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"’

0.4 Changes Forecast

None.
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1 GENERAL

1.1 Introduction

This document is one of the deliverables originally from the Control Law project, latterly of the
Toolset Automation project, placed by DERA Malvern with Lemma 1 Ltd. For the relevant proposal
see [2].

This specification implements the Z Libraries for use with ClawZ. The metadata for use with this
library is provided in [3].

1.2 Notation and Conventions

The specification is presented in ProofPower-Z, with annotations in English.

The material presented in ProofPower-Z in this document has been checked through ProofPower to
ensure that it is type-correct. System test for ClawZ will type-check the resulting specifications in
the context of this library, supplemented by the definitions in [4].

1.3 Overview

This document provides Z specifications for some of the blocks in each of the following Simulink
libraries:

e Continuous

e Discrete

e Functions and Tables
e Math

e NonLinear

e Signals and Systems
e Sources

e Sinks

The following Standard ML script deletes all these theories so that they can be reloaded by this
specification.
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SML

open_theory "z_library";

force_delete_theory "CLT" handle - => ();
force_delete_theory " CLT _continuous" handle - => ();
force_delete_theory " CLT _discrete" handle - => ();
force_delete_theory " CLT _functions" handle - => ();
force_delete_theory " CLT _math" handle - => ();
force_delete_theory " CLT _nonlinear" handle - => ();
force_delete_theory " CLT _signals" handle - => ();
force_delete_theory " CLT _sources" handle - => ();
force_delete_theory "CLT_sinks" handle - => ();
force_delete_theory " CLT_subsystems" handle - => ();

—~~

2 CONTINUOUS

SML
‘ open_theory "CLT _common";
‘ new_theory "C LT _continuous";

2.1 Memory

—[X]

Memory : [X0 : X]| — P [In1?, initial_state, state, state’, Outl! : X]

V pars : [X0 : X] e
Memory pars =
[In1?, initial_state, state, state’, Outl! : X |
atial_state = pars. X0 N
Outl! = state A
state’ = Inl17]

—[X]

Memoryy, : [X0 : X] — P [In1?, initial_state, state, state’, Out1! : X]

V pars : [X0 : X] e
Memoryy, pars =
[In1?, initial_state, state, state’, Outl! : X |
inatial_state = pars. X0
A state’ = state]
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—[X]

Memory, : [X0 : X] — P [In1?, initial_state, state, state’, Outl! : X]|

V pars : [X0 : X] e
Memoryy, pars =
[In1?, initial_state, state, state’, Outl! : X |
state’ = initial_state = pars.X0]

3 DISCRETE

SML
‘ open_theory "CLT _common";
‘new_theory "CLT _discrete";

3.1 Discrete State-Space

VA
DiscreteStateSpace :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

V pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpace pars =

[In1?, initial_state, state, state’, Outl! : seq R |

dn, m,r:Ze

pars.A Matriz (n, n) A\ n = #state A

pars.B Matrixz (n, m) A m = #In1? A

pars.C Matriz (r, n) A r = #O0utl! A

pars.D Matriz (r, m) A

itial_state = pars. X0 N

state’ = {i : 1 .. n e i — dot_product(pars.A i, state)
+r dot_product(pars.B i, In17?7)} A

Out1! ={i : 1 .. r @ i+ dot_product(pars.C i, state)
+r dot_product(pars.D i, In17)}]
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Z

DiscreteStateSpacey, :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

Z

V pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpacey, pars =
[In1?, initial_state, state, state’, Outl! : seq R |
witial_state = pars. X0 N

state’! = state]

DiscreteStateSpace, :
[A, B, C, D : seq seq R; X0 : seq R] —
P [In1?, initial_state, state, state’, Outl! : seq R]

3.2

Z

Y pars : [A, B, C, D : seq seq R; X0 : seq R]
DiscreteStateSpacey, pars =
[In1?, initial_state, state, state’, Outl! : seq R |
state’ = initial_state = pars.X0)]

Discrete-Time Integrator

DiscreteIntegrator_FE :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FE pars =
[In1?, initial_state, state, state’, Out1! : R |
wnatial_state = pars.InitialCondition N
state! = state +p pars.SampleTime *g In1? N
Outl! = state]
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Z
DiscreteIntegrator_F Ey, :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FEy pars =
[In1?, initial_state, state, state’, Out1! : R |
wniatial_state = pars.InitialCondition N
state’! = state]

Z
DiscreteIntegrator_FE, :
[InitialCondition, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars : [InitialCondition, SampleTime : R] o
Discretelntegrator _FE, pars =
[In1?, initial_state, state, state’, Out1! : R |

state’ = initial_state = pars.InitialCondition)

V4
DiscretelIntegrator_F E_Limit :

[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator_ FE_Limit pars =

[In1?, initial_state, state, state’, Out1! : R |
iniatial_state = pars. InitialCondition N
(pars. LowerSaturationLimit <p state +pr pars.SampleTime xr In1?
<g pars.UpperSaturationLimit A
state! = state +p pars.SampleTime *g In1? V
state +g pars.SampleTime xr In1? <g pars.LowerSaturationLimit N
state! = pars.LowerSaturationLimit V
pars. UpperSaturationLimit <g state +g pars.SampleTime xg In1? A
state’ = pars. UpperSaturationLimit) A
(pars. LowerSaturationLimit <p state <p pars.UpperSaturationLimit N
Outl! = state V
state <g pars.LowerSaturationLimit A Outl! = pars. LowerSaturationLimit V
pars. UpperSaturationLimit <pg state N\ Outl! = pars. UpperSaturationLimit))
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Z

