> mr

Version:
Date:
Reference:
Pages:

Prepared by:

Tel:
E-Mail:

©Lemma 1 Ltd.,

ClawZ

Model Translator Specification

10.14

26 January 2004
ZED504

238

R.B.Jones
+44 1344 642507
RBJones@RBJones.com

Lemma 1 Ltd.
c¢/o Interglossa
2nd Floor

31A Chain St.
Reading

Berks

RG1 2HX

> mr

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

0 DOCUMENT CONTROL

0.1 Contents

0 DOCUMENT CONTROL

0.1
0.2
0.3
0.4

Contents L e
Document Cross References
Changes History
Changes Forecast e

1 GENERAL

1.1
1.2
1.3

Introduction e e
Notation and Conventions e
OVEIVIEW . . . o o o o e s

2 SYNTACTIC STRUCTURES

2.1 Model File Lexis e
2.2 Model File Syntax L
2.3 .m File Lexis and Syntax L e
2.4 Model Expression Syntaxes

2.4.1 Metanotation e

2.4.2 Common Elements e

2.4.3 Fcn Expressionso e e e

2.4.4 Matlab Expressions e
2.5 Mask Parameter Grammars e
2.6 Parameter Translation Code Grammar
2.7 Various Parameter Syntaxes
2.8 Block Paths e
2.9 Steering File Syntax
2.10 File Types o o o o o e e

3 DATA STRUCTURES

3.1 Structured Files e
3.2 Simulink Models e
3.3 Matlab .m Files e
3.4 Parameter Expressionso

3.4.1 Common Elements

3.4.2 Fcn and Matlab Expressions L oo o
3.5 Fcn and Matlab Operators e
3.6 Z Specifications L
3.7 Library Metadata L L

3.7.1 Metadata Content and Representation

3.7.2 Parameter Format and Representation
3.8 Steering File Structure L
3.9 Matlab Variable Types o e
3.10 ClawZ Control Data e
3.11 Context Structures e e e e e e

3.12 Intermediate Model Representation

10
11
12
13
13
14
14
15
16
16
17
17
18
19

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 3
3.13 Global Data oL e 43
3.13.1 The Steering File 43
3.13.2 Name Translation Tableo 44
3.13.3 String Controls L 44
3.13.4 Flags. . . . o . o 45

4 NAME, PARAMETER AND .m FILE TRANSLATION 46
4.1 Name Translation e e e 46
4.1.1 Primitive Model to Z Translations 46
4.1.2 Name Conversions o v v v vt e 46
4.1.3 Simulink Block Name Translation 47
4.1.4 Suffixing 49

4.2 Parameter Parsing L 49
4.3 Expression Translation 51
4.3.1 Coercions and Literals 51
4.3.2 Operators and Functions 52
4.3.3 Matlab Names e 53
4.3.4 EXPressions i e e e e e e 57

4.4 Parameter Evaluation 58
4.5 Parameter Typing L 60
4.6 Parameter Translation Lo 61
4.7 .m File Translation e 69
5 INPUT FILE PROCESSING 72
5.1 Parsing of Structures Lo 72
5.2 Matlab Variable Types e 73
6 MODEL TRANSLATION 73
6.1 Model Transformation L L 74
6.2 Block Traversal Functions 87
6.3 Ports, Lines and Equations o Lo o 89
6.3.1 Port Naming Conventions 90
6.3.2 Equations L 91

6.4 Library Metadata Matching and Block Instantiation 99
6.4.1 Matching L 100
6.4.2 Library Block Instantiation 0. 101

6.5 Port Type Injection L e 116
6.5.1 Steering File Processing 116
6.5.2 Model Processing L 117

6.6 Signal Analysis 120
6.6.1 Port Type Specificity 120
6.6.2 Propagation Over Lines 121
6.6.3 Block Propagation Preliminaries 124
6.6.4 Propagation Through Library Blocks 125
6.6.5 Propagation Through Subsystem Blocks 139
6.6.6 Propagation Through Blocks, 145

6.7 Virtualization oL 146
6.7.1 Traversal Strategies 146

6.7.2 Library Block Virtualization Method 147

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

6.7.3 Block Virtualization Auxiliaries oL
6.7.4 Virtualize Constant
6.7.5 Virtualize Bus Selector L
6.7.6 Virtualize Mux e
6.7.7 Virtualize Demux
6.7.8 Virtualize Bus Creator
6.7.9 Virtualize Selector
6.7.10 Virtualize Terminator
6.7.11 Compounded Block Virtualizer
6.7.12 Traversal Types.« . o L
6.7.13 Traversal Auxiliaries
6.7.14 Principal Functions
6.7.15 The Key Function
6.7.16 Virtualize System L
6.8 Block Synthesis L
6.8.1 Invocation Sorting L L
6.8.2 Synthesis Preliminaries
6.8.3 Synthesize Bus Creator and Mux,
6.8.4 Synthesize Bus Selector
6.8.5 Synthesize Demux
6.8.6 Synthesize Constant
6.8.7 Synthesize Selector
6.8.8 Synthesize Merge L
6.8.9 Synthesize Terminator
6.8.10 The Synthesis Traversal
6.9 Translating Subsystems
6.9.1 General Description
6.9.2 Data Types o e
6.9.3 The Declaration Part
6.9.4 The Specification
6.9.5 TheInvocation e
6.9.6 The Subsystem L
6.10 Metadata Extraction L Lo
6.11 Generating Artificial Subsystemso oL
7 TRANSCRIBING SPECIFICATIONS TO OUTPUT FILES
7.1 Extracting The Specifications Lo o o
7.2 Selecting Output L
7.3 Creating Output Files

8 RUNNING CLAWZ

9 ENHANCING CLAWZ
9.1 Adding A Parameter Translation Method

10 INDEX

224
224
224
227

228

229
230

231

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

0.2 Document Cross References

1]

2]

LEMMA1/DAZ/PLN019. Control Law Tool — A Proposal to DERA, Malvern. R.D. Arthan,

Lemma 1 Ltd., rda@lemma-one. com.

LEMMA1/DAZ/PLN022. Control Law Project Plan. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

LEMMA1/DAZ/PLNO035. Reserved for RBJ. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.
LEMMA1/DAZ/USR505. ClawZ User Guide. Lemma 1 Ltd., http://www.lemma-one. com.

LEMMA1/DAZ/ZED503. ClawZ - The Semantics of Simulink Diagrams. R.B. Jones, Lemma 1
Ltd., rbjones@rbjones. com.

LEMMA1/DAZ/ZED505. ClawZ - Z Library Specification. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

LEMMA1/DAZ/ZED506. ClawZ - Z Library Implementation. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

Using Simulink, Version 2.2. The MathWorks Inc., 1998.

0.3 Changes History

Issue 2.1 First draft issue to DERA.

Issue 3.1 First contract phase 1.

Issue 4.2 First contract phase 2.

Issue 5.1 First contract phase 3.

Issue 6.1 Real ClawZ, first issue.

Issue 7.1 Real ClawZ, second issue.

Issue 7.2 Minor upgrades to support the specification of ClaSP.

Issue 7.3-7.18 ClawZ Extensions contract (January 2002).

Issue 8.1 ClawZ Extensions contract extension (JANUARY 2002).

Synthesis.

Issue 9.1- 10.2 ClawZ extensions II contract (JULY 2002).

Virtualization.

Issue 10.2 - 10.7 Action subsystems in ClawZ contract (first stage, FEBRUARY 2003)

Issue 10.8 - 10.9 Action subsystems in ClawZ contract (second stage, MAY 2003)

Issue 10.11 Artificial subsystems of libraries (JUNE 2003)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

Issue 10.12 Elimination of output duplication (JULY 2003)

Rewrite of sections 7.2 and 7.3. output_path_match remains unchanged, all other functions are
changed or new.

Issue 10.13- 10.14 Updates for changes in ProofPower version 2.7.3 (JANUARY 2004).

Lt|77

7 universal set is now called U; is now treated as a punctuation symbol and so cannot be
used for the names of the Z constants for Matlab and Fcn operators.

Incorporated new information about the syntax of exponentiation in Fcn expressions.

0.4 Changes Forecast

The following changes have been discussed as possible future extensions to ClawZ.

1 If block parameter translation codes.
2 Mask variable name clash elimination.
3 Flexible selection parameter matching.

4 Extension to model file EXPRESSION syntax.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

1 GENERAL

1.1 Introduction

This document is one of the deliverables from the Control Law project, placed by DERA Malvern
with Lemmal Ltd. For the relevant proposal see [1] and for the plan see [2]. This specification is
produced in the light of the discussion of relevant semantic issues in [5].

The following Standard ML script creates a new theory for this specification.
SML
‘open_theory "z_library";
‘delete_theory "zed504" handle - => ();
‘ new_theory "zed504";
‘new_parent "en";

1.2 Notation and Conventions

The specification is primarily presented in ProofPower-Z, together with appropriate annotation in
plain English. We include here the definition of the conditional clause, which is not available in the
ProofPower-Z7 libraries.

Z

‘ fun if _ then _ else _

=[X]

if _then _else - : (BOOL x X x X) — X

VY b:BOOL; z,y: X e
(b = (if b then = else y) = x)
A (= b = (if bthen z else y) = y)

The following definition is borrowed from the compliance notation specifications:

OPT[X] denates an optional member of X. To represent this, OPT[X] comprises all subsets of X
with at most one element:

Z

| OPT[X] = {A: PX | Vz, y: Ae z = y}

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 8
Z
=[X]
Value : X — OPT[X];
Nil : OPT[X]

Vr: Xe Value x = {z} ;
Nil = {}

The following is borrowed from the ClawZ library (which is in general incompatible with this speci-
fication). It is an integer variant of the similarly named matlab operator (defined below).

Z

‘ fun 2 leftassoc _:,_

Z

iy (L X Z) — seq Z

Vz, y: Ze
T,y =
{1,z Z
| i=z—z+ 1
A z <z <y}

1.3 Overview

The translator will translate two different kinds of document into Z.

1. Simulink .mdl files (either Models or Libraries).

2. Matlab .m files.

There are five sources of information which are required by the translator:

1. The file to be translated.

[\

. A steering file
. A library metadata file (not required for .m files).

3
4. Parameters to the run of ClawZ

ot

. Various string controls and flags which may be used to modify the operation of clawz.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

The model file provides the details of the model to be translated into Z in the form of wiring diagrams
which combine Simulink library blocks into a number of subsystems and a single main system.

In order to process a Simulink model after translation into Z there must first be made available
specifications in Z of the library blocks which are used in the model. This will be in the form of one
or more ProofPower-Z theories.

In order to make use of these libraries the translator will need some “metadata” providing information
about the mapping from instances of Simulink library blocks to Z specifications. This is the content
of the “library metadata” file, which defines the mapping from Simulink blocks to Z specifications.
Information about the types of signals associated with the different library blocks is also provided
in this file.

Two distinct strategies are available for mapping Simulink/Matlab values into Z values. In the first
different types in Z are used for scalars, vectors and matrices, a vector being represented as a sequence
of scalars and a matrix by a sequence of vectors. This gives rise to some problems in translation since
the translator is not always able to determine the correct type to use. The translator also supports
translation to Z using a single type for all values. Block parameters are still mapped into expressions
which are formed using sequence displays, but these are then mapped into the unified value space
using appropriate injection functions.

Control over the mapping strategy is exercised through the metadata, which specifies the translation
mode for block parameters. Where distinct types are require the parameter types Scalar, Vector and
Matrix are used as appropriate. Where a single type is require the parameter type Unified should
be used.

Control over .m file translation involves a similar choice, but the single parameter type SVM is used
to indicate that the .m file translation should map expressions into distinct Z types according to

their structure.

Further information on the construction of libraries and their metadata may be found in the ClawZ
user guide [4].

This specification proceeds by defining abstract data structures corresponding to the information

provided in these files, including the resulting output files, and then defining the mapping from the
abstract representation of models and metadata to that of Z specifications.

2 SYNTACTIC STRUCTURES

In this section we specify the concrete syntax of the various files which are used or produced by the
translator and the library extractor.

The files relevant to ClawZ are as follows:

1. Simulink model files

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

10

2. Simulink .m files

3. Library metadata files

4. ClawZ steering files

5. 7 specification files

6. Standard output from ClawZ

7. Matlab variable type information

Of these, items 1, 3 and 4 use a common structure, referred to informally as model file format.

2.1 Model File Lexis

No explicit account of the Lexis is available to us. On the basis of the available examples the following
is inferred.

For the purposes of ClawZ files in model file format are considered to have a two level lexis. The
outer level is described here, and determines a limited level of lexical analysis which is undertaken as
files in this format are read into ClawZ. Within this structure there occur quoted strings which may
have significant internal structure and may be subject further lexical and syntactic analysis after the
file has been read in.

Files consist of 8-bit ascii characters. The characters are grouped as follows:

whitespace space, tab, carriage return, linefeed
delimiters Double-quote ("), curly braces
alpha upper or lower case alphabetic

digit 0-9

special characters Any other ASCII character.

The lexical tokens are:

SPACE anon-empty sequence of whitespace characters
OPEN the open curly brace

CLOSE the close curly brace

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

11

NAME A sequence of characters terminated by (unescaped) white space or a double quote char-
acter (“"”). Backslash may be used to escape characters which would otherwise terminate the
“name”, and must therefore also be used to escape backslash characters (i.e. two backslash
characters must be supplied for every backslash desired in the name). A single backslash char-
acters will always be discarded even if the character it precedes need not have been escaped.
Backslash must also be used before the first character if that character would be legal as the
start of any other lexical token, i.e. if it is: white space, open of close brace, open or close square
bracket, digit or double quotes. Newline carriage return or tab characters may be entered as
‘“\n”, “N\r”, and “\t” respectively.

This liberal lexis is intended to allow Simulink paths to be accepted in those places where the
syntax calls for a NAME.

NUMBER an lscalar as specified in the section on parameter translation (4.6).

EXPRESSION An expression beginning with an open square bracket and terminating with a
matching closing square bracket.

QV ALUE a sequence of characters enclosed in double-quotes, possibly interrupted by linebreaks
which must be preceded and followed by double-quote characters. Double-quotes are not per-
mitted, unless preceded by a backslash in which case they do not terminate the quotation.
Backslash characters when not used for escaping must also be escaped by backslash. Lexical
processing should discard the escape characters leaving only the characters escaped, this ap-
plies even when a character is unnecessarily escaped, i.e. all single occurrences of backslash
are discarded, as well as alternate backslashes in any sequence of more than one backslash the
character immediately following any discarded bacslash is always included but its value ignored
when considering any special action (like termination or escaping).

In the sequel the internal structure of various kinds of QVALUE is discussed and specified. In all
the grammars supplied for this purpose it is assumed that the first level of escape processing
required to lex a QVALUE has been undertaken before parsing according to the specified
grammar. Conversely, where pretty printing of values for output as QVALUEs is specified, a
final stage of supplementary escaping is required as the expression is made into a QVALUE
before output.

