ClawZ, final issue
Issue 7.4 Toolset Automation project

Issue 7.5 ClawZ extension project, first issue

e Replacement of RoundingFunction.

e Correction to DeadZone.
Issue 7.6 JANUARY 2002, ClawZ extension project, second issue
e Addition of scalar minmax blocks.

Issue 8.1 FEBRUARY 2002, ClawZ extension project, final issue (changes history trimmed)

Issue 8.2 JULY 2002, ClawZ extensions II first stage

Moved rounding functions to [1] (but not the schemas).

Issue 10.1 JULY 2002, ClawZ extensions II final stage

Added subscript R to names of rounding functions invoked in the schemas.

Issue 10.4 JANUARY 2003, ClawZ Action Subsystems stage 1.

Add section on subsystems, schemas Active and Inactive, schemas for If, SwitchCase and Merge
blocks. Add reset and hold schemas for all library blocks with internal state. Add indexing
brackets where necessary. Adjust specifications of Sum blocks to ensure that bracketing is
correct and to establish more cannonical style.

Issue 10.5 MAY 2003, ClawZ Action Subsystems stage 2.

Add If blocks without else clauses and SwitchCase sample without default clause.

Issue 10.6 JANUARY 2004, updates for changes in ProofPower version 2.7.3.

7 universal set is now called ; “|” is now treated as a punctuation symbol and so cannot be
used for the names of the Z constants for Matlab and Fcn operators.

"’

0.4 Changes Forecast

None.

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 5

1 GENERAL

1.1 Introduction

This document is one of the deliverables originally from the Control Law project, latterly of the
Toolset Automation project, placed by DERA Malvern with Lemma 1 Ltd. For the relevant proposal
see [2].

This specification implements the Z Libraries for use with ClawZ. The metadata for use with this
library is provided in [3].

1.2 Notation and Conventions

The specification is presented in ProofPower-Z, with annotations in English.

The material presented in ProofPower-Z in this document has been checked through ProofPower to
ensure that it is type-correct. System test for ClawZ will type-check the resulting specifications in
the context of this library, supplemented by the definitions in [4].

1.3 Overview

This document provides Z specifications for some of the blocks in each of the following Simulink
libraries:

e Continuous

e Discrete

e Functions and Tables
e Math

e NonLinear

e Signals and Systems
e Sources

e Sinks

The following Standard ML script deletes all these theories so that they can be reloaded by this
specification.

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

SML

open_theory "z_library";

force_delete_theory "CLT" handle - => ();
force_delete_theory " CLT _continuous" handle - => ();
force_delete_theory " CLT _discrete" handle - => ();
force_delete_theory " CLT _functions" handle - => ();
force_delete_theory " CLT _math" handle - => ();
force_delete_theory " CLT _nonlinear" handle - => ();
force_delete_theory " CLT _signals" handle - => ();
force_delete_theory " CLT _sources" handle - => ();
force_delete_theory "CLT_sinks" handle - => ();
force_delete_theory " CLT_subsystems" handle - => ();

—~~

2 CONTINUOUS

SML
‘ open_theory "CLT _common";
‘ new_theory "C LT _continuous";

2.1 Memory

—[X]

Memory : [X0 : X]| — P [In1?, initial_state, state, state’, Outl! : X]

V pars : [X0 : X] e
Memory pars =
[In1?, initial_state, state, state’, Outl! : X |
atial_state = pars. X0 N
Outl! = state A
state’ = Inl17]

—[X]

Memoryy, : [X0 : X] — P [In1?, initial_state, state, state’, Out1! : X]

V pars : [X0 : X] e
Memoryy, pars =
[In1?, initial_state, state, state’, Outl! : X |
inatial_state = pars. X0
A state’ = state]

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

—[X]

Memory, : [X0 : X] — P [In1?, initial_state, state, state’, Outl! : X]|

V pars : [X0 : X] e
Memoryy, pars =
[In1?, initial_state, state, state’, Outl! : X |
state’ = initial_state = pars.X0]

3 DISCRETE

SML
‘ open_theory "CLT _common";
‘new_theory "CLT _discrete";

3.1 Discrete State-Space

VA
DiscreteStateSpace :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

V pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpace pars =

[In1?, initial_state, state, state’, Outl! : seq R |

dn, m,r:Ze

pars.A Matriz (n, n) A\ n = #state A

pars.B Matrixz (n, m) A m = #In1? A

pars.C Matriz (r, n) A r = #O0utl! A

pars.D Matriz (r, m) A

itial_state = pars. X0 N

state’ = {i : 1 .. n e i — dot_product(pars.A i, state)
+r dot_product(pars.B i, In17?7)} A

Out1! ={i : 1 .. r @ i+ dot_product(pars.C i, state)
+r dot_product(pars.D i, In17)}]

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z

DiscreteStateSpacey, :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

Z

V pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpacey, pars =
[In1?, initial_state, state, state’, Outl! : seq R |
witial_state = pars. X0 N

state’! = state]

DiscreteStateSpace, :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

3.2

Z

Y pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpacey, pars =
[In1?, initial_state, state, state’, Outl! : seq R |
state’ = initial_state = pars.X0)]

Discrete-Time Integrator

DiscreteIntegrator_FE :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FE pars =
[In1?, initial_state, state, state’, Out1! : R |
wnatial_state = pars.InitialCondition N
state! = state +p pars.SampleTime *g In1? N
Outl! = state]

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
DiscreteIntegrator_F Ey, :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FEy pars =
[In1?, initial_state, state, state’, Out1! : R |
wniatial_state = pars.InitialCondition N
state’! = state]

Z
DiscreteIntegrator_FE, :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FE, pars =
[In1?, initial_state, state, state’, Out1! : R |

state’ = initial_state = pars.InitialCondition)