DiscreteIntegrator_F E_Limity, :
[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

Z

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator _ FE_Limity, pars =
[In1?, initial_state, state, state’, Out1! : R |
wniatial_state = pars.InitialCondition N

state’ = state]

DiscreteIntegrator_F E_Limit, :
[InitialCondition, UpperSaturationLimit, LowerSaturationLimit, SampleTime : R] —
P [In1?, initial_state, state, state’, Outl! : R]

3.3

Y pars: [InitialCondition, UpperSaturationLimit, LowerSaturationLimit,Sample Time: R]e
Discretelntegrator_ FE_Limit, pars =
[In1?, initial_state, state, state’, Out1! : R |
state’ = initial_state = pars.InitialCondition)

Discrete Transfer Function

10

A discrete transfer function with a polynomial of degree n as denominator represents a discrete state
space with n states:

l‘l(k‘ +r 1) = All‘l(k‘) +Rr...+R Anl‘n(k‘) +r u(k:)
x2(k+r 1) =x1(k)

(k47 1) = 2n1(k)
y(k) = Cll‘l(k‘) +RrR...+tR Cnl‘n(k‘) +r Du(k)

Taking z-transforms:

ZX1
ZX2

z X,

(z) = Ale(z) +RrR...+tR Aan(z) +r U(z)
(2) = X1(2)
(2) = Xn-1(2)

Y(2) = CiX1(2) +Rr ... +r Cr Xy (2) +r DU(2)

Solving for the X;(z) (i = 1..n):

Xi(2) =2""U(2)/(z" —r A12" =g ... =g 4))
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Substituting these X;(z) into the equation for Y (z) above gives the discrete transfer function:

Y (2) Dz"+5 (C1 —r DAl)zn_l +r...+r(Cp, —r DA,)

U(Z) (Zn —R Alz”_l —R---—R An)

DiscreteTransferFcn :
[Numerator, Denominator : seq R —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] o
Discrete TransferFen pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
JA, C, Num :seq Ry D : R e
#pars. Denominator > Fpars. Numerator A
pars.Numerator # () A pars.Denominator # () A
head pars.Numerator # real 0 A head pars.Denominator # real 0 N

Num = {i : 1 .. #pars.Denominator — #pars.Numerator e i +— real 0}

™ pars. Numerator A
(head pars.Denominator) g D = head Num A
#initial_state = #state = F#state’ = #A = #C = F#pars.Denominator — 1 N
(Vi: 1. #state o
(head pars.Denominator) xp (C(i) —p D *p A(i)) = Num(i + 1) A
~g((head pars.Denominator) xr A(i)) = pars.Denominator(i + 1)) A
initial_state = {i : 1 .. #state ® i — real 0} A
state’ = {i : 1 .. #state; j : R |
i =1 A j = dot_product(A, state) +r In1? Vv
i # 1 Nj=state(i — 1)} A
Outl! = dot_product(C, state) +r D *p In1?]

Z
DiscreteTransferFcny, :
[Numerator, Denominator : seq R|] —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] e
Discrete TransferFeny, pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
initial_state = {i : 1 .. #state ® i — real 0} A
state’ = state]

11
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Z

DiscreteTransferFcn, :
[Numerator, Denominator : seq R|] —
P [In1?, Outl! : R; initial_state, state, state’ : seq R]

Y pars : [Numerator, Denominator : seq R] e
Discrete TransferFen, pars =
[In1?, Outl! : R; initial_state, state, state’ : seq R |
state’ = initial_state = {i : 1 .. #state ® i — real 0}]

3.4 Unit Delay

—[X]

UnitDelay-g : [X0 : X] — P [In1?, initial_state, state, state’, Outl! : X]|

V pars : [X0 : X] e
UnitDelay_g pars =
[In1?, initial_state, state, state’, Outl! : X |
wnatial_state = pars. X0 N
Outl! = state A
state’ = In17?)

Z
=[X]
UnitDelay_gp : [X0 : X]| — P [In1?, initial_state, state, state’, Outl! : X]

V pars : [X0 : X] e
UnitDelay_gp pars =
[In1?, initial_state, state, state’, Outl! : X |
initial_state = pars.X0 A state’ = state]

Z
—[X]
UnitDelay_g, : [X0 : X] — P [In1?, initial_state, state, state’, Out1! : X]

V pars : [X0 : X] e
UnitDelay_g, pars =
[In1?, initial_state, state, state’, Outl! : X |

state’ = initial_state = pars.X0]
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3.5 Zero-Order Hold

Z
_ ZeroOrderHold[X]
In1?, Outi! : X

Outl! = In1?

4 FUNCTIONS AND TABLES

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_functions";

4.1 Fcn

One generic definition is supplied which is intended to be usable whether the input is a scalar or a
vector, provided that the Fen expression supplied as a parameter uses the u value appropriately.