COMMENT any line beginning with a hash (“#”) is a comment and is ignored by the translator

2.2 Model File Syntax

The concrete syntax is exemplified in Annex B of [8].
The following notes supplement that Annex.

A context free grammar of the file format to be supported is as follows:

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 12
<value> ::=
NAME
| NUMBER
| QVALUE
| EXPRESSION
\

OPEN <parlist> CLOSE

<parlist> := (NAME <value>)x

A model file is a nonempty “parlist” of which the first NAME is “Model” or “Library” and all
subsequent NAME /value pairs are ignored by the translator. Other files such as the metadata and
steering files which use the same format are not subject to this constraint.

The use of this grammar depends upon the assumption that the value of a parameter never begins
with an OPEN (curly brace) unless it is a struct, and that a simple grammar can be established for
EXPRESSION permitting this to be treated as part of the Lexis.

2.3 .m File Lexis and Syntax

A .m file consists of a sequence of logical lines, each of which is formed from one or more physical
lines and contains zero or more matlab commands.

A physical line is terminated by a carriage return (\r, used under UNIX), a line feed (\n, used under
MACOS) or by carriage return then line feed (\r\n, used under DOS/Windows). CR/LF will be
treated as a single physical line terminator. Any of these will be accepted irrespective of the system
under which ClawZ is running, and will be referred to below as a “newline”.

A logical line begins at the beginning of the file or after the end of the previous logical line, and ends
at the first newline character which is not either:

1. inside the brackets of a matrix display

2. preceded by a line continuation (after the previous newline character).

The specifications of the syntax acceptable in .m files are written as if:

1. newlines in Matrix displays are replaced by semicolons

2. elided newlines and comments are discarded

Comments are allowed starting at any point of a physical line with a “%” character and proceeding
to, but not including, the next newline character (the end of the physical line). Line continuations

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

13

“ 2

are permitted and are indicated by the sequence occurring as the last non-space non-comment
characters on the physical line. Such a continuation marker (the three dots and all characters up to
and including the end of line) is treated as a space. A non-elided newline may only appear within
a logical line inside the braces of a matrix display, (in which case it is treated as a semi-colon,
terminating a row) and will otherwise terminate the logical line.

A logical line consists of zero or more matlab commands separated by commas or semicolons. A
restricted subset of matlab commands can be translated into Z. Translatable commands are equations
with a Matlab name on the left and an “allowable” Matlab expression on the right. Details of the
structure of Matlab names and allowable Matlab expressions are give in section 3.7.2 on parameter
translation.

The translator will tolerate non-comment commands which are not equations, but these commands
will not be translated and will cause all subsequent commands on the same logical line to be ignored.
The same effect will result if an equation is invalid or falls outside the range of “allowable” expressions
supported by the translator.

Matlab names are significant only in the first 31 characters.

2.4 Model Expression Syntaxes

Two kinds of expression occur in Simulink models as parameters to Simulink blocks. The analysis of
these expressions is specified and implemented as a second layer of analysis, taking place subsequent
to the initial analysis of the model file.

The two kinds of expressions are:

1. Fen block expressions

2. Matlab expressions

The first occur only as parameters to Fecn blocks, while the second appear as parameters to many
other Simulink library blocks, or as parameters to masked subsystems (not currently supported by
ClawZ).

In the following specification of the concrete syntax of these expressions, no clear separation is made
between lexical and syntactic matters.

2.4.1 Metanotation

In specifying the parsing and translation of parameters no separation is made between lexis and
syntax.

The significant object language characters are: “” (space), “[” , “|”7, “7, €7, 7, “47, “7 “” the

decimal digits and upper and lower case letters.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 14

Lemma 1 Ltd.

The metanotation encloses phrase names in angled brackets uses “::=" for defining phrases “|” for
choice, round brackets for grouping and postfix “*” for iteration “+” for iteration at least once. The
metanotation “[~ z y z]” is used to indicate “any character except z y, or z”. The metanotation
sc" — "ec"” where “sc¢” and “ec” are single characters is used to indicate any character with a

ascii code between that of sc and that of ec inclusive.

“n

2.4.2 Common Elements

<digit> = "o" — "9

<letter> = mgt—ngn | AN 7"

<mlname> := <letter>(<letter>|<digit>|"_")x

<numeral> ::= <digit>+

<lscalar> := "ok (M=)
(<numeral> ("." (<numeral> |)|) | "." <numeral>)
(("E""em)("+"|"—"]|)<numeral>|)

<fname> := "abs" | "acos" | "asin" | "atan" | "ceil" | "cos" | "cosh" | "exp"
| "fabs" | "floor" | "hypot" | "log" | "log10"
| "sin" | "sinh" | "sqrt" | "tan" | "“tanh"

<fname2> := "atan2" | "power" | "rem"

2.4.3 Fcn Expressions

These expressions occur in model files as parameters to Fen blocks.

They are essentially scalar expressions in which references to vectors and arrays are only permitted
with the necessary subscripts to yield a scalar. One exception is the special vector “u” which is used
to refer to the vector of signals input to the Fcn block. This is permitted in two non-standard forms,
firstly without subscript, to refer to the first element only, and secondly with square brackets instead
of round brackets round the subscript (which is not documented, but is frequently used). Except
for the usage with square brackets the clause referring to “u” in the following syntax is redundant,
since translation of references to “u” will not differ from that of other array references. An intended
consequence of this is that when “u” is used without a subscript it will be construed as a scalar, and
if it is used both with and without a type error will occur. This allows the translation of Fen blocks
with scalar or vector inputs, provided that the use of “u” in the expression corresponds to whether
the input is a scalar or a vector. Note however that the scalar/vector distinction here is that between
a real and a sequence of reals in the Z output, and not whether the signal is of width 1 or greater.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 15
<f_infix_op> = e et L B B I EL N IS B
[| = | it | o] |

<f_prefix_op> = e B B
<f_fname>:= <fname> | "Iln" | "sgn"
<f_-at_exp> ::= <lscalar>

| "(" <f_exp> " "x ")"

| <f_prefix_op> " "x <f_at_exp>

[t (0 e (<] e))

| mut ot ot [<f_exp> " Mk MM

| <f_fname> " "x "(" <f_exp> " "x ")"

| <fname2> " "x "(" <f_exp> " "x """ <f_exp> " "x ")"

| <mlname> (" "x "(" <f_exp> (" "x ")" <f_exp>|) " "x ")" |)
<f_exp> BES " <f_at_exp> (" "x <f_infiz_op> " "% <f_at_exp>)x*

Note: the Simulink documentation has “pow” rather than “~”, but we are assured by the Mathworks
that the latter is intended and that “pow” is effectively a synonym for “power”.

2.4.4 Matlab Expressions

These may occur as parameters to a wide range of Simulink blocks. The expressions supported are
essentially scalar expressions, however, selecting elements from arrays is supported as is taking a
slice from an array. Array and vector displays are supported at the top level.

Though the following specification combined lexis and syntax, in the case of expressions in .m files
there is some very simple lexical preprocessing involved (see 2.3) which is assumed to have taken
place. This affects the interpretation of line terminators.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 16

<m_infix_op> = e B B B A B L S B L VA LA

R e R R RN
<m_prefix_op> = e B BT
<m_at_exp> S <lscalar>

| "(" <m_sexp> " "x ")"

| <m_prefiz_op> " " <m_at_exp>

| <fname> " "x "(" <m_sexp> " "x ")"

| <fname2> " "x "(" <m_sexp> " "x ")" <m_sexp> " "x ")"

| <mlname> (" "x "(" <m_sexp> ("," <m_sexp>|) " "x ")" |)
<m_sexp> = "k <m_at_exp> (" "x <m_infic_op> " "x <m_at_erp>)*
<row> = <m_at_exp> (" "k (""" " " <m_at_exp>)x " "k (")"])
<rows> B (<row>?7 ";")+ <row>?
<vector> = " [N <row>? "|"

| <m_sexp> " "x ":" <m_sexp>

| <mlname> " "x "(" <wvector> " "x ")"
<matriz> 1= "ok UM <rows> " "k "]"
<parameter> n= <mlname> | <m_sexp> | <wvector> | <matriz>

Note that a single miname satisfies the grammar for m_sexp, but should always be delivered as a
ParName (see definition of PARAMETER in section 3.7.2).

2.5 Mask Parameter Grammars

The following parameters to masked subsystems need to be parsed: MaskStyleString, which deter-
mines the interpretation of the information in the MaskValueString, which gives the actual values
for the mask variables, whose names and positions are given in the MaskVariables parameter.

<popup_name> = (" | M) N] |\ [t

<popup_names> = <popup_name> ("|" <popup_name>)*
<mask_style> = ("edit" | "checkboz" | "popup(" <popup-names> ")")
<mask_style_par>:= <mask_style> ("," <mask_style>)*
<mask_value> s= ("] "\")+

<mask_value_par> = <mask_value> ("|" <mask_value>)x
<mask_var> = <milname> "=Q" <numeral>

<mask_var_par> 3= <mask_var> (";" <mask_var>)x*

2.6 Parameter Translation Code Grammar

‘<translation_code> = "Quoted" | "Unquoted" | "Scalar" | " Vector"
‘ | "Matriz" | "SVM™" | "Unified" | "Fen" | " Checkbox"

‘ | "Popup(" <popup_names> ")"

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

17

2.7 Various Parameter Syntaxes

The grammar for “InputPortTypes” and “OutputPortTypes” parameters in library metadata files
(see also section 3.7) is as follows:

<stignal_name_a> == ([T ":" "\"] | "\" [])x
<stgnal_type> ::= <signal_name_a> ":" <port_type>
<bus_structure> ::= <signal_type> ("," <signal_type>)*

<port_type> = "S" | "V" (<numeral>|)
| "B" (<numeral>|) "["<bus_structure>"]"
‘ nGn ‘ nUn

<port_types> ::= <port_type>x*

Note that in a signal_name_a, colon or backslash characters must be escaped by backslash, any other
character may be escaped by backslash. All backslash characters except those escaped by backslash
are discarded on input, and a sufficiency of escapes are added on output. A second layer of escaping
is added when the port_types is quoted. This happens when the information is written to a metadata
file but not when it is written to a port type dump file. If a numeral is supplied for a "B" port_type
then its value must be consistent with any detail provided for the bus_structure.

The grammar for the “UsedLocalVariables” parameters in metadata files is:

‘<used_local_vars> n= (<mlname> ("," <miname>)%)?

The grammar for “Ports” parameters in .mdl files is as follows:

‘<ports_param> =" (<numeral> (" "k (""" ") " "k <numeral>)*)? "|"

The grammar for “OutputSignals” parameters on BusSelector blocks in .mdl files is as follows:

‘<signal_name> p= oo 4
‘<signal_selection> = <signal_name> ("." <signal_name>)x
‘<outputsignals_param> = <signal_selection> ("," <signal_selection>)x

The grammar for “Outputs” parameters on DeMuzx blocks in .mdl files is as follows:

‘ <outputs_param> ::= <numeral>

‘ | "["(<numeral>(" "% (","]" ") " "x <numeral>)x)?"]"

2.8 Block Paths

For the purpose of block selection or output selection it is possible to specify patterns which are
compared with the hierarchical block name formed by concatenating all the system and subsystem
names and the block name of a particular block.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

18

The concrete representation of such patterns is as follows:

‘<name> = ([/\ n?u nyn n/u n\u] | n\u [A])‘i‘
‘<pat_el> =7 | s | <name>
‘<pattern> = <pat_el> ("/" <pat_el>)x

In conversion to its internal form escape characters and “/” separators are removed. A further layer
of escaping is implemented by the ML compiler where these patterns are rendered as ML strings,
as a consequence of which the “\” characters used for escapes in the above format will need to be
doubled up in patterns presented as ML strings.

Similar effects may be observed if it is necessary to enclose a pattern in a metadata file in quotes.

2.9 Steering File Syntax

A ClawZ steering file is similar in syntactic structure to a Simulink model file, consisting of a
sequence of name value associations. At the top level of the steering file all the values are structures
(i.e. name/value lists enclosed in curly brackets), and the names of these structures must be one of
the following:

NameMapping For controlling the Simulink to Z name mapping.

In this case the names are Z identifiers to be used for local names and the values are the quoted
full Simulink path of the block for which the Z identifier should be used.

InPortTypes For setting block input port types.

In this case the name should be the full Simulink path of the block whose inport types are
being supplied, and the value is a quoted sequence of port types (a < port_types >) supplying
the types of the input ports.

OutPortTypes For setting block output port types.
Format similar to that for InPortTypes.

VariableTypes For information about the types of matlab variables.

In these structures each name is a 7 identifier into which a matlab variable name has been
translated by the .m file translator, and the value is a (possibly empty) comma separated list
of non-negative integer dimensions for the value assigned to the variable enclosed in square
brackets (“[]” for scalar values). Some of these dimensions may be zero, which indicates that
the .m file translator was unable to make a determination.

In the InPortTypes or OutPortTypes structures the the port types may be split over multiple lines
by supplying additional quoted strings on subsequent lines (as may be done in Simulink model files),

e.g.:

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

19

InPortTypes {
int517a/ BusConstructor "B6["
" firstsignal: V2,"
"secondsignal:S,"
"thirdsignal: B3["
"one:S,two: S, three:S"

n]]n

It should be noted that all the kinds of information permitted in a steering file may be spread over
multiple top level structures, and that the effect should be exactly the same as if the content of all
the structures of a particular name were concatenated in a single structure of that name. Thus, for
example, if supplying matlab variable information from the translation of several different .m files it
suffices to concatenate the files from each .m file translator run (with each other and with any other
data required in the steering file).

2.10 File Types

This same file format is used both for Simulink models, for library metadata files, and for translator
steering files. For the way in which this file format is used in each case see appendices A and B of
8], [6] and [4].

The Matlab .m files have a different format, described above.

Certain other file types have also been mooted in this document. It is not proposed to make use of
these other file types in the current version of ClawZ but they are mentioned here nonetheless.

Model Files This is informally described in appendices A and B of Using Simulink [8]. The trans-
lator will take no account of any of the information in a model prior to the SYSTEM block
which describes the technical content. In particular it is assumed that block parameter defaults
are used only for cosmetic features and not to set defaults for parameters which are relevant
to the translation.

Library Metadata Files The structure of these is described in [4], which includes an example for
use in the integration tests.

Translator Steering Files As described in section 2.9.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 20

Lemma 1 Ltd.
3 DATA STRUCTURES

3.1 Structured Files

The abstract outer structure of the Simulink model file and the metadata and translator steering
files is as follows.

The information in models is predominantly encoded in parameter name/value pairs. The following
given sets are introduced as the sets of possible parameter names and simple values.

Z

[PNAME, PVALUE)

Simple parameter values have a lexical type.

Z

PTYPE := SName | Number | Qualue | Expression

However, a parameter may take a structured value, itself formed from name/value pairs as follows:

Z

‘STRUCTURE = Structure (seq [name: PNAME; value: VALUE))
&

\VALUE := Simple (PTYPE x PVALUE) | Struct STRUCTURE

This may be used as an intermediate abstract representation, with a file specific abstract structure
used in the main specification as documented below.