V4
DiscretelIntegrator_F E_Limit :

[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator_ FE_Limit pars =

[In1?, initial_state, state, state’, Out1! : R |
iniatial_state = pars. InitialCondition N
(pars. LowerSaturationLimit <p state +pr pars.SampleTime xr In1?
<g pars.UpperSaturationLimit A
state! = state +p pars.SampleTime *g In1? V
state +g pars.SampleTime xr In1? <g pars.LowerSaturationLimit N
state! = pars.LowerSaturationLimit V
pars. UpperSaturationLimit <g state +g pars.SampleTime xg In1? A
state’ = pars. UpperSaturationLimit) A
(pars. LowerSaturationLimit <p state <p pars.UpperSaturationLimit N
Outl! = state V
state <g pars.LowerSaturationLimit A Outl! = pars. LowerSaturationLimit V
pars. UpperSaturationLimit <pg state N\ Outl! = pars. UpperSaturationLimit))

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z

DiscreteIntegrator_F E_Limity, :
[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Z

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator _ FE_Limity, pars =
[In1?, initial_state, state, state’, Out1! : R |
wniatial_state = pars.InitialCondition N

state’ = state]

DiscreteIntegrator_F E_Limit, :
[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

3.3

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator_ FE_Limit, pars =
[In1?, initial_state, state, state’, Out1! : R |
state’ = initial_state = pars.InitialCondition)

Discrete Transfer Function

10

A discrete transfer function with a polynomial of degree n as denominator represents a discrete state
space with n states:

l‘l(k‘ +r 1) = All‘l(k‘) +Rr...+R Anl‘n(k‘) +r u(k:)
x2(k+r 1) =x1(k)

(k47 1) = 2n1(k)
y(k) = Cll‘l(k‘) +RrR...+tR Cnl‘n(k‘) +r Du(k)

Taking z-transforms:

ZX1
ZX2

z X,

(z) = Ale(z) +RrR...+tR Aan(z) +r U(z)
(2) = X1(2)
(2) = Xn-1(2)

Y(2) = CiX1(2) +Rr ... +r Cr Xy (2) +r DU(2)

Solving for the X;(z) (i = 1..n):

Xi(2) =2""U(2)/(z" —r A12" =g ... =g 4))

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Substituting these X;(z) into the equation for Y (z) above gives the discrete transfer function:

Y (2) Dz"+5 (C1 —r DAl)zn_l +r...+r(Cp, —r DA,)

U(Z) (Zn —R Alz”_l —R---—R An)

DiscreteTransferFcn :
[Numerator, Denominator : seq R —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] o
Discrete TransferFen pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
JA, C, Num :seq Ry D : R e
#pars. Denominator > Fpars. Numerator A
pars.Numerator # () A pars.Denominator # () A
head pars.Numerator # real 0 A head pars.Denominator # real 0 N

Num = {i : 1 .. #pars.Denominator — #pars.Numerator e i +— real 0}

™ pars. Numerator A
(head pars.Denominator) g D = head Num A
#initial_state = #state = F#state’ = #A = #C = F#pars.Denominator — 1 N
(Vi: 1. #state o
(head pars.Denominator) xp (C(i) —p D *p A(i)) = Num(i + 1) A
~g((head pars.Denominator) xr A(i)) = pars.Denominator(i + 1)) A
initial_state = {i : 1 .. #state ® i — real 0} A
state’ = {i : 1 .. #state; j : R |
i =1 A j = dot_product(A, state) +r In1? Vv
i # 1 Nj=state(i — 1)} A
Outl! = dot_product(C, state) +r D *p In1?]

Z
DiscreteTransferFcny, :
[Numerator, Denominator : seq R|] —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] e
Discrete TransferFeny, pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
initial_state = {i : 1 .. #state ® i — real 0} A
state’ = state]

11

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 12

Z

DiscreteTransferFcn, :
[Numerator, Denominator : seq R|] —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] e
Discrete TransferFen, pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
state’ = initial_state = {i : 1 .. #state ® i — real 0}]

3.4 Unit Delay

—[X]

UnitDelay-g : [X0 : X] — P [In1?, initial_state, state, state’, Outl! : X]|

V pars : [X0 : X] e
UnitDelay_g pars =
[In1?, initial_state, state, state’, Outl! : X |
wnatial_state = pars. X0 N
Outl! = state A
state’ = In17?)

Z
=[X]
UnitDelay_gp : [X0 : X]| — P [In1?, initial_state, state, state’, Outl! : X]

V pars : [X0 : X] e
UnitDelay_gp pars =
[In1?, initial_state, state, state’, Outl! : X |
initial_state = pars.X0 A state’ = state]

Z
—[X]
UnitDelay_g, : [X0 : X] — P [In1?, initial_state, state, state’, Out1! : X]

V pars : [X0 : X] e
UnitDelay_g, pars =
[In1?, initial_state, state, state’, Outl! : X |

state’ = initial_state = pars.X0]

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 13

3.5 Zero-Order Hold

Z
_ ZeroOrderHold[X]
In1?, Outi! : X

Outl! = In1?

4 FUNCTIONS AND TABLES

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_functions";

4.1 Fcn

One generic definition is supplied which is intended to be usable whether the input is a scalar or a
vector, provided that the Fen expression supplied as a parameter uses the u value appropriately.