=[X]
Fen : [Expr : X — R] — P [In1? : X; Outl! : R]

V pars : [Expr : X — R] e
Fen pars = [In1? @ X; Out1! : R | Outl! = pars.Ezpr In17]

4.2 Look-Up Table

Z

‘ Lookup : [InputValues, OutputValues : seq R] - P [In1?, Outl! : R]

4.3 Look-Up Table (2-D)

Z

‘ Lookup2D : [z, y : seq R; t : seq seq R] + P [In1?, In27, Outl! : R]
4.4 S-Function

No Z definition is supplied for these blocks. The metadata provides a template translation for manual
editing.
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5 MATH

SML

‘ open_theory "CLT _common";
‘new_theory "CLT _math";

5.1 Abs

Z
___Abs

In1?, Out1! : R

Outl! = absp In1?

5.2 Combinatorial Logic

Z

Combinatorial Logic : [TruthTable : seq seq R] — P [In1?, Outl! : seq R]

Y pars : [TruthTable : seq seq R] o
CombinatorialLogic pars =
[In1?, Outl! : seq R |
3 rows, cols : Z e
pars. TruthTable Matriz (rows, cols) A
cols = #Out1! A
rows = 2 xx (#In1?) A
Outl! = (pars. TruthTable ((bin2dec In1?) + 1))]

5.3 Dot Product

Z
__DotProduct

In1?, In27 : seq R; Outl! : R

#In1? = #In27;
Outl! = dot_product(In1?, In27?)

14
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5.4 Gain

Galn I: [Gain : R] — P [In1?, Outl! : R]

V pars : [Gain : R] e
Gain_I pars = [In1?, Outl! : R | Outl! = Inl1? *p pars.Gain]

5.5 Logical Operator

VA
__Logic. AND_2
In1?, In27, Outl! : R

Outl! = In1? andp In2?

Z
__Logic. AND_3
In1?, In27, In37, Outl! : R

Outl! = In1? andg In2?7 andp In37

Z
__Logic. AND_4
In1?, In27, In87, In4?, Outl! : R

Outl! = In1? andp In2?7 andr In37 andpr In4?

Z
__Logic. AND_5
In1?, In27, In87, In4?, In57, Outl! : R

Outl! = In1? andg In2? andr In37 andr In4? andg In5?

Z
__Logic. AND_6
In1?, In27, In87, In4?, In57, In6?, Outl! : R

Outl! = In1? andg In2?7 andr In37 andr In4d? andr Ind5? andpr In6?
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Z
__Logic. OR_2

In1?, In27, Outl!: R

Outl! = In1? org In2?

Z
__Logic.OR_3

In1?, In2?, In3?, Out1! : R

Outl! = In1? org In27?7 orr In37?

Z
_ Logic. OR_4

In1?, In27, In37, Ing?, Outl! : R

Outl! = In1? org In27 org In8?7 orp Inj?

VA
__Logic_.OR_5

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = In1? org In27 orr In8?7 org In4? org Ind?

Z
__Logic.OR_6
In1?, In27, In87, In4?, In57, In6?, Outl! : R

Outl! = In1? org In27 orr In8? orp In4? org In5? orr In6?

Z
__Logic. NAND_2

In1?, In27, Outi!: R

Out1! = notg(In1? andp In27)

16
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Z
__Logic. NAND_3

In1?, In27, In37, Outl! : R

Outl! = notg(In1? andg In27 andg In37)

Z
__Logic. NOR_2

In1?, In27?7, Outl! : R

Outl! = notr(In1? orr In27)

Z
~ Logic. NOR_3

In1?, In27, In37, Outl! : R

Outl! = notg(In1? orr In2? org In37)

VA
__Logic. XOR_2

In1?, In27, Outi!: R

Outl! = In1? zorg In2?

Z
__Logic. XOR_3
In1?, In27, In37, Outl! : R

Outl! = In1? zorg In27 xzorg In3?

Z
— Logic. NOT

In1?, Out1! : R

Outl! = notgr In1?
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5.6 Math Function

Z

‘ Math_exp, Math_10u, Math_square, Math_hypot: P [In1?, Out1! : R]

VA
__Math_reciprocal

In1?, Out1! : R

Outl! = real 1 /p In1?

5.7 MinMax

Z
_ MinMax_min

In1? : seq R; Outl! : R

Outl! = glbg(ran In17?)

zZ
_ _MinMax_min2

In1?, In27, Outl! : seq R

LIni? = #In27;
Out1! = {i : dom In1? e i — glbr{In1?(i), In27(i)}}

Z
_ _MinMax_min3

In1?, In27, In87, Outl! : seq R

LIni? = #In27 = #In3?;
Outl! = {i : dom In1? e i — glbr{In1?(i), In27(i), In37(i)}}

Z
—_ MinMaxr_-min4

In1?, In27, In87, In4?, Outl! : seq R

#In1? = #In2? = #In87 = #In47;
Out1! = {i : dom In1? e i — glbr{In1?(i), In27(i), In37(i), In4?(i)}}
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Z
_ _MinMax_max

In1? : seq R; Out?! : R

Outl! = lubg(ran In17?)