3.2 Simulink Models

The following functions coerce between PVALUFEs and PNAMEs and character sequences.

Z

pn2sc: PNAME — seq CHAR;
pv2sc: PVALUE — seq CHAR;
sc2pn: seq CHAR — PNAME;
sc2pv: seq CHAR — PVALUE

sc2pn g pn2sc = sc2pv § pvlsc = id(seq CHAR)

We also require a function for converting a natural number to the PVALUFE which is its numeral.

Z

num2pvalue : N — PVALUE

Certain specific examples of these are given names.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 21

Lemma 1 Ltd.

ActionQ is the parameter value “Action?”.
ActionPort is the parameter value “ActionPort” which is the BlockType of an action port.

AllowUnequallnputPortWidths is the parameter name “AllowUnequallnputPortWidths”,
which is used for Merge blocks.

BlockType is the parameter name “BlockType”, which is used to record the type of a block in a
Simulink model.

BusCreator is the parameter value “BusCreator”, which is the BlockType of a Simulink bus
creator block.

BusSelector is the parameter value “BusSelector”, which is the BlockType of a Simulink bus
selector block.

Constant is the parameter value “Constant”, which is the BlockType of a Simulink constant block.
Demux is the parameter value “Demux”, which is the block type of Demux blocks.

Elements is the parameter name “Elements”, which is the name of a parameter required by a
block of type Selector.

ElementSrc is the parameter name “ElementSrc”, which is the name of a parameter required by
a block of type Selector.

EnablePort is the parameter value “EnablePort” which is the BlockType of a Simulink enable
port block.

EnableQ is the parameter value “Enable?”.

held is the parameter value “held” which is used for the InitializeStates parameter of the Action
block.

If is the parameter value “If” which is a block type.

ifaction is the parameter value “ifaction” which is the name of the action port on an If action
subsystem.

InitializeStates is the parameter name “InitializeStates” which is a parameter to the action block.
InitialOutput is the parameter name “InitialOutput” which is a parameter to the Merge block.

4

initial_state is the parameter value “initial_state” which is used internally for Merge block

synthesis.
InPort is the parameter value “InPort” which is the BlockType of a Simulink input port block.

InputPortTypes is the parameter name “InputPortTypes”, which is used in a library metadata
entry to record the types of the input ports.

Inputs is the parameter name “Inputs”, which is used in Merge blocks.
InputType is the parameter name “InputType”, which is used in Selector blocks.

Internal is the parameter value “Internal”, which is used in Selector blocks.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

22

Merge is the parameter value “Merge” which is a block type.
Mux is the parameter value “Mux”, which is the block type of Mux blocks.

Name is the parameter name “Name”, which is used to record the name of a block or a system in
a Simulink model.

(1%

NullString is the parameter value *” which is used to check whether a line has a name.

off is the parameter value “off”. This is used generally as the value of a parameter selected by a
checkbox.

on is the parameter value “on”. This is used generally as the value of a parameter selected by a
checkbox.

One is the parameter value “1”. This is the name of the single input or output port on library
blocks of type OutPort or InPort respectively.

OutPort is the parameter value “OutPort” which is the BlockType of a Simulink ouput port block.

OutputPortTypes is the parameter name “OutputPortTypes”, which is used in a library
metadata entry to record the types of the output ports.

OutputSignals is the parameter name “OutputSignals”, which is used in a BusSelector block to
specify the values on the output signals.

Port is the parameter name “Port”, which is used to record the external port number represented
by a Simulink port block. This is needed to correctly interpret connections to external ports.

Ports is the parameter name “Ports”, which is used to record the number and kind of ports on a
block. This is needed to correctly interpret connections to external ports.

Reference is the parameter value “Reference” which is the BlockType of a Simulink library
reference block.

reset is the parameter value “reset” which is used for the InitializeStates parameter of the Action
block.

Selector is the parameter value “Selector” which is the BlockType of a Simulink selector block.

CaseShowDefault is the parameter name “CaseShowDefault” which is a parameter of a Simulink
SwitchCase block.

ShowElse is the parameter name “ShowElse” which is a parameter of a Simulink If block.
state is the parameter value “state” which is used internally for Merge block synthesis.

PRA

stateP is the parameter value “state’” which is used internally for Merge block synthesis.
SwitchCase is the parameter value “SwitchCase” which is a block type.

Terminator is the parameter value “Terminator” which is the BlockType of a Simulink terminator
block.

TriggerPort is the parameter value “TriggerPort” which is the BlockType of a Simulink trigger
port block.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

23

Trigger(Q is the parameter value “Trigger?”.

UnitDelay is the parameter value “UnitDelay”, which is the BlockType of a Simulink unit delay
block.

ValuePN is the parameter name “Value”, required by the Simulink Constant block.
Vector is the parameter value “Vector” for the Simulink Selector block “InputType” parameter.

X0 is the parameter name “X0”, required by the Simulink Unit Delay block.

AllowUnequalInputPortWidths, Name, BlockType,
CaseShowDefault, Elements, ElementSrc, Port,
Ports, InputPortTypes, InitializeStates, Initial Output,
Inputs, InputType, OutputPortTypes, OutputSignals,
ShowElse, ValuePN, X0: PNAME;

ActionPort, ActionQ, Constant, BusCreator, BusSelector, Demux,
EnablePort, EnableQ, held, If, ifaction, initial_state, InPort,
Internal, Merge, Mux, NullString, of f, on, One, OutPort,
Reference, reset, Selector, state, stateP, SwitchCase,

Terminator, Trigger Port, TriggerQ, UnitDelay: PVALUE

Z

port_block_types = {ActionPort, EnablePort, InPort, OutPort, TriggerPort}

Parameters are then represented by schema products:

PARAM
name: PNAME; value: PVALUE

— s

We next introduce some further schema types which are more convenient representations of some of
the information which is encoded by parameters in the model.

The Port parameter encodes certain information about the numbers and kinds of ports on a block.
An abstract encoding of this information is:

PORT_PARAM

max_in, max_out, trigger, enable, state: N

— s

The OutputSignals parameter encodes information about the outputs from a BusSelector block. An
abstract encoding of this information is:

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 24

Lemma 1 Ltd.

Z

OUTPUTSIGNALS_PARAM = seq (seq PVALUE)

The Outputs parameter encodes information about the outputs from a Demux block. An abstract
encoding of this information is:

Z

OUTPUTS_PARAM := OPScalar N | OPVector (seq N)

The following information used is used to identify a port, notably in specification of a line.

PORT
block, port: PVALUE

— s

And next a line, connecting a single source port with zero or more destination ports. A line with
no destinations may occur in a Simulink model. Lines may have names; the names are not used in
ClawZ but are used in ClaSP.

" LINE
source: PORT; destinations: F; PORT; name : PVALUE

Note here that a Simulink model may contain lines without a source port or without a destination
port. In both cases these should be silently discarded without causing the translation to be aborted.
This is a requirement on the parser and therefore does not appear in the formal description of the
translation which begins with the results of the parsing phase. Our grammar for model files also
admits the possibility of a line with more than one source port, though we do not believe that this is
ever done by Simulink. The translator considers lines with multiple sources semantically ill-formed.
Though this does happen in digital hardware it does not appear to be possible in Simulink and our
available descriptions of Simulink semantics do not cater for it. The translator will therefore reject
models in which lines are found with multiple sources.

We now use a pair of mutually recursive free type definitions to represent systems and blocks. A
system is the result of connecting together a number of blocks in a Simulink diagram. A block can
either be a Simulink library block, or a subsystem.

Z

‘SYSTEM BES System [pars: F PARAM; blocks: F; BLOCK; lines: F; LINFE]
&
|BLOCK = SubSystem [pars: F PARAM; system: SYSTEM]

| | LibBlock (F; PARAM)

A Simulink model is, for present purposes, just a system.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

25

3.3 Matlab .m Files

A Matlab .m file, for the purposes of this specification is regarded as a sequence of name/value
equations (MFEQs).

Z
—MFEQ
‘ name: PVALUE; value: PVALUE
|

Z

\M_FILE = seq MFEQ

It should be noted that the names acceptable to Matlab are more restricted than those acceptable
in Simulink models, and that there is therefore no need to translate these names to obtain legal Z
identifiers. However, a facility for the user to select a systematic transformation of these names is
available and is specified as the function change_miname.

3.4 Parameter Expressions

A second level of analysis is undertaken on some of the parameter values (PVALUES).
This involves analysing them as expressions using the grammar defined in section 2.4.

In this section the abstract structure resulting from this further analysis is modelled.

3.4.1 Common Elements

A sign (or the absence of one) is represented as follows:

Z

‘ SIGN :=

‘ Positive
‘ | Negative

A floating point literal comes as a sign, a decimal mantissa (value) and a (signed) exponent (power
of ten). We model this as a pair of SIGNs and a pair of PVALUESs. The first PVALUE is the decimal
value with the decimal point removed. The second PVALUE is the natural number obtained by
adjusting the power of 10 following the “e¢” to take account of removal of the decimal point.

VA

—PLV

‘ sign, psign: SIGN; value, power: PVALUE
|

(think of PLV as Parameter Literal Value)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

26

3.4.2 Fcn and Matlab Expressions

A common abstract representation is used for these two distinct kinds of expression.

Z

AT_EXP :=
Lscalar PLV
| Brackets SEXP
| PrefizOp (PVALUE x AT_EXP)
| Function (PVALUE x SEXP)
| Function2 (PVALUE x SEXP x SEXP)
| Mliname (PVALUE x seq SEXP)

SEXP := Sexpres (AT_EXP x seq (PVALUE x AT_EXP))

LvDisplay (seq SEXP)
| LvSlice (SEXP x SEXP)
| LvArray (PVALUE x VEXP)

MEXP = seq VEXP

3.5 Fcn and Matlab Operators

The following declarations indicate the target Z names for the operators which may occur in Fcn or
Matlab expressions.

The following are operations over real scalars:

Z

| Ay —ms Fms +/ms \m : PVALUE

The following relations over reals (returning reals) are used as target for the corresponding operators
in matlab expressions:

Z

== m; ~Y=—m,; <m7 >m, >:m, <:m . PVALUE

The following operators are used for the corresponding operators in matlab expressions:

Z

and,,, orm,, “m : PVALUE

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

27

The following are unary operators occurring in matlab expressions:

Z

MPmy, MMy, ~py - PVALUE

The following relations and operations over reals are provided to give a distinct priority to occurrences
of these operations in Fcn expressions:

Z

‘ +5 —F *f, /f : PVALUE

The following relations over reals (returning reals) are used as target for the corresponding operators
in fen expressions:

Z

| =f, #f, <p, >, >=5, <=5 : PVALUE

Z

‘ andg, ory, "¢ : PVALUE

The following are unary operators occurring in Fcn expressions:

Z

‘ mpy, mmy, noty : PVALUE

3.6 Z Specifications

The following greatly simplified abstract syntax for Z suffices for describing the output from the
translator.

Given sets are introduced to designate the words and decorations from which Z identifiers are formed.

Z

[WORD, DECOR]

An identifier is then defined:

IDENT
word: WORD; decor: DECOR

— s

One specific decoration is declared, the empty decoration:

Z

Decor Empty: DECOR

The following names are introduced for specific distinct identifiers which are declared either in the
ProductZ libraries or in the ClawZ Z Library and are used in the specifications generated by ClawZ.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

28

Ui is the Z name for the identifier “U” which is the name of a constant declared in the ProofPower-z
library. This constant is useful in declaring names in Z specification whose type is not known
but can be inferred from the context, and it is used by the ClawZ translator in input and
output port declarations.

Ei is the identifier of the ProofPower-Z constant “e” used in forming real values.
S2Ui is the identifier “S2U” of an injection from Z real values into some unified value space.

V2Ui is the identifier “V2U” of an injection from sequences of Z real values into some unified value
space.

MZ2Ui is the identifier “M2U” of an injection from sequences of sequences of Z real values into some
unified value space.

INeg is the identifier “ ~” of unary negation over the integers in ProofPower-Z.

RNeg is the identifier “ ~ g” of unary negation over the real numbers in ProofPower-Z.
Composei is the identifier “0” of relational composition.

Slicei is the identifier “: ,,”.

R2zi is the identifier “r2z”.

The injections into the unified value space are used in transmission of unified parameter values from
Simulink models into the resulting Z specification (see: 3.7.2) when the “Unified” parameter type is
specified. Corresponding Z declarations would be required in the ClawZ Z Library ([6], [7]) or in a
supplement if the Unified parameter type were to be fully supported, but these have not yet been
commissioned.

VA
‘ Ui, Ei, S2U4i, V2Ui, M2U14, INeg, RNeg,
‘ Slicei, Composet, R2zi: IDENT

The following names are introduced for specific distinct WORDs which are declared either in the
ProductZ libraries or in the ClawZ Z Library and are used in the specifications generated by ClawZ.

Active is the Z name for the word “Active” which is the name of a schema declared in the

ProofPower-Z library which tests whether the Action? port is set.

Inactive is the Z name for the word “Inactive” which is the name of a schema declared in the
ProofPower-Z library which tests whether the Action? port is clear.

‘ Active, Inactive: WORD

The following definition of Z_ FXPR is highly simplified and application oriented:

Lemma 1 Ltd.

Z_EXPR ::=

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

SchemaRef WORD

Ident IDENT

Application (Z_EXPR x Z_EXPR)

Selection (Z_EXPR x Z_EXPR)
BindingDisplay (F (IDENT x Z_EXPR))
PvalueZexpr PVALUE

ZSequence (seq Z_EXPR)

ZPair (Z_EXPR x Z_FEXPR)

ZLambdaExp [decl: seq Z_DEC; exp: Z_EXPR)|
ZLambdauU Z_EXPR

ZInfixOps (Z_EXPR x seq(IDENT x Z_EXPR))
ZBrackets Z_EXPR

ZBus (seq Z_EXPR)

ZHSchema [decl: seq Z_DEC; pred: Z_PRED]
ZTheta Z_EXPR

ZNat N

ZSConj (Z_EXPR x Z_EXPR)

ZSDisj (Z_EXPR x Z_EXPR)

DecSchemaRef WORD
DecSchema Z_EXPR
DecDec [names: seq IDENT; type: Z_EXPR]

PredEq (Z_EXPR x F; Z_EXPR)
PredBool Z_EXPR

PredConj (F Z_PRED)
PredDisj (F Z_PRED)

29

The “PvalueZexpr” clause is used where a Simulink block parameter value which is legal Z is to be
used as part of the output Z specification.

The “ZBus” clause is semantically equivalent to distributed concatenation, and should be translated
on output as the distributed concatenation of the sequence display formed from the arguments. It is
used only where the sequence of values corresponds to a sequence of signals which forms a bus (and
has not been subject to any simplifications which obscure the correspondence with the bus structure).

It plays a role in the simplifications which are undertaken during virtualization (see section 6.7).

The arguments to the PredEq constructor are respectively:

1 a single "source” value (usually the source of a line in a simulink model)

2 a set of destination values (usually the destinations of a line in a simulink model)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

30

When pretty printed the source item should be shown as the rightmost operand of the equation.
A basic declaration is either a schema reference, a schema exression, or an identifier-list /type pair.