=[X]
Fen : [Expr : X — R] — P [In1? : X; Outl! : R]

V pars : [Expr : X — R] e
Fen pars = [In1? @ X; Out1! : R | Outl! = pars.Ezpr In17]

4.2 Look-Up Table

Z

‘ Lookup : [InputValues, OutputValues : seq R] - P [In1?, Outl! : R]

4.3 Look-Up Table (2-D)

Z

‘ Lookup2D : [z, y : seq R; t : seq seq R] + P [In1?, In27, Outl! : R]
4.4 S-Function

No Z definition is supplied for these blocks. The metadata provides a template translation for manual
editing.

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

5 MATH

SML

‘ open_theory "CLT _common";
‘new_theory "CLT _math";

5.1 Abs

Z
___Abs

In1?, Out1! : R

Outl! = absp In1?

5.2 Combinatorial Logic

Z

Combinatorial Logic : [TruthTable : seq seq R] — P [In1?, Outl! : seq R]

Y pars : [TruthTable : seq seq R] o
CombinatorialLogic pars =
[In1?, Outl! : seq R |
3 rows, cols : Z e
pars. TruthTable Matriz (rows, cols) A
cols = #Out1! A
rows = 2 xx (#In1?) A
Outl! = (pars. TruthTable ((bin2dec In1?) + 1))]

5.3 Dot Product

Z
__DotProduct

In1?, In27 : seq R; Outl! : R

#In1? = #In27;
Outl! = dot_product(In1?, In27?)

14

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 15

5.4 Gain

Galn I: [Gain : R] — P [In1?, Outl! : R]

V pars : [Gain : R] e
Gain_I pars = [In1?, Outl! : R | Outl! = Inl1? *p pars.Gain]

5.5 Logical Operator

VA
__Logic. AND_2
In1?, In27, Outl! : R

Outl! = In1? andp In2?

Z
__Logic. AND_3
In1?, In27, In37, Outl! : R

Outl! = In1? andg In2?7 andp In37

Z
__Logic. AND_4
In1?, In27, In87, In4?, Outl! : R

Outl! = In1? andp In2?7 andr In37 andpr In4?

Z
__Logic. AND_5
In1?, In27, In87, In4?, In57, Outl! : R

Outl! = In1? andg In2? andr In37 andr In4? andg In5?

Z
__Logic. AND_6
In1?, In27, In87, In4?, In57, In6?, Outl! : R

Outl! = In1? andg In2?7 andr In37 andr In4d? andr Ind5? andpr In6?

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__Logic. OR_2

In1?, In27, Outl!: R

Outl! = In1? org In2?

Z
__Logic.OR_3

In1?, In2?, In3?, Out1! : R

Outl! = In1? org In27?7 orr In37?

Z
_ Logic. OR_4

In1?, In27, In37, Ing?, Outl! : R

Outl! = In1? org In27 org In8?7 orp Inj?

VA
__Logic_.OR_5

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = In1? org In27 orr In8?7 org In4? org Ind?

Z
__Logic.OR_6
In1?, In27, In87, In4?, In57, In6?, Outl! : R

Outl! = In1? org In27 orr In8? orp In4? org In5? orr In6?

Z
__Logic. NAND_2

In1?, In27, Outi!: R

Out1! = notg(In1? andp In27)

16

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__Logic. NAND_3

In1?, In27, In37, Outl! : R

Outl! = notg(In1? andg In27 andg In37)

Z
__Logic. NOR_2

In1?, In27?7, Outl! : R

Outl! = notr(In1? orr In27)

Z
~ Logic. NOR_3

In1?, In27, In37, Outl! : R

Outl! = notg(In1? orr In2? org In37)

VA
__Logic. XOR_2

In1?, In27, Outi!: R

Outl! = In1? zorg In2?

Z
__Logic. XOR_3
In1?, In27, In37, Outl! : R

Outl! = In1? zorg In27 xzorg In3?

Z
— Logic. NOT

In1?, Out1! : R

Outl! = notgr In1?

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

5.6 Math Function

Z

‘ Math_exp, Math_10u, Math_square, Math_hypot: P [In1?, Out1! : R]

VA
__Math_reciprocal

In1?, Out1! : R

Outl! = real 1 /p In1?

5.7 MinMax

Z
_ MinMax_min

In1? : seq R; Outl! : R

Outl! = glbg(ran In17?)

zZ
_ _MinMax_min2

In1?, In27, Outl! : seq R

LIni? = #In27;
Out1! = {i : dom In1? e i — glbr{In1?(i), In27(i)}}

Z
_ _MinMax_min3

In1?, In27, In87, Outl! : seq R

LIni? = #In27 = #In3?;
Outl! = {i : dom In1? e i — glbr{In1?(i), In27(i), In37(i)}}

Z
—_ MinMaxr_-min4

In1?, In27, In87, In4?, Outl! : seq R

#In1? = #In2? = #In87 = #In47;
Out1! = {i : dom In1? e i — glbr{In1?(i), In27(i), In37(i), In4?(i)}}

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
_ _MinMax_max

In1? : seq R; Out?! : R

Outl! = lubg(ran In17?)

Z
__ MinMax_max2

In1?, In27, Outl! : seq R

LIni? = #In27;
Outl! = {i : dom In1? e i — lubgp{In1?(i), In27(i)}}

Z
__ MinMax_max3

In1?, In27, In87, Outl! : seq R

#In1? = #In2? = #In387;
Outl! = {i : dom In1? e i — lubg{In1?(i), In27(i), In37(i)}}

zZ
_ MinMax_max4

In1?, In27, In37, Ing?, Outl! : seq R

#Inl? = #In2? = #In87 = #In47;
Out1! = {i : dom In1? e i — lubr{In1?(i), In27(3), In37(i), In4?(i)}}

zZ
~ MinMax_smin2

In1?, In27, Outi!: R

Outl! = glbp{In1?, In27}

Z
~ MinMax_smin3

In1?, In2?, In3?, Out1! : R

Outl! = glbp{In1?, In2?, In37}

19

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
~ MinMax_smind

In1?, In27, In37, Ing?, Outl! : R

Outl! = glbr{In1?, In2?, In37, In4?}

Z
_ MinMax_smax2

In1?, In2?, Out1! : R

Out1! = lubgr{In1?, In2?}

zZ
~ MinMax_smax3

In1?, In27, In37, Outl! : R

Outl! = lubg{Ini?, In27?, In37}

Z
_ MinMax_smax4

In1?, In27, In87, In4?, Outl! : R

Outl! = lubg{In1?, In2?, In37, In}?}

5.8 Product

Z
_ Product_M1

In1? : seq R; Outl! : R

Outl! = product(In1?)