Z
__ MinMax_max2

In1?, In27, Outl! : seq R

LIni? = #In27;
Outl! = {i : dom In1? e i — lubgp{In1?(i), In27(i)}}

Z
__ MinMax_max3

In1?, In27, In87, Outl! : seq R

#In1? = #In2? = #In387;
Outl! = {i : dom In1? e i — lubg{In1?(i), In27(i), In37(i)}}

zZ
_ MinMax_max4

In1?, In27, In37, Ing?, Outl! : seq R

#Inl? = #In2? = #In87 = #In47;
Out1! = {i : dom In1? e i — lubr{In1?(i), In27(3), In37(i), In4?(i)}}

zZ
~ MinMax_smin2

In1?, In27, Outi!: R

Outl! = glbp{In1?, In27}

Z
~ MinMax_smin3

In1?, In2?, In3?, Out1! : R

Outl! = glbp{In1?, In2?, In37}

19
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Z
~ MinMax_smind

In1?, In27, In37, Ing?, Outl! : R

Outl! = glbr{In1?, In2?, In37, In4?}

Z
_ MinMax_smax2

In1?, In2?, Out1! : R

Out1! = lubgr{In1?, In2?}

zZ
~ MinMax_smax3

In1?, In27, In37, Outl! : R

Outl! = lubg{Ini?, In27?, In37}

Z
_ MinMax_smax4

In1?, In27, In87, In4?, Outl! : R

Outl! = lubg{In1?, In2?, In37, In}?}

5.8 Product

Z
_ Product_M1

In1? : seq R; Outl! : R

Outl! = product(In1?)

Z
__Product_M?2

In1?, In2?, Out1! : R

Outl! = In1? xp In2?
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Z_Product_MD

In1?, In27, Outl!: R

Outl! = In1? /p In2?

Z
_ Product_DM

Ini?, In2?, Out1! : R

Outl! = In2? /p In1?

zZ
_ Product_M M D

In1?, In27, In37, Outl! : R

Outl! = (In1? xg In2?) /g In3?

* Product. MMDD

In1?, In27, In87, In4?, Outl! : R

Outl! = (In1? xg In27?) /r (In37 g In4?)

Z
_ Product_M M M D

In1?, In27, In87, In4?, Outl! : R

Outl! = (In1? xg In2? xp In37) /R In4?

* Product. MMMDD

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = (In1? xg In27 xg In37) /r (In4? xp Ind?)
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Z
_ _Product_M3

In1?, In27, In37, Outl! : R

Outl! = (In1? g In27) *g In37

Z
_ Product_M4

In1?, In27, In87, In4?, Outl! : R

Outl! = ((In1? xg In27) xg In37) xp In4?

zZ
__Product_M5

In1?, In27, In87, In4?, In57, Outl! : R

Outl! = (((In1? g In27) xg In37) g In4?) *g Ind?

5.9 Relational Operator

VA
__RelationalOperator_EQ

Ini1?, In2?, Out1! : R

Outl! = In1? eqr In27

VA
— RelationalOperator N EQ

In1?, In27, Outi!: R

Outl! = In1? noteqrp In2?

Z
__RelationalOperator_ LT

In1?, In2?, Out1! : R

Outl! = In1? lessp In27?

22



Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
__RelationalOperator _LE

In1?, In27, Outl!: R

Outl! = In1? less_eqpr In2?

Z
_ RelationalOperator GE

Ini?, In2?, Out1! : R

Outl! = In1? greater_eqr In27

VA
_RelationalOperator_GT

In1?, In27, Outi!: R

Outl! = In1? greaterr In2?

5.10 Sign

VA
_ Sign

In1?, Out1! : R

Out1! = real (
if In1? = real 0 then 0
else if In1? >p real 0 then 1
else ~1)

5.11 Rounding Function

Z
__Rounding_floor
In1?, Out1! : R

Outl! = floorg In1?

23
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Z

__Rounding_ceil
In1?, Out1! : R

DAZ/ZED506: ClawZ - Z Library Implementation

Outl! = ceilg In1?

Z

— Rounding_round
In1?, Out1! : R

Outl! = roundpr In1?

VA
— Rounding_fix
In1?, Out1! : R

Outl! = fixg In1?

5.12 Sum
VA
Sum : [Inputs : seq CHAR] — P [In1? : seq R; Outl! : R]
Y pars : [Inputs : seq CHAR)] o

Z
_ Sum_P1

In1? :

Sum pars = [In1? : seq R; Outl! : R |

Outl! = sum In1?]

seq R; Outl! : R

Outl! = sum(In1?)

Z
_ Sum_P2
In1?, In27, Outl! : R

Outl! = In1? +pr In2?

24
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Z
_ Sum_PM

DAZ/ZED506: ClawZ - Z Library Implementation

In1?, In27, Outl! :

Outl! = In1? —g In2?

zZ
~_ Sum_MP

In1?, In27, Outi!: R

Out1! = (real 0 —g In1?) +p5 In2?

zZ
~_ Sum_MM

In1?, In27, Outi!: R

Out1! = (real 0 —g In1?) —g In2?

zZ
_ Sum_P3

In1?, In27, In37, Outl! : R

Outl! = (In1? +p In27) 4+ In3?

Z
— Sum_PPM

In1?, In27, In37, Outl! : R

Out1! = (In1? +p In27) —p In3?

Z
— Sum_PMP

In1?, In27, In37, Outl! : R

Outl! = (In1? —p In27) 4+ In3?

25
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Z
— Sum_PMM

In1?, In27, In37, Outl! : R

Out1! = (In1? —p In27) —p In3?