A declaration is a sequence of basic declarations.

Z

Z_DECL = seq Z_DEC

A predicate is a set of equations, where each equation is a set of at least two Z_ FEXPR, one of which
is distinguished (the output port driving a line, which is distinguished so that it can be placed at
one end of the equation).

Three kinds of Z paragraph are required, a schema definition, a schema box and an abbreviation
definition. Abbreviation definitions are used in the translation of Matlab .m files.

Z

‘Z_SC’HEMADEF = [name: WORD; value: Z_EXPR]

Z

|Z_HSCHEMA = [decl: Z_DECL; pred: Z_PRED]

Z

‘Z_S'C'HEMABOX = [name: WORD; decl: Z_DECL; pred: Z_PRED)]

Z

|Z_ABBREVDEF = [ident: IDENT; value: Z_EXPR]

Z

‘Z_PARA w=SchemaDef Z_ SCHEMADEF
| | SchemaBox 7Z_SCHEMABOX
| | AbbrevDef 7_ABBREVDEF

A 7 specification is a finite sequence of Z paragraphs.

Z

Z_SPEC = seq Z_PARA

Since there is some discretion in the ordering of the paragraphs and at a later date it might be
required to give the user some control over the ordering, a representation of the paragraphs in
the Z specification resulting from translating a Simulink model is provided which encapsulates the
minimum constraint on their ordering in the final specification.

The blocks which are the immediate constituents of a system or subsystem must be defined before
the system itself, in any order. These are held as a mapping indexed by the names of the blocks.

The following free-type provides a representation which contains only this ordering information.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

31

Z

SYS_SPEC ::= SysSpec [block_specs: PVALUE + SYS_SPEC; z_spec: Z_SPEC]

Henceforth the block specs will be referred as having the following type (which could not be used
initially because of the required recursion).

Z

BLOCK_SPECS = PVALUE + SYS_SPEC

The block specifications are shown as a map and can be output in any order, but must precede the
specification of the system built from those blocks.

3.7 Library Metadata

3.7.1 Metadata Content and Representation

The library metadata files provide information necessary to the translator in relating the Simulink
library blocks to the Z libraries which are their formal specifications.

In this version of ClawZ only two kinds of Z specification will be supported:

1. A schema definition in which the input and output ports follow a conventional naming scheme.

2. A function which takes a binding of parameters as its argument and returns a schema of the
above form.

It is desirable to be able to model a Simulink library block by a number of distinct schemas, since the
parameterisation of library blocks provides an effective overloading of operators which is awkward
to realise in a strictly typed language without overloading.

The library metadata is therefore permitted to specify not only the block type, but also any other
block parameter as indicating the use of a particular schema. In this way, for example, the number of
ports can be used in selecting the applicable Z definition. In extremis a user could provide a specific
translation of a single instance of a library block selected by the blockname used in his diagram for
that instance. Selection by logical position in diagram is given special support by allowing a “path”
to be specified, which will be matched against the heirarchic block name while selecting the best
library block.

The library metadata also includes information about which block parameters are to be transmitted
to parameterised specifications. This will be an empty set of parameters for non-parameterised
specifications.

With the introduction of support for action subsystems library blocks having state must also be
provided with specifications of how the state is to be reset or held. These are similar in structure

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

32

to the principle definition of the library block (i.e. their parameterisation is the same and their
signatures are a subset of the principal definition) but they have different names which are at the
discretion of the library designer. The names of these additional schemas must be supplied in the
metadata in a manner similar to that in which the name of the principle definition is given.

As a result of support for translation of artificial subsystems of libraries there may be more than
one alternative specification for a single subsystem block in a library. To disambiguate reference to
7Z specifications for subsystems in artificial subsystems of libraries a parameter supplying the name
of the relevant artificial subsystem is included. This will not be present unless the metadata element
relates to an artificial subsystem.

The library metadata therefore contains up to ten elements for each Z specification:

1. The name of the artificial subsystem of the library to which this item of metadata relates,
known as “ASname” in (the concrete representation of) the metadata.

2. The name of the Z specification, known as “Zname”. This will either be the name of a schema
or of a function yielding a schema when supplied with a suitable binding of parameters.

3. The name of the Z specification for holding the state, known as “HeldZname”.
4. The name of the Z specification for resetting the state, known as “ResetZname”.

5. An optional “BlockPath” parameter, which must match against the heirarchic name of the
block being translated.

6. A set of parameters known as “SelectionParameters” which must be present with specific values
in the parameters for an instance of a Simulink library block for the specification to be used
in translating that instance.

7. A set of parameters known as “TransmittedParameters” which indicates the block parameters
which are to be passed in a binding as an argument to the Z specification. A translation code
is provided with each parameter indicating how the parameter supplied to the Simulink library
block should be processed before inclusion in the Z specification. This may be omitted from the
metadata, in which case the Z specification is not parameterised. In the abstract representation
this case is indicated by the use of an empty set of transmitted parameters.

8. An optional parameter known as “InputPortTypes”, which indicates the types of the input
ports on the block. This is a string with one entry for each input port in ascending order with
no gaps. Each entry must be “S”, “V” optionally followed by a numeral, “G”, or “U” standing
for port types ScalarPT, VectorPT, GenericPT, UnknownPT respectively. If the string is
shorter than the number of input ports then the unspecified ports are taken as unknown. The
numeral suppled for a vector signal indicates the width of the signal, its absence or the value
“0” indicating that the width is unknown. The distinction between “S” and “V” should be
based on the type of the port in the Z specification, not on the width of the signal. The “G”
case should only be used where the corresponding 7 specification is generic in the type of the
ports shown as G, that they all have the same generic type (and therefore the same type when
instantiated), and will if this is a vector type also have the same length.

9. An optional parameter known as “OutputPortTypes”, which indicates the types of the output
ports on the block, using the same format as the “InputPortTypes” parameter.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

33

10. An optional parameter known as “UsedLocalVariables” which provide the names of all the
local variables which are used in this block and will therefore need to be passed to it as
parameters. Local variables are those which are mask variables for some enclosing masked
subsystem. When a subsystem in a library is invoked by block reference these local variables
are effectively rebound to their values at the point of reference.

The grammar for “InputPortTypes” and “OutputPortTypes” and “UsedLocalVariables” is shown in
section 2.7.

A pattern for a block path is specified as follows:
Z

PAT_EL := StarPat | QueryPat | PlainPat PVALUE

Where StarPat matches any sequence of names, QueryPat matches any single name and PlainPat
matches a single specific name.

Z

PATTERN = seq PAT_EL

Z

PORT_TYPE :=

ScalarPT

VectorPT N

GenericPT

UnknownPT

BusPT (N x seq [line_name: PVALUE; port_type: PORT_TYPE))

A library metadata element is therefore represented in our abstract syntax as follows:

Z_META_ELEMENT
as_name: PVALUE;
z_name: IDENT
held_z_name: OPT[IDENT];
reset_z_name: OPT[IDENT];
block_path: PATTERN;,
select_pars: F; PARAM,
transmait_pars: F PARAM;
input_port_types: seq PORT_TYPFE;
output_port_types: seg PORT_TYPFE,
used_maskvars: F PVALUFE

The as_name component will be set to NullString when reading metadata if the ASname item is
absent. On output the ASname field will be omitted if the as_name component has value NullString.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

34

A library metadata file is simply a sequence of metadata elements.

Z

META_FILE = seq; META_.ELEMENT

3.7.2 Parameter Format and Representation

Translation of a parameter yields a result of the form:

Z

ITRANSLATION RESULT :=TMatch Z_EXPR
‘ | TNoMatch
| | TFail

The TMatch values are used to return the value resulting from a sucessful parameter translation.
When a translation fails it can return either TNoMatch, causing the match to fail, and indicating
that the parameter supplied was not of the required kind, or it can return a TFail where a translation
method, perhaps for some kind of expression, is unable to complete the translation but where there
is no reason to doubt that the match was good and search for another match.

A set of names for specific PVALUEs to be used as translation codes are now introduced:

Quoted is the parameter value “Quoted”. If this translation code is used the parameter is to passed
to the Z specification as a quoted string.

Unquoted is the parameter value “Unquoted”. If this translation code is used the parameter is
to passed to the Z specification with any outer quotation marks removed but with no other
changes. Support for the historical parameter code ”Numeric” is no longer required.

Scalar is the parameter value “Scalar”. If this translation code is used the parameter is assumed
to be a matlab scalar expression limited to the grammar shown in section 2.4.4.

Vector is the parameter value “Vector”. The parameter is assumed to be a Matlab expression
denoting a numeric row vector or scalar and is to be translated into a Z sequence display.

Matrix is the parameter value “Matrix”. The parameter is assumed to be a Matlab expression
denoting a numeric matrix, vector or scalar and is to be translated into nested Z sequence
displays.

SVM is the parameter value “SVM”. This is not required in the model translator but is specified
for use in the .m file translator. For this parameter code a parameter is interpreted as either
a scalar, a vector or a matrix in that order of priority. The Z type of the resulting expression
will depend on which interpretation is taken.

Unified is the parameter value “Unified”. This is the same as SVM except that the resulting
parameter is coerced into a single value space by the use of the functions “S2U”, “V2U”, and
“M2U” respectively.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

35

Fcn is the parameter value “Fen”. This is similar to “Scalar” except that special treatment is
given to the array named “u”, and the resulting expression is abstracted over “u” before being
supplied to the selected library block.

Checkbox is the parameter value “Checkbox”. This parameter type corresponds to the checkbox
masked variable type. A parameter of type Checkbor must be either “off” or “on”, which are
translated into the numbers zero and one respectively.

‘ Quoted, Unquoted, Scalar, Vector,
‘ Matrix, SVM, Unified, Fcn, Checkbox: PVALUE

The translation codes Quoted and Unquoted never fail, unconditionally transmitting the parameter
into the Z specification, with or without outer quotes as required, but with no other alterations.

The translation codes Scalar, Vector, Matriz, SVM, Unified, and Fcn invoke a futher parse of the
parameter using one of the grammars specified in section 2.4. If the parse fails or if the resulting
object is of higher dimension than that requested, the match fails. Otherwise the parameter is subject
to a simple transformation and output as a Z object

Z
PARAMETER :=
ParName PVALUE
| ParScalar SEXP
| ParVector VEXP
| ParMatriz MEXP

The following types represent the results of parsing the various mask variable parameters.

| MASK_STYLE :=

| M SEdit

‘ | M SCheckbox

| | M SPopup (seq PVALUE)

The result of parsing a MaskVariables parameter should be a sequence which maps variable numbers
to variable names.

Z

|IMASK_VAR_PAR = seq PVALUE

Z

‘MASK_STYLE_PAR = seq MASK_STYLE

Z

‘MASK_VALUE_PAR = seq PVALUE

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 36

Lemma 1 Ltd.

Special translation of a parameter yields a result of the form:

Z

‘SPECIAL_RESULT w= SRScalar Z_EXPR
‘ | SRVector Z_EXPR
| | SRFail

3.8 Steering File Structure

The ClawZ steering file is in the same structured format as that used for models and is therefore
read in as a STRUCTURE.

Only the following four different PNAMES may be used at the top level of this structure:

InPortTypes is the parameter name “InPortTypes”, which is used as the name of a (non-standard)
structure in a ClawZ steering file to record the types of the input ports for some block in the
model specified by path.

NameMapping is the parameter name “NameMapping”, which is used as the name of a structure
in a ClawZ steering file used to control the Simulink to Z name mapping.

OutPortTypes is the parameter name “OutPortTypes”, which is used as the name of a (non-
standard) structure in a ClawZ steering file to record the types of the output ports for some
block in the model specified by path.

VariableTypes is the parameter name “VariableTypes”, which is used as the name of a structure
in a ClawZ steering file to record the types of matlab variables used in the model.

‘ InPortTypes, NameM apping, Out PortTypes, VariableTypes : PNAME

3.9 DMatlab Variable Types

During the translation of matlab .m files “types” are assigned to the variables based on the structure
of the expression assigned to the variable. These types are later used during the type inference stage
of model translation.

A type will either be scalar, vector or matrix, but the length is required where this can be derived.
Allowing for some future generalisation to higher dimensions of arrays an appropriate representation
of the required information would simply be a seqence of numbers, whose length will in fact be 0, 1
or 2 and whose values are either the size of the relevant dimension of the array or zero if it cannot be
deduced. The specification provides at present only for limited intelligence in determining the sizes.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

37

Z

MV ARTY PE = seq N

The values are accumulated in a mapping which assigns MVARTYPEs to PVALUEs. The name
used in this mapping is the name after application of any prefix or suffix.

Z

‘MVARTYPES = PVALUE + MVARTYPE

3.10 ClawZ Control Data

When the ClawZ program is invoked various information is supplied as parameters.

This includes:

—_

. the pathname of the model or library file to be compiled
2. the pathname of a metadata file
3. the pathname of a steering file

4. an optional filename for metadata output (if this filename is supplied the translation will be
undertaken as a library translation not a model translation)

5. a list of output file paths and details of which parts of the translated model are to be written
to each file

6. a list of artificial subsystem specifications, and for each such artificial subsystem details of how
the output is to be written into files.

The following 7 data structures model this information.

OUTPUT_FILTER_SPEC is used to represent a prescription for a subset of the output of the
translator to be written to a particular file.

The information to be written to the file whose pathname is output_file, is all the Z output from
blocks or subsystems in the model whose pathnames match a pattern in excl but do not match one
in incl and have not previously been output (to some other file).

OUTPUT_FILTER SPEC
output_file: STRING;
excl, incl: seq PATTERN

— =

Artificial subsystem specifications permit the synthesis of subsystems involving parts of the subsys-
tems in the model.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

38

To specify artificial subsystems we need a structure BLOCK_MODIFIER_SPEC which specifies a
modification to a part of a subsystem. The component path is the path to a block in the model, i.e.

a sequence of subsystem names. The component mod specifies the required change, using the free
type BLOCK_MODIFIER.

There are three kinds of modification which are permitted. The constructor Include provides a list
of blocknames of blocks which are to be omitted from this subsystem (all others will be included).
The constructor Ezclude provides a list of blocknames of blocks which are to be omitted from this
subsystem (all others will be included). The constructor ASname provides the name of an artificial
subsystem of a library which is required to be used in satisfying a block reference to a subsystem
in that library. Include and Ezclude modifications are only permitted for paths which are the paths
of subsystems, ASname modifications are permitted only for paths which are the paths of block
references.

V4

‘BLOC’K_MODIFIER = Include (F PVALUE)
‘ | Exclude (F PVALUFE)

‘ | ASname PVALUE

Z

‘Fulle'lter = Fzclude {}

Z

‘EmptyFilter = Include {}

Both for block selection and for output selection these paths may be matched against patterns
supplied by the user, however no pattern matching is involved in their use here.