Z
__Product_M?2

In1?, In2?, Out1! : R

Outl! = In1? xp In2?

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z_Product_MD

In1?, In27, Outl!: R

Outl! = In1? /p In2?

Z
_ Product_DM

Ini?, In2?, Out1! : R

Outl! = In2? /p In1?

zZ
_ Product_M M D

In1?, In27, In37, Outl! : R

Outl! = (In1? xg In2?) /g In3?

* Product. MMDD

In1?, In27, In87, In4?, Outl! : R

Outl! = (In1? xg In27?) /r (In37 g In4?)

Z
_ Product_M M M D

In1?, In27, In87, In4?, Outl! : R

Outl! = (In1? xg In2? xp In37) /R In4?

* Product. MMMDD

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = (In1? xg In27 xg In37) /r (In4? xp Ind?)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
_ _Product_M3

In1?, In27, In37, Outl! : R

Outl! = (In1? g In27) *g In37

Z
_ Product_M4

In1?, In27, In87, In4?, Outl! : R

Outl! = ((In1? xg In27) xg In37) xp In4?

zZ
__Product_M5

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = (((In1? g In27) xg In37) g In4?) *g Ind?

5.9 Relational Operator

VA
__RelationalOperator_EQ

Ini1?, In2?, Out1! : R

Outl! = In1? eqr In27

VA
— RelationalOperator N EQ

In1?, In27, Outi!: R

Outl! = In1? noteqrp In2?

Z
__RelationalOperator_ LT

In1?, In2?, Out1! : R

Outl! = In1? lessp In27?

22

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__RelationalOperator _LE

In1?, In27, Outl!: R

Outl! = In1? less_eqpr In2?

Z
_ RelationalOperator GE

Ini?, In2?, Out1! : R

Outl! = In1? greater_eqr In27

VA
_RelationalOperator_GT

In1?, In27, Outi!: R

Outl! = In1? greaterr In2?

5.10 Sign

VA
_ Sign

In1?, Out1! : R

Out1! = real (
if In1? = real 0 then 0
else if In1? >p real 0 then 1
else ~1)

5.11 Rounding Function

Z
__Rounding_floor
In1?, Out1! : R

Outl! = floorg In1?

23

Lemma 1 Ltd.

Z

__Rounding_ceil
In1?, Out1! : R

DAZ/ZED506: ClawZ - Z Library Implementation

Outl! = ceilg In1?

Z

— Rounding_round
In1?, Out1! : R

Outl! = roundpr In1?

VA
— Rounding_fix
In1?, Out1! : R

Outl! = fixg In1?

5.12 Sum
VA
Sum : [Inputs : seq CHAR] — P [In1? : seq R; Outl! : R]
Y pars : [Inputs : seq CHAR)] o

Z
_ Sum_P1

In1? :

Sum pars = [In1? : seq R; Outl! : R |

Outl! = sum In1?]

seq R; Outl! : R

Outl! = sum(In1?)

Z
_ Sum_P2
In1?, In27, Outl! : R

Outl! = In1? +pr In2?

24

Lemma 1 Ltd.

Z
_ Sum_PM

DAZ/ZED506: ClawZ - Z Library Implementation

In1?, In27, Outl! :

Outl! = In1? —g In2?

zZ
~_ Sum_MP

In1?, In27, Outi!: R

Out1! = (real 0 —g In1?) +p5 In2?

zZ
~_ Sum_MM

In1?, In27, Outi!: R

Out1! = (real 0 —g In1?) —g In2?

zZ
_ Sum_P3

In1?, In27, In37, Outl! : R

Outl! = (In1? +p In27) 4+ In3?

Z
— Sum_PPM

In1?, In27, In37, Outl! : R

Out1! = (In1? +p In27) —p In3?

Z
— Sum_PMP

In1?, In27, In37, Outl! : R

Outl! = (In1? —p In27) 4+ In3?

25

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Sum_PMM

In1?, In27, In37, Outl! : R

Out1! = (In1? —p In27) —p In3?

Z
— Sum_MPP

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —r In1?) +gr In27) +r In3?

Z
— Sum_MPM

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —g In1?) +pg In27) —g In37?

Z
— Sum_MMP

In1?, In27, In37, Outl! : R

Out1! = ((real 0 —g In1?) —g In27) +p In3?

Z
— Sum_MMM

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —g In1?) —g In27) —g In37?

zZ
__ Sum_P4

In1?, In27, In37, Ing?, Outl! : R

Outl! = ((In1? +pg In2?) +g In37) +r In4?

26

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
_ Sum_P5

In1?, In27, In37, Ing?, In57, Outl! : R

Outl! = (((Inl? +R InQ?) +R In3?) +R In47) +gr In5?

zZ
_ Sum_P6

In1?, In27, In37, Ing?, In57, In67, Outl! : R

Out1! = (((In1? +pg In2?) +r In3?) +r In4?) +r In57) +5 In6?