Z
— Sum_MPP

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —r In1?) +gr In27) +r In3?

Z
— Sum_MPM

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —g In1?) +pg In27) —g In37?

Z
— Sum_MMP

In1?, In27, In37, Outl! : R

Out1! = ((real 0 —g In1?) —g In27) +p In3?

Z
— Sum_MMM

In1?, In27, In37, Outl! : R

Outl! = ((real 0 —g In1?) —g In27) —g In37?

zZ
__ Sum_P4

In1?, In27, In37, Ing?, Outl! : R

Outl! = ((In1? +pg In2?) +g In37) +r In4?
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Z
_ Sum_P5

In1?, In27, In37, Ing?, In57, Outl! : R

Outl! = (((Inl? +R InQ?) +R In3?) +R In47) +gr In5?

zZ
_ Sum_P6

In1?, In27, In37, Ing?, In57, In67, Outl! : R

Out1! = (((In1? +pg In2?) +r In3?) +r In4?) +r In57) +5 In6?

5.13 Trigonometric Function

Z

‘ Trigonometry_sin: P [In1?, Outl! : R]

Z

‘ Trigonometry_cos: P [In1?, Outl! : R]

Z

‘ Trigonometry_tan: P [In1?, Outl! : R]

Z

‘ Trigonometry_asin: P [In1?, Outl! : R|

Z

‘ Trigonometry_acos: P [In1?, Outl! : R]

Z

‘ Trigonometry_atan: P [In17, Outl! : R]

Z

‘ Trigonometry_atan2: P [In1?, In27?, Outl! : R]

Z

‘ Trigonometry_sinh: P [In1?, Outl! : R]

Z

‘ Trigonometry_cosh: P [In1?, Outl! : R|
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Z

‘ Trigonometry_tanh: P [In1?, Outl! : R]

6 NONLINEAR

SML
‘ open_theory "CLT _common";
‘new_theory "CLT _nonlinear";

6.1 Dead Zone

Z

DeadZone : [LowerValue, UpperValue : R] — P [In1?, Outl! : R]

Y pars : [LowerValue, UpperValue : R] o
DeadZone pars =
[In1?, Outl! : R |
Outl! =
if (pars.LowerValue <gr In1? <pg pars.UpperValue)
then real 0
else
if In1? <pg pars.LowerValue
then In1? —pg pars.LowerValue

else In1? —p pars. UpperValue]

6.2 Saturation

Z

Saturate : [UpperLimit, LowerLimit : R] — P [In1?, Outl! : R]

Y pars : [UpperLimit, LowerLimit : R] o
Saturate pars =
[In1?, Outl! : R |
In1? <pg pars.LowerLimit N Outl! = pars.LowerLimit V
In1? >p pars.UpperLimit N Outl! = pars. UpperLimit V
pars.LowerLimit <gp In1? <pg pars.UpperLimit A Outl! = In17]
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6.3 Switch

=[X]
Switch : [Threshold : R] — P [In2? : R; In1?, In37, Outl! : X]

V pars : [Threshold : R] e
Switch pars =
[In2? : R; In1?, In3?, Outl! : X |
Outl! =
if (In2?7 >R pars.Threshold) then In1? else In37)

7 SIGNALS AND SYSTEMS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_signals";

7.1 Demux

VA

— Demux_2[X]
In1? : seq X;
Outl!, Out2! : X

#Inl? = 2;
Outl! = In17(1) N Out2! = In17(2)

Z

_ Demux_3[X]
In1? : seq X;
Out1!, Out2!, Out3! : X

#In1? = 3;
Outl! = In17(1) N Out2! = In1?(2) A Out3! = In1?(3)
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Z

— Demux_4[X]

In1? : seq X;
Outl!, Out2!, Out3!, Outj! : X

#Inl? = 4;
Outl! = In17(1) A Out2! = In1?(2) A Out3! = In1?(3) A Outf! = In17(4)

Z

_ Demux_5[X]

In1? : seq X;
Outl!, Out2!, Out3!, Outl!, Outs! : X

#In1? = 5;
Outl! = In17(1) N Out2! = In1?(2) A Out3! = In1?(3) A
Outf! = In17(4) N Outd! = In1?(5)

Z

_ Demux_6[X]

In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Outb! : X

#In1? = 6;
Outl! = In17(1) AN Out2! = In1?(2) A Out3! = In1?(3) A
Outf! = In17(4) N Outd! = In1?(5) A Out6! = In1?(06)

Z

_ Demux_7[X]

In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Outb!, Out?! : X

#In1? = 7;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?(6) N Out?! = In1?(7)
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Z

— Demux_8[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out?!, Out8! : X

#In1? = 8;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Out5! = In17(5) N Out6! = In1?(6) N Out?! = In1?(7) A Out8! = In17(8)

Z

— Demux_9[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9! : X

#In1? = 9;

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Out5! = In17(5) A Out6! = In1?7(6) A Out7! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9)

Z

_ Demux_10[X]
In1? : seq X;
Outl!, Out2!, Out3!, Outl!, Outs!,
Out6!, Out7!, Out8!, Out9!, Outi0! : X

#In1? = 10,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10)




Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation 32

Z

— Demux_11[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outil! : X

#Inl? = 11,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In17?(11)