* BLOCK_MODIFIER.SPEC
path: PATTERN;
Ffilter: BLOCK_MODIFIER

Each artificial subsystem has a name which is used as the initial part of the names of the Z specifica-
tions created for this subsystem. The artificial subsystem is specified as having a top-level which is
a subset of an identified system or subsystem of the model, and by specifying optionally a number of
subsetting operations on subsystems directly or indirectly contained in that top level subsystem. The
path of the top BLOCK_MODIFIER_SPEC must be absolute, the paths in the rest of the BLOCK_
MODIFIER_SPECs must be relative to that path.

" ART_SUBSYS_SPEC
name: PVALUE,
top: BLOCK_MODIFIER_SPEC
rest: seq BLOCK_MODIFIER_SPEC,
output_spec: seq OUTPUT_FILTER_SPEC

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

39

We are now able to specify the parameters required for a run of ClawZ.

" RUN_PARAMS
model_file, meta_file, steer_file: STRING;
meta_output: OPT[STRING];
output_spec: seq OUTPUT_FILTER_SPEC,
art_subsys_specs: seq ART_SUBSYS_SPEC

We also specify the parameters required for a run of the ClawZ .m file translator.

VA
—M_FILE_RUN_PARAMS
‘ m_file: STRING;

|

output_file, types_file: OPT[STRING];
parameter_type: PVALUE

3.11 Context Structures

In this section are defined data types which are used in the context for any of the passes over the
intermediate model.

The following data type provides the contextual information required for deciding whether to generate
state held and/or reset schemas for subsystems and also for deciding which of the available schemas
for library blocks should be instantiated.

held the context is HCHeld if the block is an action subsystem of which the relevant port is set to
“held” the state when disabled, or if it is enclosed in an action subsystem and the smallest
enclosing action subsystem is set to hold the state.

reset the context is HCReset if the block is an action subsystem of which the relevant port is set
to “reset” the state when inactive, or if it is enclosed in an action subsystem and the smallest
enclosing action subsystem is set to reset the state.

void the context is HC'Void if the block is not in a library compilation and neither is nor is contained
in an action subsystem.

unknown the context is HCUnknown if the block is in a library compilation and is not an action subsys-
tem.

The HOLD_CONTEXT influences the generation of state held and state reset schemas. Contexts
HCHeld and HCReset indicate that held and reset schemas are required (respectively) if the subsystem

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

40

has any state. If the context is HC'Unknown both held and reset schemas are required to be generated,
if HC'Void neither.

Z
HOLD_CONTEXT :=
HCHeld
| HCReset
| HCUnknown
| HCVoid

3.12 Intermediate Model Representation

We here define the data structures representing information derived from the Simulink model which
is necessary in defining the transformation into Z. The analysis which gives values to these structures
is defined in section 6.6.

PORT_DETAILS
line_name: PVALUE;
port_type: PORT_TYPE

— =

PORT_INFO
tnput_port_details: PVALUE + PORT_DETAILS;
output_port_details: PVALUE + PORT_DETAILS

— =

The following key type is used in sorting the declarations in a schema into the required order. The
number on ActionInv is used for action ports on Merge blocks and is set to zero for the action port
on an action subsystem.

Z

INVKEY :=

Nolnv
ActionInv N
EnableInv
TriggerInv
Inportinv N
OtherInv IDENT
OutportInv N

In the following the three declaration lists are for the main definition and for state held and state
reset (which will often be empty).

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification H

Z

INVOCATION = INVKEY x (Z_DECL x Z_DECL x Z_DECL)

The following projection functions are defined for use on invocations.

Z
main_inv, held_inv, reset_inv

: (Z_DECL x Z_DECL x Z_DECL) — Z_DECL

VY m, h, r: Z_DECLe
main_inv (m, h,) = m
A held_inv (m, h,) = h

A reset_inv (m, h, r) = r
VA
VIRTUAL :=
VUnknown
| V Inhibit

| Virtual (PVALUE + Z_EXPR)

The following schema contains those components which are common to subsystems and library blocks.

" COMMON_INFO
spectfication: Z_SPEC;
invocation: INVOCATION;
virtual: VIRTUAL;
used_maskvars: F PVALUE

The following schema contains the information required for library blocks.

" BLOCK_INFO
pars: F PARAM,
input_port_types: PVALUE + PORT_TYPE;
output_port_types: PVALUE + PORT_TYPE;
COMMON _INFO

The following structure documents an “action complex”, which is an If or a SwitchCase block, the
action subsystems to which it is connected and the Merge blocks to which they are in turn connected.
It serves two primary purposes. The first is to permit the checking of the specified constraints on
these systems and hence to enable appropriate error reporting. The second is to provide the necessary

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

42

information for the supplementary wiring which is required to feed the values on subsystem action
ports to the appropriate Merge block.

The terminology used in the component names is as follows:

root This is the blockname of the If or a SwitchCase block.
type This is the blocktype of the root block.
tail This is the blockname of the Merge block.

open This is true if the block is an If block without an else clause or if it is a SwitchCase block
without a default. If it is true this is reported as an error in the first phase, prior to Merge
synthesis. When Merge synthesis is implemented open action complexes will be permitted and
a Merge block with state will be implemented.

subsys_map This maps portnames on the root block to the blockname and portname of the action subsystem
to which it is connected.

merge_map This maps a blockname and output portname of each action subsystem to the blockname and
portname on the Merge block to which it is connected.

ACTION_COMPLEX
root, type, tail: PVALUFE,
open: BOOL;
subsys_map, merge_map: PVALUE + PVALUFE

— =

The action_info information required for subsystems consists of a flag which is set if this is an action
subsystem, the set of action complexes which occur in the subsystem, and the held context.

" ACTION_INFO
action_subsys: BOOL;
complexes: F ACTION_COMPLEX;
held_context: HOLD_CONTEXT

initial_action_info: HOLD_CONTEXT — ACTION_INFO

Vhe: HOLD_CONTEXTe

watial_action_info hc =
(action_subsys = false,
complezes = {},
held_context = hc)

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 43

Lemma 1 Ltd.

" SUBSYS_INFO
subpars, syspars: F PARAM,;
lines: F LINE;
muv_ctxt: F PVALUEFE;
action_info: ACTION_INFO;
COMMON _INFO

" A LIB.BLOCK

—
\ block_info: BLOCK _INFO:;

‘ port_info: PORT_INFO

|

Z

|A.BLOCK := ALibBlock A_LIB_BLOCK

‘ | ASubsys | subsys_info: SUBSYS_INFO;
‘ port_info: PORT_INFO;
‘ blocks: PVALUE + A_BLOCK]

VA
—A-SUBSY S
‘ subsys_info: SUBSYS_INFO,;
|

port_info: PORT_INFO;
blocks: PVALUE + A_BLOCK

3.13 Global Data

The specification is mostly functional, but to contain the complexity of the information structures
passed as parameters some global data has been introduced.

3.13.1 The Steering File

The content of the steering file is accessed from the following global variable, which should contain
results of parsing the ClawZ steering file.

Z

steering_file: STRUCTURE

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

44

3.13.2 Name Translation Table

The following mapping may be set by the user (using function set_translation_table), and will other-
wise default to something sensible, and may be used in the translation of Simulink block names into
Z.

z_translation_table: CHAR + seq CHAR

The character set used in the destination should be confined to characters which are legal in Z
identifiers according to the ProofPower-Z lexis, but this will be assumed not checked.

A new function called set_translation_table will be supplied, taking a list of pairs of strings. The first
of each pair must be a single character and the second will be a sequence of characteres to which
that character must be translated.

Z

set_translation_table: (CHAR + seq CHAR) — {0}

3.13.3 String Controls

The following two string controls allow the ClawZ user to apply a prefix and/or a suffix to a matlab
variable name when it is translated into Z in a .m file or in a Simulink model.

Z

z_name_prefix, z_name_suf fix: seq CHAR

They should both default to empty strings.

The following controls influence the translation of Simulink paths into Z words.
Z
‘ z_name_filler: seq CHAR;
‘ z_path_separator: CHAR

If z_name_filler is set to a non empty string then its value will replace all non alphanumeric characters
when Simulink blocknames are translated, except for spaces which will be discarded. If z_name_filler
is set to the empty string then Simulink blocknames will be translated using the translation table z_
translation_table. For a fuller specification of the translation algorithms see section 4.1.3.

The z_path_separator control must be a single character and is used for separating blocknames in the
Z translation of a Simulink path.

The following string controls determine the suffixes used for the various additional schema names
which have been introduced for translating action subsystems.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 45

Lemma 1 Ltd.

The active suffix is used for the schema defining the behaviour of an action subsystem when the

W »

action port is set. It defaults to “,

The held suffix is used for the schema defining the behaviour of a block when it is inactive and
holding its state. It defaults to “;”.

The reset suffix is used for the schema defining the behaviour of a block when it is inactive and

W »

resetting its state. It defaults to “.

Though the held and reset conditions are intended to determine the state when an action sub-
sytem is activated after being inactive, this effect is achieved by setting the after state appropriately
throughout the period when the block is inactive.

Z

‘ active_suf fix: seq CHAR;
‘ held_suf fix: seq CHAR;
‘ reset_suf fix: seq CHAR

It is intended that these suffixes are used to add a subscript, and that subscripts do not appear
elsewhere in 7 identifiers. If these conditions do not obtain there is a risk that the algorithms used
to ensure uniqueness of Z identifiers will not be effective and that clashes may arise.

3.13.4 Flags

The double_separator flag determines whether one or two instances of the z_path_separator are used
as a separator between blocknames in the translation into Z of a Simulink block path.

Z

double_separator: BOOL

The virtualize control determines whether ClawZ attempts to virtualize blocks. It defaults to false.

Z

virtualize: BOOL

The inhibit_output_on_error control determines whether ClawZ inhibits the output of Z specifications
subsequent to discovering and reporting an error. It defaults to true.

Z

inhibit_output_on_error: BOOL

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

46
4 NAME, PARAMETER AND .m FILE TRANSLATION

4.1 Name Translation
4.1.1 Primitive Model to Z Translations

We require a convention for converting port numbers to Z IDENTSs. Informally the proposed con-
vention is that input port x has name “Inz?” and output port x has name “Outz!”.

We also mention a function strip_pval which takes a quoted PVALUE and strips off the outer quotes
(leaving other PVALUEs untouched) and quote_pval which takes an unquoted PVALUE and adds
outer quotes.

Z
\ strip_pval: PVALUE — PVALUE;
| quote_pval: PVALUE — PVALUE

4.1.2 Name Conversions

The names written into Z specifications by the translator as Z identifiers (IDENT) or words (WORDs)
come from a variety of different sources and play differing roles in the resulting specifications.

VA
pname2ident: PNAME — IDENT,
pvalue2ident: PVALUE — IDENT;
change_mlname: PVALUE — PVALUE

Vpv: PVALUEe change_mlname pv

= sc2pv(z_name_prefiz — (pv2sc pv) 7 z_name_suffix)

pnameZident is the name of a mapping from Simulink parameter names to Z identifiers. This must be
the identity function on parameter names which are valid Z names. It clearly cannot be the identity
on Simulink names which are not valid Z names, and hence cannot be an injection, and there is
therefore some small risk of name clashes. Since the names are used only as component names in
schema types used to pass parameters the risk of a clash is thought very low.

pvalue2ident is the name of a mapping from PVALUEs to Z identifiers. It will only be used on
PVALUEFEs which are valid 7 identifiers and makes no change to the value, only to the type. It is
used for inserting into the Z specification operators and function names occuring in Matlab and Fcn
expressions (after they have already been converted to the chosen Z identifier).

change_mliname is the name of a mapping from Matlab names to optionally decorated names. This
is used for generating a Z identifier for a Matlab variable name defined in a .m file. There is a

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 47

Lemma 1 Ltd.

user selectable option to ‘decorate’ these names by adding a prefix or suffix chosen by the user,
but otherwise the names should not be changed by this mapping. This does not necessarily involve
a decoration in the technical sense in which that term is used in Z. This mapping is not used for
operators or function names in Matlab or Fcn expressions, or for masked variable names.

4.1.3 Simulink Block Name Translation

Z

PATH = seq PVALUE

Two functions are required for converting Simulink blocknames or paths into names suitable for use in
the resulting Z specification. Because Simulink blocknames are much less restricted in their character
set than Z WORDs, the relationship between the Simulink blockname and the corresponding Z cannot
be entirely straightforward.

Access to this mapping is provided through the following two functions. path2locw returns a local
name only, for use on the left of the colon in a declaration. path2globw returns a global name
compounded from the local names for each block in the sequence supplied as parameter, using
underbar as separator. path2loci and path2globi are variants which return IDENTs rather than
WORDs.

word2ident converts a WORD to an IDENT with an empty decoration.

Z

word2ident: WORD — IDENT

YV w: WORDe
word2ident w = (word = w, decor = DecorEmpty)

path2locw: PATH — WORD;
path2globw: PATH — WORD;
path2loci: PATH — IDENT;
path2globi: PATH — IDENT

path2loci = path2locw § word2ident;

path2globi = path2globw § word2ident

path2globw is used for translating the names used for definitions, either of the instantiations of library
blocks, of synthesised block definitions, or of the schema boxes encapsulating system or subsystem
diagrams.

path2locw is used for translating the name of a library block or of a subsystem block for use in the
signature of a diagram specification or in the line equations.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 48

Lemma 1 Ltd.

One function obtains returns a global name which translates the entire path, another returns a
local name derived from the last name in the path in a manner which is sensitive to the context
provided by the remainder of the path. The Z words which result from translation will be unique in
the appropriate context, globally unique for the global names, unique within the names local to a
Simulink subsystem otherwise. The Z words will be lexically valid Z words provided that the relevant
string controls and the translation table are set to characters which are acceptable in Z identifiers.
The global names will be compounded from the local names separated by one or two occurrences of
the z_path_separator according to whether the double_separator flag is set, modulo prefixing by “Z”
of z words which would otherwise begin with a decimal digit.

The local name translation algorithm is memoised in context, i.e. a table is held for each subsystem in
the model in which the names of all the blocks in the subsystem and their translation is held. When
a local name is first translated in any particular context it will be translated using the algorithm
which follows, but on subsequent occasions the previous translation will be retrieved from the table.

First an “immediate translation” will be obtained as follows:

e The name is translated character by character, using:

— if z_name_filler is a non-empty string, use the identity function for alphanumerics and for
the z_name_separator character, the empty string for spaces and z_mame_filler for other
characters.

— the translation table, either as supplied by the user (leaving unchanged values not assigned
in the table), or else the default translation table.

e Leading or trailing underbars or z_name_separator characters are removed.

e If the double_separator flag is set sequences of more than one z_name_separator are replaced
by one separator, otherwise all occurrences the z_name_separator are removed.

Then, if the name begins with a decimal digit, or if it is the empty string, a “Z” will be prepended
to the “immediate translation”, the result (with or without a Z according to the condition stated) is
called the “translation2”. Now a check will be made whether translation2 has already been used as
the translation of a blockname in this context. If not translation2 will be used as the final translation
and that fact recorded in the table. If translation2 has been used in this context (as the translation
of some Simulink blockname) then the smallest positive integer numeral which yields an unused Z
word when appended to translation2 will be used and recorded as the final translation.