5.13 Trigonometric Function

Z

‘ Trigonometry_sin: P [In1?, Outl! : R]

Z

‘ Trigonometry_cos: P [In1?, Outl! : R]

Z

‘ Trigonometry_tan: P [In1?, Outl! : R]

Z

‘ Trigonometry_asin: P [In1?, Outl! : R|

Z

‘ Trigonometry_acos: P [In1?, Outl! : R]

Z

‘ Trigonometry_atan: P [In17, Outl! : R]

Z

‘ Trigonometry_atan2: P [In1?, In27?, Outl! : R]

Z

‘ Trigonometry_sinh: P [In1?, Outl! : R]

Z

‘ Trigonometry_cosh: P [In1?, Outl! : R|

27

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z

‘ Trigonometry_tanh: P [In1?, Outl! : R]

6 NONLINEAR

SML
‘ open_theory "CLT _common";
‘new_theory "CLT _nonlinear";

6.1 Dead Zone

Z

DeadZone : [LowerValue, UpperValue : R] — P [In1?, Outl! : R]

Y pars : [LowerValue, UpperValue : R] o
DeadZone pars =
[In1?, Outl! : R |
Outl! =
if (pars.LowerValue <gr In1? <pg pars.UpperValue)
then real 0
else
if In1? <pg pars.LowerValue
then In1? —pg pars.LowerValue

else In1? —p pars. UpperValue]

6.2 Saturation

Z

Saturate : [UpperLimit, LowerLimit : R] — P [In1?, Outl! : R]

Y pars : [UpperLimit, LowerLimit : R] o
Saturate pars =
[In1?, Outl! : R |
In1? <pg pars.LowerLimit N Outl! = pars.LowerLimit V
In1? >p pars.UpperLimit N Outl! = pars. UpperLimit V
pars.LowerLimit <gp In1? <pg pars.UpperLimit A Outl! = In17]

28

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 29

6.3 Switch

=[X]
Switch : [Threshold : R] — P [In2? : R; In1?, In37, Outl! : X]

V pars : [Threshold : R] e
Switch pars =
[In2? : R; In1?, In3?, Outl! : X |
Outl! =
if (In2?7 >R pars.Threshold) then In1? else In37)

7 SIGNALS AND SYSTEMS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_signals";

7.1 Demux

VA

— Demux_2[X]
In1? : seq X;
Outl!, Out2! : X

#Inl? = 2;
Outl! = In17(1) N Out2! = In17(2)

Z

_ Demux_3[X]
In1? : seq X;
Out1!, Out2!, Out3! : X

#In1? = 3;
Outl! = In17(1) N Out2! = In1?(2) A Out3! = In1?(3)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z

— Demux_4[X]

In1? : seq X;
Outl!, Out2!, Out3!, Outj! : X

#Inl? = 4;
Outl! = In17(1) A Out2! = In1?(2) A Out3! = In1?(3) A Outf! = In17(4)

Z

_ Demux_5[X]

In1? : seq X;
Outl!, Out2!, Out3!, Outl!, Outs! : X

#In1? = 5;
Outl! = In17(1) N Out2! = In1?(2) A Out3! = In1?(3) A
Outf! = In17(4) N Outd! = In1?(5)

Z

_ Demux_6[X]

In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Outb! : X

#In1? = 6;
Outl! = In17(1) AN Out2! = In1?(2) A Out3! = In1?(3) A
Outf! = In17(4) N Outd! = In1?(5) A Out6! = In1?(06)

Z

_ Demux_7[X]

In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Outb!, Out?! : X

#In1? = 7;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?(6) N Out?! = In1?(7)

30

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 31

Z

— Demux_8[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out?!, Out8! : X

#In1? = 8;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Out5! = In17(5) N Out6! = In1?(6) N Out?! = In1?(7) A Out8! = In17(8)

Z

— Demux_9[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9! : X

#In1? = 9;

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Out5! = In17(5) A Out6! = In1?7(6) A Out7! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9)

Z

_ Demux_10[X]
In1? : seq X;
Outl!, Out2!, Out3!, Outl!, Outs!,
Out6!, Out7!, Out8!, Out9!, Outi0! : X

#In1? = 10,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 32

Z

— Demux_11[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outil! : X

#Inl? = 11,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In17?(11)

Z

_ Demux_12[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Out6!, Out?!, Out8!, Out9!, Out10!,
Outll!, Out12! : X

#In1? = 12,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Out5! = In17(5) A Out6! = In1?(6) A Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?7(11) A Out12! = In17(12)

Z

— Demux_13[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Outi3! : X

#In1? = 13;

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In1?7(11) A

Out12! = In17(12) A Out13! = In1?(13)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Demux_14[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Outi4! : X

#Inl? = 14;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In1?(11) A
?(1

Out12! = In17(12) A Out13! = In17(13) A Out14! = In1?(14)

Z

_ Demux_15[X]

In1? : seq X;

Outl!, Out2!, Out3!, Outl!, Outs!,

Out6!, Out?!, Out8!, Out9!, Out10!,
Out11!, Out12!, Out18!, Out14!, Out15! : X

#In1? = 15,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Outh! = In17(5) A Out6! = In17(6) N Out?! = In1?7(7) N Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(18) A Outlf! = In1?(14) A Out15! = In1?(15)

Z
— Demux_16[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Out18!, Out14!, Out15!,
Out16! : X

#In1? = 16,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
?(1

Out13! = In17(13) A Out14! = In1?7(14) N Out15! = In1?(15) A Out16! = In17(16)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 34

Z_Demuac_17[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Outi8!, Out14!, Out15!,
Out16!, Out17! : X