Z

_ Demux_12[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out4!, Outs!,
Out6!, Out?!, Out8!, Out9!, Out10!,
Outll!, Out12! : X

#In1? = 12,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A
Out5! = In17(5) A Out6! = In1?(6) A Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?7(11) A Out12! = In17(12)

Z

— Demux_13[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Outi3! : X

#In1? = 13;

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In1?7(11) A

Out12! = In17(12) A Out13! = In1?(13)
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Z
— Demux_14[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Outi4! : X

#Inl? = 14;
Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A
Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A
Out9! = In17(9) N Out10! = In1?(10) N Outll! = In1?(11) A
?(1

Out12! = In17(12) A Out13! = In17(13) A Out14! = In1?(14)

Z

_ Demux_15[X]

In1? : seq X;

Outl!, Out2!, Out3!, Outl!, Outs!,

Out6!, Out?!, Out8!, Out9!, Out10!,
Out11!, Out12!, Out18!, Out14!, Out15! : X

#In1? = 15,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Outh! = In17(5) A Out6! = In17(6) N Out?! = In1?7(7) N Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(18) A Outlf! = In1?(14) A Out15! = In1?(15)

Z
— Demux_16[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Out18!, Out14!, Out15!,
Out16! : X

#In1? = 16,

Outl! = In17(1) N Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Outs! = In17(5) N Out6! = In1?7(6) N Out?! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
?(1

Out13! = In17(13) A Out14! = In1?7(14) N Out15! = In1?(15) A Out16! = In17(16)
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Z_Demuac_17[X]
In1? : seq X;
Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Outi8!, Out14!, Out15!,
Out16!, Out17! : X

#In1? = 17,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A

Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Out1}! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Outl?! = In1?(17)

o~ o~

Z_Demua:_18[X]
In1? : seq X;
Out1!, Out2!, Out3!, Outl!, Outs!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Out14!, Out15!,
Out16!, Out17!, Outi8! : X

#In1? = 18,

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?(3) A Outf! = In17(4) A

Out5! = In17(5) A Out6! = In1?7(6) A Out7! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?7(11) A Out12! = In17(12) A
Out13! = In1?(13) A Outlf! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Out17! = In1?(17) A Out18! = In1?(18)

o~ o~
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Z
— Demux_19[X]

In1? : seq X;

Outl!, Out2!, Out3!, Out}!, Outd!,
Out6!, Out7!, Out8!, Out9!, Out10!,
Out11!, Out12!, Outi8!, Out14!, Out15!,
Out16!, Out17!, Out18!, Out19! : X

#In1? = 19;

Outl! = In17(1) A Out2! = In1?7(2) A Out3! = In1?7(3) A Outf! = In17(4) A

Outs! = In17(5) A Out6! = In1?7(6) N Out?! = In1?(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?(10) A Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Out1}! = In1?(14) A Out15! = In1?(15) A

Out16! = In1?(16) A Out17! = In1?(17) A Out18! = In1?(18) A

Out19! = In17(19)

Z
_ Demux_20[X]

In1? : seq X;

Outl!, Out2!, Out3!, Outl!, Outs!,

Out6!, Out?!, Out8!, Out9!, Out10!,
Outl1!, Out12!, Out13!, Out14!, Out15!,
Out16!, Out17!, Out18!, Out19!, Out20! : X

#In1? = 20,

Out1! = In17(1) A Out2! = In17(2) A Out3! = In17(3) N Out4! = In17(4) A

Out5! = In17(5) A Out6! = In1?(6) A Out?! = In1?7(7) A Out8! = In17(8) A

Out9! = In17(9) N Out10! = In1?7(10) AN Outll! = In1?(11) A Out12! = In17(12) A
Out13! = In1?(13) A Outlf! = In1?(14) A Out15! = In1?(15) A

Out16! = In17(16) N Outl7! = In17(17) A Out18! = In1?(18) A

Out19! = In17(19) N Out20! = In17(20)

7.2 From

From|X]

‘| N

Outl! : X
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7.3 Goto

Z
—Goto[X]
\ In1? - X
|

7.4 Ground

Z
__Ground

Outl! : R

Outl! = real 0

7.5 Merge

Z
__Merge_2

In1?, In27 : U;
Action1?, Action2? : U;
Outi! : U

Action1? N Outl! = In1?
VvV Action2? A Outl! = In27

Z
__Merge_3

In1?, In27, In37 : U;
Action1?, Action2?, Action3? : U;
Out1! : U

Action1? N Outl! = In1?
VvV Action2? A Outl! = In27
VvV Action3? A Outl! = In837?
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Z_Merge_4
In1?, In27, In37, In4? : U;

Action1?, Action2?, Action3?, Actionj? : U,
Out1! : U

Action1? A Outl! = In1?

VvV Action2? A Outl! = In27
VvV Action3? A Outl! = In837
VvV Action4? N Outl! = Inj?
zZ
__Merge_5

In1?, In27, In87, In4?, In57 : U;
Action1?, Action2?, Action3?, Action4?, Action5? : U,
Out1! : U

Action1? N Outl! = In1?