The global name for a path will be obtained as follows. First all the blocknames in the path are
translated in the appropriate context as above. The sequence of resulting z words is then modified
as follows. For every z word except the first in the sequence which begins with “Z”, a check is
made whether the immediate translation of the Simulink blockname of which the Z word is the final
translation begins with a decimal digit, and if so, remove the initial “Z” from the Z word. The
translation of the path is then obtained by appending all the resulting z words separating each by
one or two occurrences of the z_path_separator according to the setting of the double_separator flag.

When artificial subsystems are created the following special considerations apply. Each artificial
subsystem has a name and a root path, which is the path to the simulink subsystem which is to be

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

49

the top level subsystem of the artificial subsystem. The local names used for blocks in the artificial
subsystem are to be the same as the local name used for the corresponding block in the main system.
The global names are compounded from the local names in the usual way, and will differ from those
for the corresponding blocks in the main system because the path in the artificial subsystem differs
from the path in the main system (beginning with the artificial subsystem name instead of the initial
part of the path which corresponds to the path of the top level of the artificial subsystem).

4.1.4 Suffixing

While translating models or libraries involving action subsystems it is necessary to apply various
suffixes to Z identifiers or words to give unique names for the additional definitions required.

The suffixes used are determined by the values of string controls.

A difficulty arises here from a clash between the requirement for action subsystems and the manner
in which the prior ClawZ specification is formulated. The ClawZ specification follows Spivey’s The
Z Notation in distinguishing between WORDs and IDENTs (which are possibly decorated WORDs)
and in requiring that a schema be given a name which is a WORD not an IDENT. ProofPower-Z is
less fussy than this and allows defined schemas to have decorated names, and this feature is exploited
in the requirement for action subsystems.

In order to allow this without too much disruption to the ClawZ specification we disregard the
fact that suffixes are strictly decorations and can therefore only be placed on IDENTs which are
not already decorated and invite the reader to thing of both WORDs and IDENTSs as if they were
strings and suffixing as appending two additional characters to the string (the first being the %down¥
character).

The following functions apply the appropriate suffixes and are here specified informally.
Z
‘ Wgq, Wh, Wpr: WORD — WORD;
‘ ia, th, tp: IDENT — IDENT

The function names themselves use the relevant default suffixing convention. i.e. the suffix , variants
are to use the suffix in the string control active_suffiz, the suffix ;, variants are to use the suffix in
the string control held_suffiz, and the suffix , variants are to use the suffix in the string control reset_

suffiz.

4.2 Parameter Parsing

The following functions are informally defined as performing a parse according to the above specified
grammars (section 3.7.2) yielding an appropriate parse tree.

Z

| parse_param: PVALUE + PARAMETER

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

50

The Fcn expression grammar is parsed by this function:

Z

parse_fen_param: PVALUE +— SEXP

These function should be understood to be semi-formally specified as converting concrete syntax
from the grammars in section 2 into the abstract structures defined in section 3.

The Ports parameter also has a rudimentary grammar (see section 2.7, a comma separated list of
numbers enclosed in square brackets) and needs to be converted to the structure PORT_-PARAM
Values not specified should be taken as zero.

Z

parse_ports_param: PVALUE - PORT_PARAM

The OutputSignals parameter to a BusSelector block also has a rudimentary grammar (see section
2.7, a comma separated list of selectors, each of which is a “.” separated list of names) and needs to
be converted to the structure OUTPUTSIGNALS_PARAM

Z

parse_outputsignals_param: PVALUE - OUTPUTSIGNALS_PARAM

The Outputs parameter to a Demuz block has a rudimentary grammar (see section 2.7, a positive
natural number or a comma separated list of positive natural numbers) and needs to be converted
to a value of type OUTPUTS_PARAM

Z

parse_outputs_param: PVALUE - OUTPUTS_PARAM

The following functions parse the three parameters associated with mask variables:
VA
‘ parse_maskvar_param: PVALUE - MASK_VAR_PAR,
‘ parse_maskstyle_param: PVALUE ~ MASK_STYLE_PAR;
‘ parse_maskvalue_param: PVALUE - MASK_VALUE_PAR

Note that parse_maskvar_param is expected to yield a sequence of mask variable names. The
“MaskVariables” parameter consists of a set of name/position pairs, the position is the position
in the required sequence.

The following function parses the popup parameter translation code. A popup parameter translation
code it the “Popup” alternative of the grammar for translation codes given in section 2.6.

Z

parse_popup_tc: PVALUE + seq PVALUE

The following functions are used in parsing values in metadata files and steering files.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

51

parse_port_types: PVALUE - seq PORT_TYPFE

The following function parses a path, which is a pattern without wildcards, when provided as a
PNAME.

Z

parse_pathn: PNAME +~ PATH

The following function parses a matlab variable type, which has the syntax < ports_param >, except
optionally that the implementation need not tolerate spaces.

Z

parse_var_type: PVALUE - seq N

This differs from parsing a ports parameter proper in the type of the result.

4.3 Expression Translation

4.3.1 Coercions and Literals

The following functions specify the conversion into ProofPower-Z expressions of “Quoted” and “Un-
quoted” parameters:

Z
quoted2zexpr: PVALUE — Z_FEXPR,
unquoted2zexpr: PVALUE — Z_FEXPR

V pv: PVALUE e
quoted2zexpr pv = PuvalueZexpr (quote_pval pv)

A unquoted2zexpr pv = PuvalueZexpr (strip_pval pv)

A scalar literal is translated into Z using the following functions:
Z

lscalar2zexpr: PLV — Z_EXPR

V PLV; subexl, subex2: Z_EXPR

| psign = Positive = subexl = PuvalueZexpr power

A psign = Negative = subexl = Application (Ident INeg, PvalueZexpr power)
A subex?2 = ZInfizOps (PvalueZexpr value, ((Ei, subexl)))

e sign = Positive = Iscalar2zexpr (QPLV) = subex2

A sign = Negative = Iscalar2zexpr (QPLV) = Application (Ident RNeg, subex2)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

52

4.3.2 Operators and Functions

Operators and functions are translated from matlab/fcn expressions to Z using the following maps:

Z

fenin fix2zexpr: seq CHAR + PVALUE
feninfiz2zexpr = {

LI N +f7 n_mo —f,

LIOLIIIEN *f? n/u —s /f? nny Af?
n_mn, . :f7 u!:u — 7éf7

ll>|| — >f7 ll>:ll — >:f7

PG <f7 Ne—=" <:f7

n&&n —s Qndf, n||n — OTf}

matinfix2zexpr: se¢q CHAR + PVALUE

matinfir2zexpr = {

n_|_|| — '_’_m’ n'_‘_n — -+m7 n_mo . —m,
LI [N = ms LEOS LN ‘*m’ LIFOS TN '*m’
u/n — -/m7 u'/u — '/m7 u\\u — '\m7

N A, "t ==,

W= ~=mm, {LISSEN >m> LIS LN >:m7
n<|| — <m’ n<:n —s <:m’ n&u — andm’
u‘n = 0T, nney 'Am7 non -Am}

fenunary2zexpr: seq CHAR + PVALUE

fenunary2zexpr = {
npn mpy, n_no mmg, N LI ’flOtf}

matunary2zexpr: seq CHAR + PVALUE

matunary2zexpr = {

n_|_|| — MPm, n_mn o MMy, (LY LIRN Nm}

It is intended that the above mappings generate distinct unused Z identifiers which will be defined
in the ClawZ Z library with the correct semantic, fixity and precedence. The mappings for fcn
expressions and matlab expressions are distinct because the precedences may differ. They are used

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

93

for prefix and infix operator names, and for function names. It is expected that these mappings
are applied by the parser, the appropriate mapping being chosen according to whether an Fcn or a
Matlab expression is being parsed, so that the resulting parse tree has the correct identifiers for use
in the Z.

4.3.3 Matlab Names

Matlab names ocurring in expressions may be global variables defined using a .m file, or local variables
introduced by a masked subsystem. It is required that the global variables be subject to a systematic
transformation controlled by the CLawZ user since in some applications exactly the same names are
used elsewhere. However, it is less desirable that such transformations take place on the local
variables.

The names changes are therefore implemented as a separate pass over the parameter between parsing
and translation into Z. This is also used to obtain information about which of the local variables
are actually used in parameters, which is helpful in minimising the amount of information passed to
subsystems or library block invocations.

The required transformation therefore takes as a parameter and returns as a result a list of matlab
names. When passed as parameter the list is the complete list of variables which are local in the
current context. When returned the list is the set of local variables which occur in the parameter.
In the transformed parameter, all global matlab names have been transformed as specified by the
ClawZ user.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 54

Lemma 1 Ltd.

change_atexp_mlnames: F PVALUE — AT_EXP — AT_EXP x F PVALUF,
change_sexp_mlnames: F PVALUE — SEXP — SEXP x F PVALUE

Vivs: F PVALUE; plv: PLV; sexp, sexp2: SEXP; pv: PVALUFE,
atexp: AT_EXP; ssexp: seq SEXP; spvatexp: seq (PVALUE x AT_EXP)e
change_atexp_minames lvs (Lscalar plv) = (Lscalar plv, {})
A change_atexp_minames lvs (Brackets sexp) =
(1 sexp’: SEXP; ulvs: F PVALUE
| (sexp’, ulvs) = change_sexp_minames lvs sexp
e (Brackets sexp’, ulvs))
A change_atexp_mlnames lvs (PrefitOp (pv, atexp)) =
(1 atexp’: AT_EXP; ulvs: F PVALUE
| (atexp’, ulvs) = change_atexp_minames lvs atexp
e (PrefizOp (pv, atexp’), ulvs))
A change_atexp_minames lvs (Function (pv, sexp)) =
(1 sexp’: SEXP; ulvs: F PVALUE
| (sexp’, ulvs) = change_sexp_minames lvs sexp
e (Function (pv, sexp’), ulvs))
A change_atexp_mlnames lvs (Function?2 (pv, sexp, sexp2)) =
(1 sexp’, sexp2’: SEXP; ulvs, ulvs2: F PVALUE
| (sexp’, ulvs) = change_sexp_minames lvs sexp
A (sexp2’, ulvs2) = change_sexp_minames lvs sexp2
e (Function2 (pv, sexp’, sexp?2’), ulvs U ulvs2))
A change_atexp_minames lvs (Mlname (pv, ssexp)) =
(1 ssexpulvs’: seq (SEXP x F PVALUE); ulvs: F PVALUE;
ssexp’: seq SEXP
| ssexpulvs’ = ssexp g (change_sexp_mlnames lvs)
A ulvs = | (ran(ssexpulvs’ g second))
A ssexp’ = ssexpulvs’ g first
° if pv € lvs
then (Mlname (pv, ssexp’), ulvs U {pv})
else (Miname (change_mlname pv, ssexp’), ulvs))
A change_sexp_minames lvs (Sexpres (atexp, spvatexp)) =
(1 ulvs1, ulvs2: T PVALUE; saeulvs: seq (AT_EXP x F PVALUE);
atexp’: AT_EXP; spvatexp’: seq (PVALUE x AT_EXP)
| (atexp’, ulvsl) = change_atexp_mlnames lvs atexp
A saeulvs = spvaterp § (Az:U;y:Ue change_atexp_mlinames lvs y)
A ulvs2 = | (ran(saeulvs § (A\z:U;y:Ue 1))
A spuatexp’ = (An:dom(spvatexp)e ((spvatexp n).1, (saeulvs n).1))

o (Sexpres (atexp’, spvatexp’), ulvsl U ulvs2))

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

change vexp_mlilnames: F PVALUE — VEXP — VEXP x F PVALUE

Vivs: F PVALUE; plv: PLV; sexp, sexp2: SEXP; vexp: VEXP; pv: PVALUEFE;
atexp: AT_EXP; ssexp: seq SEXP; spvatexp: seq (PVALUE x AT_EXP)e

change_vexp_mlnames lvs (LvDisplay ssexp) =
(1 ssexpulvs’: seq (SEXP x F PVALUE); ulvs: F PVALUE;
ssexp’: seq SEXP
| ssexpulvs’ = ssexp g (change_sexp_mlnames lvs)
A ulvs = |J (ran(ssexpulvs’ g second))
A ssexp’ = ssexpulvs’ g first
e (LuDisplay ssexp’, ulvs))
change_vexp_mlnames lvs (LvSlice (sexp, sexp2)) =
(1 sexp’, sexp2’: SEXP; ulvs, ulvs2: F PVALUE
| (sexp’, ulvs) = change_sexp_minames lvs sexp
A (sexp?2’, ulvs2) = change_sexp_minames lvs sexp2
o (LuSlice (sexp’, sexp2’), ulvs U ulvs2))
change_vexp_mlnames lvs (LvArray (pv, vexp)) =
(1 vexp’: VEXP; ulvs: F PVALUE
| (vexp', ulvs) = change_vexp_minames lvs vexp
° if pv € lvs
then (LvArray (pv, vexp'), ulvs U {pv})
else (LvArray (change_mlname pv, vexp'), ulvs))

change mexp_mlnames: F PVALUE — MEXP — MEXP x F PVALUE

Vivs: F PVALUE; plv: PLV; svexp: seq VEXP; pv: PVALUFE,
atexp: AT_EXP; ssexp: seq SEXP; spvatexp: seq (PVALUE x AT_EXP)e

change_mexp_mlilnames lvs svexp =
(v svexpulvs’: seq (VEXP x F PVALUE); ulvs: F PVALUE;
svexp’: seq VEXP
| svexpulvs’ = svexp g (change_vexp_minames lvs)
A ulvs = |J (ran(svexpulvs’ g second))
A svexp’ = svexpulvs' g first
o (svexp’, ulvs))

95

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

change_parameter_mlnames: F PVALUE — PARAMETER
— PARAMETER x F PVALUE

Vivs: F PVALUE; pv: PVALUFE; sexp: SEXP; vexp: VEXP; mexp: MEXPe

change_parameter _minames lvs (ParName pv) =
if pv € lvs
then (ParName pv, {pv})
else (ParName (change_miname pv), {})
change_parameter_mlinames lvs (ParScalar serp) =
(nulvs: ¥ PVALUE; sexp’: SEXP
| (sexp’, ulvs) = change_sexp_minames lvs sexp
e (ParScalar sexp’, ulvs))
change_parameter_mlinames lvs (ParVector verp) =
(nulvs: F PVALUE; vexp’: VEXP
| (vexp', ulvs) = change_vexp_minames lvs vexp
e (ParVector vexp', ulvs))
change_parameter _mlnames lvs (ParMatriz mexp) =
(nulvs: F PVALUE; mexp’: MEXP
| (mexp’, ulvs) = change_mexp_minames lvs mexp
e (ParMatriz mexp’, ulvs))

o6

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

4.3.4 Expressions

Z

atscalar2zexpr: AT_EXP — Z_EXPR;
scalar2zexpr: SEXP — Z_EXPR

Vplv: PLV; sel,se2: SEXP; pv: PVALUFE; ae: AT_EXP;
spvae: seq (PVALUE x AT_EXP)e
atscalar2zexpr (Lscalar plv) = ZBrackets (Iscalar2zexpr plv)
A atscalar2zexpr (Brackets sel) = ZBrackets (scalar2zexpr sel)
A atscalar2zexpr (PrefitOp (pv,ae))
= Application (PvalueZexpr pv, ZBrackets (atscalar2zexpr ae))