#In1? = 17,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A

Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Out1}! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Outl?! = In1?(17)

o~ o~

Z_Demua:_18[X]
In1? : seq X;
Out1!, Out2!, Out3!, Outl!, Outs!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Out14!, Out15!,
Out16!, Out17!, Outi8! : X

#In1? = 18,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Out5! = In17(5) A Out6! = In1?7(6) A Out7! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?7(11) A Out12! = In17(12) A
Out13! = In1?(13) A Outlf! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Out17! = In1?(17) A Out18! = In1?(18)

o~ o~

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Demux_19[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Outi8!, Out14!, Out15!,
Out16!, Out17!, Out18!, Out19! : X

#In1? = 19;

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A

Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Out1}! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Out17! = In1?(17) A Out18! = In1?(18) A

Out19! = In17(19)

Z
_ Demux_20[X]

In1? : seq X;

Outl!, Out2!, Out3!, Outl!, Outs!,

Out6!, Out?!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Out14!, Out15!,
Out16!, Out17!, Out18!, Out19!, Out20! : X

#In1? = 20,

Out1! = In17(1) A Out2! = In17(2) A Out3! = In17(3) N Out4! = In17(4) A

Out5! = In17(5) A Out6! = In1?(6) A Out?! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?7(10) AN Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Outlf! = In1?(14) A Out15! = In1?(15) A

Out16! = In17(16) N Outl7! = In17(17) A Out18! = In1?(18) A

Out19! = In17(19) N Out20! = In17(20)

7.2 From

From|X]

‘| N

Outl! : X

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

7.3 Goto

Z
—Goto[X]
\ In1? - X
|

7.4 Ground

Z
__Ground

Outl! : R

Outl! = real 0

7.5 Merge

Z
__Merge_2

In1?, In27 : U;
Action1?, Action2? : U;
Outi! : U

Action1? N Outl! = In1?
VvV Action2? A Outl! = In27

Z
__Merge_3

In1?, In27, In37 : U;
Action1?, Action2?, Action3? : U;
Out1! : U

Action1? N Outl! = In1?
VvV Action2? A Outl! = In27
VvV Action3? A Outl! = In837?

36

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z_Merge_4
In1?, In27, In37, In4? : U;

Action1?, Action2?, Action3?, Actionj? : U,
Out1! : U

Action1? A Outl! = In1?

VvV Action2? A Outl! = In27
VvV Action3? A Outl! = In837
VvV Action4? N Outl! = Inj?
zZ
__Merge_5

In1?, In27, In87, In4?, In57 : U;
Action1?, Action2?, Action3?, Action4?, Action5? : U,
Out1! : U

Action1? N Outl! = In1?

VvV Action2? A Outl! = In2?
VvV Action8? A Outl! = In3?
VvV Action4? N Outl! = Inj?
VvV Action5?7 A Outl! = In5?
Z
__Merge_6

In1?, In27, In37, Ing?, In57, In67 : U,
Action1?, Action2?, Action3?, Action4?, Action5?, Action6? : U,
Out?! : U

< < <KL

Action1? N Outl! = In1?
Action2? N Outl! = In27?
Action3? N Outl! = In37?
Actiond? N Outl! = In4?
Actiond? N Outl! = Inb?
Action6? N Outl! = In6?

37

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

7.6 Mux

Z
— Mux_2[X]

In1?, In27 : X;
Outl! : seq X

Outl! = {1 — In1?, 2 — In27}

Z
— Mux_3[X]

In1?, In27, In37 : X;
Outl! : seq X

Outl! = (In17?, In27, In37)

Z
— Mux_4[X]

In1?, In27, In37, In4? : X;
Outl! : seq X

Outl! = (In1?, In27, In87, Inj?)

Z
— Mux_5[X]

In1?, In27, In37, In4?, In57 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57)

Z
— Mux_6[X]

In1?, In27, In37, In4?, In57?,
mn6? : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In5?,
In67)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Muz_7[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7 : X;
Outl! : seq X

Outl! = (In1?7, In27, In37, In4?, In57,
In6?, In77)

Z
— Muz_8[X]

In1?, In27, In37, In4?, In5?,
In6?, In77, In8?7 : X;
Outl! : seq X

Outl! = (In1?7, In27, In37, In4?, In57,
In6?, In7?, In87)

Z
— Mux_9[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?7, In87, In97 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?, In87, In97)

Z
_ Mux_10[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7, In87, In97, In107 : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?, In87, In97, In107)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Mux_11[X]

In1?, In27, In37, In4?, In57?,
In6?, In77, In8?, In97, In107,
In11? : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In87, In9?, In107,
In117)

Z
~ Mux_12[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7, In8?, In97, In107?,
In11?, In127 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In117?, In127)

Z
~ Mux_13[X]

In1?, In27, In37, In4?, In57,
In6?, In7?7, In8?, In9?7, In107?,
In11?, In12?, In137 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, In4?, In57,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In137)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Mux_14[X]

In1?, In27, In37, In4?, In57?,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In137, In147)

Z
_ Mux_15[X]

In1?, In27, In37, In4?, In57?,

In6?, In7?7, In8?, In97, In107?,

In11?, In127, In187, In14?, In157 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147, In157)

Z
~ Mux_16[X]

In1?, In27, In37, In4?, In57,
In6?, In7?7, In8?, In9?7, In107?,
In11?, In127, In137, In147, In157,
In167 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?7, In87, In97, In107?,
In11?, In127, In137, In147, In157,
In167)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Muz_17[X]

In1?, In27, In87, In4?, In57,
In6?, In7?, In87, In97, In107,
In11?, In127, In187, In14?, In157,
In167, In17?7 : X;

Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In57,
In6?, In7?, In87, In97, In107,
In11?, In127?, In137, In14?, In157,
In167, In177)