VvV Action2? A Outl! = In2?
VvV  Action8? A Outl! = In3?
VvV Action4? N Outl! = Inj?
VvV  Action5?7 A Outl! = In5?
Z
__Merge_6

In1?, In27, In37, Ing?, In57, In67 : U,
Action1?, Action2?, Action3?, Action4?, Action5?, Action6? : U,
Out?! : U

< < <KL

Action1? N Outl! = In1?
Action2? N Outl! = In27?
Action3? N Outl! = In37?
Actiond? N Outl! = In4?
Actiond? N Outl! = Inb?
Action6? N Outl! = In6?

37



Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

7.6 Mux

Z
— Mux_2[X]

In1?, In27 : X;
Outl! : seq X

Outl! = {1 — In1?, 2 — In27}

Z
— Mux_3[X]

In1?, In27, In37 : X;
Outl! : seq X

Outl! = (In17?, In27, In37)

Z
— Mux_4[X]

In1?, In27, In37, In4? : X;
Outl! : seq X

Outl! = (In1?, In27, In87, Inj?)

Z
— Mux_5[X]

In1?, In27, In37, In4?, In57 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57)

Z
— Mux_6[X]

In1?, In27, In37, In4?, In57?,
mn6? : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In5?,
In67)
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Z
— Muz_7[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7 : X;
Outl! : seq X

Outl! = (In1?7, In27, In37, In4?, In57,
In6?, In77)

Z
— Muz_8[X]

In1?, In27, In37, In4?, In5?,
In6?, In77, In8?7 : X;
Outl! : seq X

Outl! = (In1?7, In27, In37, In4?, In57,
In6?, In7?, In87)

Z
— Mux_9[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?7, In87, In97 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?, In87, In97)

Z
_ Mux_10[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7, In87, In97, In107 : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?, In87, In97, In107)
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Z
— Mux_11[X]

In1?, In27, In37, In4?, In57?,
In6?, In77, In8?, In97, In107,
In11? : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In87, In9?, In107,
In117)

Z
~ Mux_12[X]

In1?, In27, In37, In4?, In57?,
In6?, In7?7, In8?, In97, In107?,
In11?, In127 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In117?, In127)

Z
~ Mux_13[X]

In1?, In27, In37, In4?, In57,
In6?, In7?7, In8?, In9?7, In107?,
In11?, In12?, In137 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, In4?, In57,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In137)




Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Mux_14[X]

In1?, In27, In37, In4?, In57?,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In137, In147)

Z
_ Mux_15[X]

In1?, In27, In37, In4?, In57?,

In6?, In7?7, In8?, In97, In107?,

In11?, In127, In187, In14?, In157 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147, In157)

Z
~ Mux_16[X]

In1?, In27, In37, In4?, In57,
In6?, In7?7, In8?, In9?7, In107?,
In11?, In127, In137, In147, In157,
In167 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?7, In87, In97, In107?,
In11?, In127, In137, In147, In157,
In167)




Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

Z
— Muz_17[X]

In1?, In27, In87, In4?, In57,
In6?, In7?, In87, In97, In107,
In11?, In127, In187, In14?, In157,
In167, In17?7 : X;

Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In57,
In6?, In7?, In87, In97, In107,
In11?, In127?, In137, In14?, In157,
In167, In177)

Z
— Muxz_18[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?, In87, In97, In107,
In11?, In127, In137, In14?, In157,
In167, In177, In187 : X;

Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In5?,
In6?, In7?7, In8?, In97, In107?,
In11?, In127, In137, In14?, In157,
In167?, In177, In187)

Z
~ Mux_19[X]

In1?, In27, In37, In4?, Inb?,
In6?, In7?7, In87, In97, In107?,
In11?, In127, In137, In14?, In157,
In167, In17?7, In187, In197 : X;
Outl! : seq X

Outl! = (In1?, In27, In37, Inj?, In57,
In6?, In7?7, In87, In9?, In107,
In11?, In127, In187, In14?, In157,
In167?, In177, In187, In197)
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Z
— Muxz_20[X]

In1?, In27, In37, In4?, In57?,

In6?, In77, In8?, In97, In107,

In11?, In127, In187, In14?, In157,
In167, In17?7, In187, In197, In207 : X;
Outl! : seq X

Out1! = (In1?, In27, In37, Inj?, In57,
In6?, In77, In8?, In97, In107,
In11?, In127, In137, In147, In157,
In167?, In17?, In18?, In197, In207)

7.7 Selector

—[X]

Selector : [Elements : seq R] — P [In1?, Outl! : seq X]

V pars : [Elements: seq R] o
Selector pars =
[In1?, Outl! : seq X |
ran (pars.Elements g r2z) C dom In1? A
Outl! = In1? o r2z o pars.Elements]

7.8 Terminator

Z

—Terminator[X]
‘ In1? : X
|

8 SOURCES

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_sources";
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8.1 Constant

Z

—[X]

Constant : [Value : X] — P [Outl! : X]

Y pars : [Value : X] o
Constant pars = [Outl! : X | Outl! = pars. Value]

9 SINKS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_sinks";

9.1 Display

Z
—Display[X]
| In1? : X

|

9.2 Scope

Z
—Scope[X]

‘In]?:X
|

9.3 To Workspace

Z

—ToWorkspace|X]

\Inz?:X
|

10 SUBSYSTEMS

SML
‘ open_theory "CLT _common";
‘new_theory "CLT_subsystems";

44



Lemma 1 Ltd. DAZ/ZED506: ClawZ - Z Library Implementation

10.1 Action Ports

Z .
___Active

Action? : BOOL

Action?

zZ
_ Inactive

Action? : BOOL

- Action?