(
(
(
A atscalar2zexpr (Function (pv,sel))
= Application (PvalueZexpr pv, ZBrackets (scalar2zexpr sel))
A atscalar2zexpr (Function2 (pv,sel,se2))
= Application (PvalueZexpr pv, ZPair (scalar2zexpr sel, scalar2zexpr se2))
A atscalar2zexpr (Miname (pv, ()))
= Ident (pvalue2ident pv)
A atscalar2zexpr (Miname (pv, (sel)))
= Application (Ident (pvalueZident pv),
ZBrackets(Application (Ident R2zi, ZBrackets(scalar2zexpr sel))))
A atscalar2zexpr (Miname (pv,(sel,se2)))
= Application(
Application (
Ident (pvalueZident pv),
ZBrackets(Application (Ident R2zi, ZBrackets(scalar2zexpr sel)))),
ZBrackets(Application (Ident R2zi, ZBrackets(scalar2zexpr se2))))
A scalar2zexpr (Sexpres (ae,spvae)) = ZInfixrOps (atscalar2zezpr ae, spvae g

(Az:Ue (pvaluelident (first x), atscalar2zexpr (second x))))

vector2zexpr: VEXP — Z_FEXPR

Vrow: seq SEXP; sel,se2: SEXP; pv: PVALUFE; ve: VEXPe
vector2zexpr (LvDisplay row) = ZSequence (row § scalar2zexpr)
A vector2zexpr (LuvSlice (sel,se2))
= ZInfizOps (scalar2zexpr sel, ((Slicei, scalar2zexpr se2)))
A vector2zexpr (LvArray (pv, ve))
= ZnfizOps (Ident (pvalue2ident pv),
((Composei, Ident R2zi),
(Composei, ZBrackets(vector2zexpr ve))))

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification o8

Lemma 1 Ltd.

matrix2zexpr: MEXP — Z_EXPR

Vme: MEXPe
matriz2zexpr me = ZSequence (((me [(U \ {LvDisplay ()})))s vector2zexpr)

fen2zexpr: SEXP — Z_EXPR

Vse: SEXPe
fen2zexpr se = ZLambdauU (scalar2zexpr se)

4.4 Parameter Evaluation

For certain purposes evaluation of parameter expressions is desirable.

It is needed:

e in order to determine the dimensions of arrays which are needed for type inference.

e in order to permit expression simplification during virtualization of some Simulink blocktypes
(e.g. Selector).

First a function which gives the power of a PLV as an integer.

Z

plv_power: PLV — Z

Vplv: PLV e
plv_power plv =
if plv.psign = Positive
then (num2pvalue™) plv.power

else ~ ((num2pvalue™)plv.power)

Then one which determines the value of a PLV.
Z

plv_val: PLV — R

Vplv: PLV e
plv_val plv = (
wr: R
| 7 = (real ((numZpvalue™) plv.value)) *g ((real 10) =z (plv_power plv))

e if plv.sign = Positive then r else ~g T)

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 59

Lemma 1 Ltd.

Next functions which attempt to determine the value of an atomic or scalar expressions. They return
a value only if the expression is an integer literal, possibly with some brackets.
Z

atexp_val: AT_EXP - R;
sexp_val: SEXP + R

(Vatezp: AT_EXP; val: Re
atexp — val € atexp_val
=4
(3 plv: PLV e atexp = Lscalar plv A val = plv_val plv)
V (3 sexp: SEXPe
atexrp = Brackets sexp
A sexp — wval € sexp_val));

(Vsexp: SEXP; val: Re

sexp +— wval € sexp_val

< (3 atezp: AT_EXPe
sexp = Sexpres (atexp, ())
A atexp — val € atexp_val))

Finally (for Selector) we partially specify the value of vector expressions. Note that this is in fact
used only for indexing and therefore the integers must be represented exactly and others need not
be represented at all (in an implementation).

Z

vexp-val: VEXP + seq R

Yvexp: VEXP; val: seq Re
vexp +— val € verp_val
=4
(3 segsexp: seq SEXPe
#wval = Fseqsexp
A vexp = LvDisplay seqsexp
A wval = seqsexp § sexp_val)
V
(3 le, re: SEXP; lv, rv: R; li, ri: Z
| LvSlice (le, re) = vexp
A le — v € sexp_val
A re — rv € sexp_val
e val =
{n: N
| real n <g ™ —p v
e (n+1)+— lv +p (real n)})

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

60

4.5 Parameter Typing

First we provide a partial specification of the length of vector expressions:
VA

vexp_length: VEXP -~ N

Vovexp: VEXP; length: Ne

vexp +— length € vexp_length

54

(3 ssexp: seq SEXPe

verp = LvDisplay ssexp
A length = #ssexp)

V (3 sexpl, sexp2: SEXP; lr, rr: Re
vexp = LvSlice (sexpl, sexp2)
A sexpl +— Ir € sexp_val
A sexp2 — rr € sexp_val
A real length = rr —pg Ir +g (real 1))

V (3 pv: PVALUE; vexp2: VEXPe
vexp = LvArray (pv, vexp2)

A vexp2 +— length € vexp_length)

Finally the dimensions of matrix expressions.

Z

mexp_length: MEXP -+ seq N

Vmexp: MEXP; s: seq Ne

mexp +— § € mexp_length

~

(3d: Ne s = (#mexp, d) N

{v:ran mexp; n: N | v — n € vexp_length e n} = {d})

We now define a function which determines the type of a PARAMETER. The function is parame-
terised by a MVARTYPES which it refers to if the parameter is simply a variable.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 61

parameter_type: MVARTYPES — PARAMETER +— MVARTYPE

Vmuts: MVARTYPES; mut: MVARTYPEe
(Vpv: PVALUEe
ParName pv — mut € parameter_type muts
& pv — mout € muts)
A (Vse: SEXPe
ParScalar se — mut € parameter_type muts
< mut = ()
A (Vve: VEXP; [: Ne
ParVector ve — mut € parameter_type muts
< ve — | € vexp_length N mut = (I)
V ve & dom vexp_length N\ mut = (0))
A (VYme: MEXPe
ParMatriz me — mut € parameter_type muts
& me — mot € mexp_length
V me & dom mexp_length N mvt = (#me,0))

The following gives the length of a variable from its type, or zero if it cannot be determined.

Z

mot_length: MVARTYPE — N

mut_length () = 1;
V mut: MVARTYPE; n: Ne

mut_length (mvt — (n)) = n x muvt_length mut

4.6 Parameter Translation

Parameter translation methods are selected according to the translation type of the parameter as
specified in the transmitted parameter information in the metadata.

This is translated into abstract Z according to the following specifications.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 62

scalar_par_trans: PARAMETER — TRANSLATION_RESULT

>

YV pn: PVALUE; se: SEXP; ve: VEXP; me: MEXP e
scalar_par_trans (ParName pn) = TMatch (Ident (pvalue2ident pn))
scalar_par_trans (ParScalar se) = TMatch (scalar2zexpr se)

scalar _par_trans (ParVector ve) = TNoMatch

scalar_par_trans (ParMatriz me) = TNoMatch

vector_par_trans: PARAMETER — TRANSLATION_RESULT

>

YV pn: PVALUE; se: SEXP; ve: VEXP; me: MEXP e
ParName pn) = TMatch(Ident (pvalueZident pn))
ParScalar se) = TMatch(ZSequence (scalar2zexpr se))

vector_par_trans
vector_par_trans
vector_par_trans(ParVector ve) = TMatch(vector2zexpr ve)

ParMatriz me) = TNoMatch

~~ N —~

vector_par_trans

matrix_par_trans: PARAMETER — TRANSLATION _RESULT

YV pn: PVALUE; se: SEXP; ve: VEXP; me: MEXP e
matriz_par_trans (ParName pn)

= TMatch (Ident (pvalue2ident pn))
matriz_par_trans (ParScalar se)

= TMatch (ZSequence (ZSequence (scalar2zexpr se)))
matrixz_par_trans (ParVector ve)

= TMatch (ZSequence (vector2zexpr ve))
matriz_par_trans (ParMatriz me)

= TMatch (matriz2zexpr me)

SV M _par_trans: PARAMETER — TRANSLATION_RESULT

>

YV pn: PVALUE; se: SEXP; ve: VEXP; me: MEXP e
SVM _par_trans
SVM _par_trans
SVM _par_trans
SVM _par_trans

ParName pn) = scalar_par_trans (ParName pn)
ParScalar se) = scalar_par_trans (ParScalar se)
ParVector ve) = vector_par_trans (ParVector ve)

o~ o~~~

ParMatriz me) = matriz_par_trans (ParMatriz me)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

63

unified_par_trans: PARAMETER — TRANSLATION_RESULT

YV pn: PVALUE; se: SEXP; ve: VEXP; me: MEXP e
unified_par_trans (ParName pn)
= TMatch (Ident (pvalueZident pn))

A unified_par_trans (ParScalar se)

= TMatch (Application (Ident S2Ui, ZBrackets(scalar2zexpr se)))
A unified_par_trans (ParVector ve)

= TMatch (Application (Ident V2Ui, ZBrackets(vector2zexpr ve)))
A unified_par_trans (ParMatriz me)

= TMatch (Application (Ident M2Ui, ZBrackets(matriz2zexpr me)))

checkbox_par_trans: PVALUE — TRANSLATION _RESULT

V pv: PVALUE e

checkbox _par_trans pv =

if pv = off then TMatch (PvalueZexpr (sc2pv "real 0"))
else if pv = on then TMatch (PvalueZexpr (sc2pv "real 1"))
else TNoMatch

popup_par_trans: seq PVALUE — PVALUE — TRANSLATION_RESULT

YV spv: seq PVALUE; pv: PVALUE e
popup_par_trans spv pv =
if pv € ran spv
then
(un:N
| spv n = pv
e TMatch (Application (PvalueZexpr (sc2pv "real"), ZNat n)))
else TNoMatch

The following specifies how a mask parameter is to be translated and is for use when translating
masked subsystems. Its parameters are the relevant mask style, the parameter and the set of local
names in scope. It returns a Z_EXPR and the set of local names which occurred in the parameter.
Global but not local names are subject to the user specified transformation.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 64

maskparam_trans: MASK_STYLE x PVALUE x F PVALUE
+ TRANSLATION_RESULT x F PVALUE

Vstyle:

MASK_STYLE; pv: PVALUE; freevars: F PVALUE; spv: seq PVALUE;
tr: TRANSLATION _RESULT; used_maskvars: F PVALUEe
(style, pv, freevars) — (tr, used_maskvars) € maskparam_trans

style = MSEdit

A (3 par, par’: PARAMETER; ulvs: F PVALUFE; tr: TRANSLATION_RESULT
® PU — par € parse_param
A (par’, used_maskvars) = change_parameter_minames freevars par
A tr = SVM _par_trans par’)

style = MSCheckbox
A tr = checkbox_par_trans pv

A used_maskvars = {}

style = MSPopup spv
A tr = popup_par_trans Spv pv
A used_maskvars = {}

Now we put these together to specify parameter translation. This first version of the parameter
translation function accepts the set of local (masked) variables in the context of the parameter, as a

parameter,

and returns the set of local variables which are used in the parameter. It transforms global

matlab names as specified by the relevant user controls, but leaves the local variables unchanged.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

65

par_trans2: F PVALUE — PVALUE — PVALUE
— TRANSLATION_RESULT x F PVALUE

Vtype, value: PVALUE; param, param’: PARAMETER,;
lvs, ulvs: B PVALUE; se: SEXP; popuplist: seq PVALUFEe
par_trans2 lvs Quoted value = (TMatch (quoted2zexpr value), {})
A par_trans2 lvs Unquoted value = (TMatch (unquoted2zexpr value), {})
A par_trans2 lvs Fen value =
if value — se € parse_fen_param
then (u se’: SEXP
| (se’, ulvs) = change_sexp_minames (lvs U {sc2pv "u"}) se
o (TMatch (fen2zexpr se’), ulvs))
else (TNoMatch, {})

A par_trans2 lvs Checkboz value = (checkbox _par_trans value, {})
A (value — param € parse_param
= (param’, ulvs) = change_parameter_minames lvs param
A par_trans2 lvs Scalar value = (scalar_par_trans param’, ulvs)
A par_trans2 lvs Vector value = (vector_par_trans param’, ulvs)
A par_trans2 lvs Matriz value = (matriz_par_trans param’, ulvs)
A par_trans2 lvs SVM wvalue = (SVM _par_trans param’, ulvs)
A par_trans2 lvs Unified value = (unified_par_trans param’, ulvs))
A (type — popuplist € parse_popup_tc

= par_trans2 lvs type value = (popup_par_trans popuplist value, {}))
A (type & {Quoted, Unquoted, Fcn, Checkbox}

A value ¢ (dom(parse_param) U dom(parse_popup_tc))

= par_trans?2 lvs type value = (TNoMatch, {}))

The following parameter translation method was specially devised for the Selector block but is
included here in case it should prove useful for other block types.

The special characteristics of this parameter translation method are as follows:

e It is intended to translate a parameter which may be either a scalar or a vector and to make
it easy to see in the result which of those two was obtained.

e It is required under some circumstances to treat a unit vector as if it were the scalar which is
its sole element.

e When converting from unit vector to scalar it will strip off the outer brackets if it is a vector
display, otherwise (some other vector expression which happens to have length 1) it will select
the first element.

e In determining the dimensions of the parameter it makes use of the matlab variable type
context.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 66

Lemma 1 Ltd.

e Parameters with dimensionality > 1 are rejected.

e It accepts a parameter which is the inferred port type for some output, this influences the
treatment of the parameter as follows:

— If the type is UnknownPT or GenericPT then a scalar result will be returned for a unit
vector (or a scalar) parameter.

— If the type is ScalarPT then a scalar result will be returned for a unit vector parameter,
and a parameter which cannot be read as or coerced into a scalar will be rejected.

— If the type is VectorPT or BusPT then a vector result will be returned.

The reasons for this specific behaviour are as follows:

e Selector blocks appear frequently to be used to select a single line using a parameter which is
a unit vector display. In most of these cases the output will be connected to a block which we
will have implemented with a scalar input.

e If the result of the translation is influenced by the result of signal type inference it will be
possible for the user to specify in his steering file a type for the Selector output port (overriding
signal type inference) in case the default interpretation is not correct (if he really wants a unit
vector and would otherwise have got a scalar).