Z
— Muxz_18[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?, In87, In97, In107,
In11?, In127, In137, In14?, In157,
In167, In177, In187 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In8?, In97, In107?,
In11?, In127, In137, In14?, In157,
In167?, In177, In187)

Z
~ Mux_19[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?7, In87, In97, In107?,
In11?, In127, In137, In14?, In157,
In167, In17?7, In187, In197 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In187, In14?, In157,
In167?, In177, In187, In197)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Muxz_20[X]

In1?, In27, In37, In4?, In57?,

In6?, In77, In8?, In97, In107,

In11?, In127, In187, In14?, In157,
In167, In17?7, In187, In197, In207 : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147, In157,
In167?, In17?, In18?, In197, In207)

7.7 Selector

—[X]

Selector : [Elements : seq R] — P [In1?, Outl! : seq X]

V pars : [Elements: seq R] o
Selector pars =
[In1?, Outl! : seq X |
ran (pars.Elements g r2z) C dom In1? A
Outl! = In1? o r2z o pars.Elements]

7.8 Terminator

Z

—Terminator[X]
‘ In1? : X
|

8 SOURCES

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_sources";

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

8.1 Constant

Z

—[X]

Constant : [Value : X] — P [Outl! : X]

Y pars : [Value : X] o
Constant pars = [Outl! : X | Outl! = pars. Value]

9 SINKS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_sinks";

9.1 Display

Z
—Display[X]
| In1? : X

|

9.2 Scope

Z
—Scope[X]

‘In]?:X
|

9.3 To Workspace

Z

—ToWorkspace|X]

\Inz?:X
|

10 SUBSYSTEMS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_subsystems";

44

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

10.1 Action Ports

Z .
___Active

Action? : BOOL

Action?

zZ
_ Inactive

Action? : BOOL

- Action?

10.2 If

Z
~ If_Else.1.1

In1? : U;
Outl! : U

Outl! = is_truep In1?

Z
__If FElse_1_2

ni1? : U,
Out1!, Out2! : U

(Out1!, Out2!) =
if is_truer In1? then (true, false)
else (false, true)

Z
__If FElse_2_2

In1?, In27 : U;
Out1!, Out2! : U

(Out1!, Out2!) =
if is_truer In1? then (true, false)
else if is_truer In2? then (false, true)
else (false, false)

45

Lemma 1 Ltd.

Z
__If FElse_2_3

DAZ/ZED506: ClawZ - Z Library Implementation

In1?, In27 : U;
Out1!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =

if is_truer In1? then
else if is_truer In2?7 then
else

(true, false, false)
(false, true, false)
(false, false, true)

VA
_If FElse_3_3

In1?, In2?, In87 . U;
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =

if is_truer In1? then
else if is_truer In27 then
else if is_truer In3?7 then
else

(true, false, false)
(false, true, false)
(false, false, true)
(false, false, false)

Z
_ If_Else_ 3.4

In1?, In27, In37 : U;
Outl!, Out2!, Out8!, Outf! : U

(Out1!, Out2!, Out3!, Out4!) =

if is_truer In1? then
else if is_truer In27 then
else if is_truer In37 then
else

(true, false, false, false)
(false, true, false, false)
(false, false, true, false)
(false, false, false, true)

46

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__If FElse_4.4

In1?, In27, In87, In4? : U;
Out1!, Out2!, Out3!, Outj! : U

(Out1!, Out2!, Out3!, Out4!) =

if is_truer In1? then (true, false, false, false)
else if is_truer In2? then (false, true, false, false)
else if is_truer In3? then (false, false, true, false)
else if is_truer In4? then (false, false, false, true)
else (false, false, false, false)

VA
__If FElse_ 4.5

In1?, In27, In87, In4? : U;
Out1!, Out2!, Out3!, Outs!, Outs! : U

(Out1!, Out2!, Out3!, Out4!, Outs!) =

if is_truer In1? then (true, false, false, false, false)
else if is_truer In2? then (false, true, false, false, false)
else if is_truer In3? then (false, false, true, false, false)
else if is_truer In4? then (false, false, false, true, false)
else (false, false, false, false, true)

VA
__If FElse 5.5

In1?, In27, In37, In4?, In57 : U;
Out1!, Out2!, Out3!, Outf!, Outs! : U

(Out1!, Out2!, Out3!, Out4!, Outs!) =

if is_truer In1? then (true, false, false, false, false)
else if is_truer In2? then (false, true, false, false, false)
else if is_truer In3? then (false, false, true, false, false)
else if is_truer In4? then (false, false, false, true, false)
else if is_truer In5? then (false, false, false, false, true)
else (false, false, false, false, false)

Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__If FElse_5_6

In1?, In27, In37, Ing?, In57 : U;
Out1!, Out2!, Out3!, Outf!, Outs!, Out6! : U

(Out1!, Out2!, Out3!, Out4!, Outs!, Out6!) =
if is_truer In1? then (true, false, false, false, false, false

)
else if is_truer In2? then (false, true, false, false, false, false)
else if is_truer In3? then (false, false, true, false, false, false)
else if is_truer In4? then (false, false, false, true, false, false)
else if is_truer In5? then (false, false, false, false, true, false)
else (false, false, false, false, false, true)

10.3 SwitchCase

This example is the one used in the Simulink SwitchCase help page.

Z
— SwitchCase_sample

ni1? : U,
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =
if In1? = real 1 then (true, false, false)
else if In1? € {real 2, real 3} then (false, true, false)
else (false, false, true)

VA
_ SwitchCase_node fault_sample

In1? : U;
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =
if In1? = real 1 then (true, false, false)
else if In1? € {real 2, real 3} then (false, true, false)
else if In1? = real 4 then (false, false, true)
else (false, false, false)

Lemma 1 Ltd.