10.2 If

Z
~ If_Else.1.1

In1? : U;
Outl! : U

Outl! = is_truep In1?

Z
__If FElse_1_2

ni1? : U,
Out1!, Out2! : U

(Out1!, Out2!) =
if is_truer In1? then  (true, false)
else (false, true)

Z
__If FElse_2_2

In1?, In27 : U;
Out1!, Out2! : U

(Out1!, Out2!) =
if is_truer In1? then  (true, false)
else if is_truer In2? then  (false, true)
else (false, false)
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Z
__If FElse_2_3
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In1?, In27 : U;
Out1!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =

if is_truer In1? then
else if is_truer In2?7 then
else

(true, false, false)
(false, true, false)
(false, false, true)

VA
_If FElse_3_3

In1?, In2?, In87 . U;
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =

if is_truer In1? then
else if is_truer In27 then
else if is_truer In3?7 then
else

(true, false, false)
(false, true, false)
(false, false, true)
(false, false, false)

Z
_ If_Else_ 3.4

In1?, In27, In37 : U;
Outl!, Out2!, Out8!, Outf! : U

(Out1!, Out2!, Out3!, Out4!) =

if is_truer In1? then
else if is_truer In27 then
else if is_truer In37 then
else

(true, false, false, false)
(false, true, false, false)
(false, false, true, false)
(false, false, false, true)
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Z
__If FElse_4.4

In1?, In27, In87, In4? : U;
Out1!, Out2!, Out3!, Outj! : U

(Out1!, Out2!, Out3!, Out4!) =

if is_truer In1? then  (true, false, false, false)
else if is_truer In2? then  (false, true, false, false)
else if is_truer In3? then  (false, false, true, false)
else if is_truer In4? then  (false, false, false, true)
else (false, false, false, false)

VA
__If FElse_ 4.5

In1?, In27, In87, In4? : U;
Out1!, Out2!, Out3!, Outs!, Outs! : U

(Out1!, Out2!, Out3!, Out4!, Outs!) =

if is_truer In1? then  (true, false, false, false, false)
else if is_truer In2? then  (false, true, false, false, false)
else if is_truer In3? then  (false, false, true, false, false)
else if is_truer In4? then  (false, false, false, true, false)
else (false, false, false, false, true)

VA
__If FElse 5.5

In1?, In27, In37, In4?, In57 : U;
Out1!, Out2!, Out3!, Outf!, Outs! : U

(Out1!, Out2!, Out3!, Out4!, Outs!) =

if is_truer In1? then  (true, false, false, false, false)
else if is_truer In2? then (false, true, false, false, false)
else if is_truer In3? then  (false, false, true, false, false)
else if is_truer In4? then  (false, false, false, true, false)
else if is_truer In5? then  (false, false, false, false, true)
else (false, false, false, false, false)
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Z
__If FElse_5_6

In1?, In27, In37, Ing?, In57 : U;
Out1!, Out2!, Out3!, Outf!, Outs!, Out6! : U

(Out1!, Out2!, Out3!, Out4!, Outs!, Out6!) =
if is_truer In1? then  (true, false, false, false, false, false

)
else if is_truer In2? then (false, true, false, false, false, false)
else if is_truer In3? then  (false, false, true, false, false, false)
else if is_truer In4? then  (false, false, false, true, false, false)
else if is_truer In5? then  (false, false, false, false, true, false)
else (false, false, false, false, false, true)

10.3 SwitchCase

This example is the one used in the Simulink SwitchCase help page.

Z
— SwitchCase_sample

ni1? : U,
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =
if In1? = real 1 then (true, false, false)
else if In1? € {real 2, real 3} then (false, true, false)
else (false, false, true)

VA
_ SwitchCase_node fault_sample

In1? : U;
Out?!, Out2!, Out3! : U

(Out1!, Out2!, Out3!) =
if In1? = real 1 then (true, false, false)
else if In1? € {real 2, real 3} then (false, true, false)
else if In1? = real 4 then (false, false, true)
else (false, false, false)
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11 THE THEORY CLT

The following Standard ML script creates a new theory for the CLT library.

SML

new_theory
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent
new_parent

open_theory "CLT _continuous";

"CLT";

"CLT _discrete";
"CLT_functions";
"CLT_math";

"CLT _nonlinear";
"CLT _signals";
"CLT_sources";
"CLT_sinks";

"CLT _subsystems";

49



Lemma 1 Ltd.

12 INDEX

CLT _nonlinear
CLT signals........cou ..
CLT _sinks
CLT _sources
CLT_subsystems
Combinatorial Logic
Constant

DeadZone
Demuxz_10
Demuzx_11
Demux_12
Demux_13
Demux_14

Discretelntegrator _.F'E
Discretelntegrator_F'E_Limit
Discretelntegrator _F'E_Limity,
Discretelntegrator F'E_Limit,
Discretelntegrator_FE},
Discretelntegrator_F'E,
DiscreteStateSpace ............ ... ... ... ...
DiscreteStateSpacep, .. ........ . o ...
DiscreteStateSpace,
DiscreteTransferFen

DiscreteTrans ferFeny,
DiscreteTransferFen, . .....cooooviia...
Display
DotProduct ..........0.. . i
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