DAZ/ZED506: ClawZ - Z Library Implementation

11 THE THEORY CLT

The following Standard ML script creates a new theory for the CLT library.

SML

new_theory
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent

open_theory "CLT _continuous";

"CLT";

"CLT _discrete";
"CLT_functions";
"CLT_math";

"CLT _nonlinear";
"CLT _signals";
"CLT_sources";
"CLT_sinks";

"CLT _subsystems";

49

Lemma 1 Ltd.

12 INDEX

CLT _nonlinear
CLT signals........cou ..
CLT _sinks
CLT _sources
CLT_subsystems
Combinatorial Logic
Constant

DeadZone
Demuxz_10
Demuzx_11
Demux_12
Demux_13
Demux_14

Discretelntegrator _.F'E
Discretelntegrator_F'E_Limit
Discretelntegrator _F'E_Limity,
Discretelntegrator F'E_Limit,
Discretelntegrator_FE},
Discretelntegrator_F'E,
DiscreteStateSpace
DiscreteStateSpacep, o ...
DiscreteStateSpace,
DiscreteTransferFen

DiscreteTrans ferFeny,
DiscreteTransferFen,cooooviia...
Display
DotProduct0.. . i

DAZ/ZED506: ClawZ - Z Library Implementation

50
Ground 36
If_Else 1_1 i 45
Tf_Else 1.2 . .. i 45
Tf_Else 2.2 ... i 45
Tf_Else 2.3 ... i 46
If_Else_3_3 ... 46
If_Else_3_4 i 46
If_Else_d_ 4 47
Tf_Else 4.5 ..o i 47
Tf_Else 5.5 ..o i 47
If Else 5.6 ..o 48
Inactive 45
LogiccAND_2 ... 15
LogiccAND_3 ... i 15
Logicc AND_4 i 15
LogiccAND_5 ... 15
LogiccAND_6 ..o 15
LogicctNAND_ 2 ... i 16
Logic.c NAND_3 i 17
Logic. NOR_2 ... 17
Logic.c NOR_3 i 17
Logic.NOTo i 17
LogiccOR_2 i 16
LogiccOR_3 16
LogiccOR_4 i 16
LogiccOR_5 ..o e 16
LogiccOR_6........cooi i 16
Logicc XOR_2 17
Logicc XOR-3 i 17
Lookup ... 13
Lookup2D 13
Math_reciprocal 18
Memory ... 6
Memoryp ... ov o 6
Memory,y . ..covu 7
Merge 2. 36
Merge_3.o 36
Merge 4. 37
Merge 5. 37
Merge_6..... ... 37
MinMaz_max 19
MinMaz_max2 19
MinMax-max3 19
MinMax_-mazxd i 19
MinMax_-min...... ..., 18
MinMaz_min2........ 18
MinMaz_-mind........ ... 18
MinMaz_mind. 18
MinMax_smax2 20
MinMax_smax3 20
MinMazx_smaxd 20
MinMaz_smin2....... 19

Lemma 1 Ltd.

MinMaz_smind....... ..., 19
MinMaz_smind........ 20
Muz_10 ... e 39
Muz_11 .. e 40
Muzx_12 .. 40
Mux_13 .. . 40
Mux_14 ... 41
Mux_ 15 . 41
Mux_16 ... e 41
Muz_17 .. e 42
Mux_ 18 .. . 42
Mux_ 19 .. 42
Mux 20 ... 43
Mux_2 .. 38
Muzx_3 ..o 38
Muz_4 ... e 38
Mux b .o 38
Mux_6 ... 38
Muzx_7T .. 39
Mux_8 .. 39
Muzx 9 .. e 39
Product_DM 21
Product_M10 20
Product_M?2 20
Product_M3 22
Product_M4 22
Product_Mb50 22
Product_MD0 . .. i, 21
Product . MMD, 21
Product . MMDD 21
Product . MMMD 21
Product . MMMDD 21
RelationalOperator_ EQ 22
RelationalOperator GE 23
RelationalOperator_GT 23
RelationalOperator_LE 23
RelationalOperator_ LT 22
RelationalOperator NEQ 22
Rounding_ceil, 24
Rounding_fix0 i 24
Rounding_floor, 23
Rounding-round 24
Saturate. 28
SCOPE « oo 44
Selector ... 43
STGN oo 23
SUM 24
Sum_ MM 25
Sum_ MMM 26
Sum_MMP 26
Sum_MP 25
Sum_MPM 26
Sum_MPP 26
Sum_Pl ... 24

DAZ/ZED506: ClawZ - Z Library Implementation 51

Sum_P3 ... 25
Sum_P4d ... 26
Sum_P5 .. 27
SUum_PO6 ... 27
Sum_PM 25
Sum_PMM 26
Sum_PMP ... 25
Sum_PPMo 25
SWItCh ..o 29
SwitchCase_nodefault_sample 48
SwitchCase_sample............ 48
Terminator 43
ToWorkspacecu .. 44
Trigonometry_acosScouueueneenenon.. 27
Trigonometry_asSimnoouueueneenenen.. 27
Trigonometry_atan2c.coeuevuenon.. 27
Trigonometry_atanc.ooeueueenenan.. 27
Trigonometry_COSouu e 27
Trigonometry_cosh 27
Trigonometry_SiTo.ouu e nenennenen.. 27
Trigonometry_sinh 27
Trigonometry_tamnoueuinene .. 27
Trigonometry_tanh 28
UnitDelay_go .. 12
UnitDelay_gn ... ooovoinei i 12
UnitDelay_gr «...oovvniiii .. 12
ZeroOrderHold o, 13