Since the specification is otherwise to large two auxiliary functions are specified which deal with the
case that the parameter type is known and unknown respectively:

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

spt_typed: (MVARTYPE x PORT_TYPE x PARAMETER)
— SPECIAL_RESULT

YV mutype: MVARTYPE; port_type: PORT_TYPE; param: PARAMETERe
spt_typed (mutype, port_type, param) =
(w sr: SPECIAL_RESULT; tr: TRANSLATION _RESULT; ze: Z_EXPR;
bd: N x seq [line_name: PVALUE; port_type: PORT_TYPE]; n: N
| #mutype = 0 N tr = scalar_par_trans param
A (tr = TMatch ze
A ((port_type = ScalarPT V port_type = GenericPT
V port_type = UnknownPT)
A sr = SRScalar ze
V (port_type = VectorPT n V port_type = BusPT bd)
N sr = SRVector (ZSequence (ze)))
V (tr = TNoMatch V tr = TFail) N\ sr = SRFail)
V #mutype = 1 N tr = vector_par_trans param
A (tr = TMatch ze
A (port_type = ScalarPT N mutype 1 € {0,1}
A sr = SRScalar (ZBrackets(Application (ze, ZNat 1)))
V' (port_type = VectorPT n V port_type = BusPT bd
V port_type = GenericPT V port_type = UnknownPT
V (port_type = ScalarPT N mutype 1 >1))
A sr = SRVector ze)
V (tr = TNoMatch V tr = TFail) N\ sr = SRFail)
vV #mutype > 1 N sr = SRFuil

o s1)

67

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 08

spt_untyped: (PORT_TYPE x PARAMETER)
— SPECIAL_RESULT

YV port_type: PORT_TYPE; param: PARAMETERe
spt_untyped (port_type, param) =
(w sr: SPECIAL_RESULT; tr: TRANSLATION _RESULT; ze: Z_EXPR;
bd: N x seq [line_name: PVALUE; port_type: PORT_TYPE]; n: N
| (port_type = ScalarPT
A tr = scalar_par_trans param
A (tr = TMatch ze N sr = SRScalar ze
V (tr = TNoMatch V tr = TFail) N sr = SRFail))
V ((port_type = VectorPT n V port_type = BusPT bd)
N tr = wvector_par_trans param
A (tr = TMatch ze N sr = SRVector ze
V (tr = TNoMatch V tr = TFail) N sr = SRFail))

V ((port_type = UnknownPT V port_type = GenericPT)
A sr = SRFuil)

o s1)

This parameter translation method is needed both for synthesis and for virtualization. In the latter
case more information is needed, since for optimisation it is necessary to be able to evaluate the

parameter where possible. For this reason we first specify a version which returns a PARAMETER
and then the original version which does not.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

69

VA
spectal_par_trans_wp: MVARTYPES — F PVALUE — PORT_TYPE — PVALUE
— PARAMETER x SPECIAL_RESULT x F PVALUE

YV muartypes: MVARTYPES; lvs: F PVALUE; port_type: PORT_TYPEe
special _par_trans_wp muvartypes lvs port_type =

(Aparpv: PVALUEe ((up:PARAMETER), SRFuil, {}))
¥
{parpv: PVALUE; param, param': PARAMETER; ulvs: F PVALUEFE;
sr: SPECIAL_RESULT; mutype: MVARTYPE; tr: TRANSLATION_RESULT;
ze: Z_EXPR; bd: N x seq PORT_DETAILS; n: N
| parpv +— param € parse_param
A (param’, ulvs) = change_parameter_minames lvs param
A (param’ — mutype € parameter_type muvartypes

A sr = spt_typed (mutype, port_type, param’)

V param’ & dom(parameter_type muartypes)

A sr = spt_untyped (port_type, param’))

e parpv +— (param’, sr, ulvs)}

special_par_trans: MVARTYPES — F PVALUE — PORT_TYPE — PVALUFE
— SPECIAL_RESULT x F PVALUE

Vmoartypes: MVARTYPES; lvs: F PVALUE; port_type: PORT_TYPE; parpv: PVALUEe
special_par_trans muartypes lvs port_type parpv =
(1 param: PARAMETER; ulvs: F PVALUE; sr: SPECIAL_RESULT

| (param, sr, ulvs) = special_par_trans_wp muvartypes lvs port_type parpv

o (sr, ulvs))

4.7 .m File Translation

The translation of Matlab .m files largely independent of the rest of the diagram translation. Some
“type inference” is undertaken and the results are output in a form suitable for inclusion in a ClawZ
steering file for a subsequent model translation.

A limited kind of Matlab .m file is supported consisting essentially of a series of equations on the left
of which is a Matlab name and on the right an expression which would be acceptable to the Clawz
translator as a “SVM” or “Unified” parameter value to a Simulink block.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

70

These equations are translated into Z abbreviation definitions. The right hand side of the definitions
are translated in exactly the same way as a Simulink block parameter, except that comments and
line continuations are permitted.

We first define the type of the .m file translator.

The .m file translator is parameterised by a PVALUE which is a parameter type. This must be
either “SVM” or “Unified”, and determines how the expressions on the right of the equations are
translated into Z. The manner in which this parameter is communicated to the .m file translator is
left to the detailed design.

In addition to a Z specification consisting of the translation of the equations of the .m file into Z,
the processor returns type information for the variables, which must be written to a file for use when
translating Simulink models which use the variables defined in the .m file.

Z

M_FILE PROC = PVALUE — M_FILE - Z_SPEC x MVARTYPES

The translation of expressions in matlab .m files is a minor variant on their translation in Simulink
block parameters.

The following mexp_trans specification is similar to par_trans above, differing the into following
respects:

e Only translation codes SVM and Unified are accepted.

e The type of the expression (a MVARTYPE) is returned as well as the translation into Z. This
is required for determining the type of the variable.

e It is assumed that there are no local variables (maskvars) in scope.

mexp_trans: PVALUE — PVALUE
+ TRANSLATION_RESULT x PARAMETER

Vcode, value: PVALUE; tr: TRANSLATION _RESULT; param’: PARAMETERe
value — (tr, param') € mexp_trans code
=4
(3param: PARAMETER; ulvs: F PVALUFEe
value — param € parse_param
A (param’, ulvs) = change_parameter_minames {} param
A (code = SVM A tr = SVM _par_trans param’
V code = Unified A\ tr = unified_par_trans param’))

We now define a parameter translator which updates a record of the types of the matlab variables.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification &

Lemma 1 Ltd.

mexp_trans2: PVALUE x PVALUE x PVALUE x MVARTYPES
+ TRANSLATION_RESULT x MVARTYPES

Vcode, varname, expr: PVALUE; muts, muts’': MVARTYPES,
tr: TRANSLATION _RESULT e

(code, varname, expr, muts) — (tr, muts') € mexp_trans2

< (Iparam: PARAMETER; vartype: MVARTYPEe

expr +— (tr, param) € mexp_trans code

A param — vartype € parameter_type muts

N muts’ = muts & {change_mlname varname — vartype})

The following auxiliary function constructs the abbreviation definitions to be output by the M file
translator from the results of translating the right hand side of the equation as if it were a Simulink
block parameter.

The function is partial and is not defined when the “translation result” is not a “TMatch”, i.e.
where the translation of the right hand side of the equation fails. The required effect is that no Z
paragraphs are output where translation of an equation fails. A diagnostic should be output, the
details of which are left for the detailed design.

It should be noted that the M files may also contain (non-comment) statements which are not
equations, which should be treated in the same way as an equation with an untranslatable right
hand side, and in general, that the .m file translator should attempt to skip over anything which it
does not understand and continue processing at the beginning of the next “logical line”. For a fuller
statement on lexical and syntactic aspects of M file processing see section 2.3.

Z

make_abbr_def: TRANSLATION_RESULT x PVALUE + Z_PARA

dom (make_abbr_def) = {z: Z_EXPR; pv: PVALUE e (TMatch z, pv)}
A (Y z_expr: Z_EXPR; miname: PVALUE e
make_abbr_def (TMatch z_expr, miname) =
AbbrevDef (
ident

b

pvalue2ident (change_miname mlname),

value = z_expr))

Now we have a translation specification which delivers a Z spec and updated MVARTYPES. This
is total since failing translations will deliver an empty specification. An equation is processed by
processing the right hand side of the equation using mezp_trans2 and then passing the resulting Z
expression together with the name on the left of the equation to the make_abbrev_def function.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

72

mexp_trans3: PVALUE x PVALUE x PVALUE x MVARTYPES
— Z_SPEC x MVARTYPES

Vptype, varname, expr: PVALUE; muts, muts': MVARTYPES;
ze: Z_EXPR; zp: Z_PARA; zs: Z_SPEC
| ((ptype, varname, expr, muts) — (TMatch ze, muts') € mexp_trans2
N zs = (make_abbr_def (TMatch ze, varname)))
V (=(3ze: Z_EXPR; muts’: MVARTYPESe
(ptype, varname, expr, muts) — (TMatch ze, muts') € mexp_trans2))
A zs = () N muts’ = muts
[]

mezp_trans3 (ptype, varname, expr, muts) = (zs, muts’)

m_file_proc: M_FILE_PROC

V ptype: PVALUEe
m_file_proc ptype () = ({), {});

V ptype: PVALUE; m_file: M_FILE; mfeq: MFEQ);
281, 2zs2: Z_SPEC; muts, muts': MVARTYPES
| m_file_proc ptype m_file = (zs1, muts)
A (282, muts') = mexp_trans3(ptype, change_miname mfeq.name, mfeq.value, muts)

° m_file_proc ptype (m_file ™ (mfeq)) = (281 7~ 282, muts’)

5 INPUT FILE PROCESSING

This section defines various transformations of the information in the various input files to ClawZ
which logically precede the main model translation.

5.1 Parsing of Structures

The ClawZ steering file has a syntactic structure similar to that of a Simulink model file and is
specified in sections 2.1 and 2.2.

The following function should be understood to parse files of this structure. It must be understood
to operate by side effect, since it accepts the name of a file which is to be read and parsed.
VA

parse_file: STRING — STRUCTURE

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 3

Lemma 1 Ltd.

It is shown as a total function, failure to obtain a structure should cause the run of ClawZ to be
aborted.

5.2 Matlab Variable Types

Type information is inferred and preserved about the type of variables set up in Matlab .m files.
The information may then used when the variable is used as a parameter to a Simulink block. The
following specification shows how the variable type information is extracted from the clawz steering
file.

Z

muts_of_structure: STRUCTURE — MVARTYPES

Vsteerfile: STRUCTURE e

muts_of _structure steerfile =

{pn: PNAME; pvl, pv2: PVALUE; m:MVARTYPE; struct: STRUCTURE;
snv, snvg: seq [name: PNAME; value: VALUE)

| Structure snvg = steerfile

A (name = Variable Types, value = Struct struct) € ran snvg

A Structure snv = struct

A (name = pn, value = Simple (Ezpression, pv2)) € ran snv

A pvl = sc2pv (pn2sc pn)

A pv2 — m € parse_var_type

e pvl — m}

The structure is computed during .m file processing and then written to a file. It is read back as
part of the steering file when translating a model which depends on the definitions in the .m file and
then held as mwvartypes and referred to as necessary during the model translation. At present this
structure is only referred to during type inference for certain block-types.

6 MODEL TRANSLATION

The stages in the translation of a model are as follows:

1. The model is read and parsed to give a stucture of type SYSTEM

2. The steering file is read and parsed to give a structure of type seq STEERSTRUCT.

3. The model is transformed into a tree structure of type A_ BLOCK.

4. Library look-up is undertaken on each of the non system/subsystem blocks in the system.

5. Port types set in the steering file are applied.

Lemma 1 Ltd.

10.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification &

. Signal Analysis is undertaken propagating information about port types and widths along lines

and through bus constructors.

Block Synthesis is undertaken for certain kinds of blocks which have not been successfully
matched against the library.

. Subsystems are translated, generating a schema for each subsystem connecting the blocks in

the subsystem using equations corresponding to the lines.

If a metadata output file has been named Metadata is generated for all subsystems of the model.
The metadata will be written to the named file. This generated metadata becomes available
too late to affect the translation, so when translating a library which contains internal block
references it is necessary to run the translation a second time supplying the metadata created
on the first run (and further runs may also be necessary if reference is made to subsystems
which contain further internal block references to subsystems with free local variables).

The artificial subsystems are generated as additional structures of type A_BLOCK.

Specifications are then transcribed and filtered from the main system and artificial subsystems, first
into SYS_SPECs and then into output files (see section 7).

6.1

Model Transformation

In this section the parsed model is transformed into a data structure more convenient for analysis
and specification generation.

First a general functions for extracting parameter values:

Z

param_value: F PARAM — PNAME +~ PVALUE

V pars: F PARAM; pname: PNAME; pvalue: PVALUEe
pname +— pvalue € param_value pars

54

(37 pv:PVALUFEe (name = pname, value = pv) € pars
A pv = pualue)

and one for obtaining the used maskvars.

Z

get_used_maskvars: A BLOCK — F PVALUE

(V alb: A_LLIB_BLOCK e

get_used_maskvars (ALibBlock alb) = alb.block _info.used_maskvars)
A

(V ass: A_LSUBSYSe

get_used_maskvars (ASubsys ass) = ass.subsys_info.used_maskvars)

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification €

Lemma 1 Ltd.

The used maskvars are be the local (i.e. masked) variables which either occur in the parameters to
the block or are free (i.e. masked at a higher level but not at the current level or between the current
level and the point of occurrence) in the body of the block (or in the body of any subsystem). The
used maskvars fields are set up at the same time as block translation takes place, i.e. during the
library look-up phase for library blocks (including block references, in which case the information
about maksed variables in the body comes from the metadata), during the subsystem translation
phase for subsystems. At present synthesized blocks never use any mask variables.

Initially library blocks are transcribed just copying the parameters, initialising the port detail and
leaving all other fields empty.

The port details are initialised from the line information, at this stage all ports to which connections
are made are shown as having port type “UnknownPT”. The input port details contain the line name
from the line connected to it, if there is one.

The following function is required and informally specified. It takes a PVALUE which is a numeric

input port name (i.e. a port number) and converts it to a default signal name of the form “signaln”
where n is the port number.

port2signal: PVALUE — PVALUE

Vpv: PVALUEe
port2signal pv = sc2pv ("signal" ~ pvlsc pv)

The following function determines a signal name to be used in the port details of an input port (used
by bus constructors) from the line name attached to the port. If the line name is empty “signaln”
is used, if the line name is enclosed in angled brackets then their content is used, otherwise the line
name is used.

Z

force_signal name: PVALUE — PVALUE — PVALUE

Y name, port: PVALUE; name2: F PVALUE
| name2 = {n: PVALUE | pv2sc name = "<" 7 (pv2sc n) — ">"}
° force_signal_name port name
= if name = NullString
then NullString
else if name2 = {} then name else (un:name2)

The following specification is inconsistent when its lines parameter has two lines connecting to the
same destination. Models of this kind are thought never to be created by Simulink and are not
supported by ClawZ. An implementation of this specification may use the first it comes across and
may give a warning if there is more than one.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 76

Lemma 1 Ltd.

initial_ipds: PVALUE — F LINE — (PVALUE - PORT_DETAILS)

V lines: F LINE; blockname: PVALUE

e initial_ipds blockname lines =
{pv: PVALUEF; line: lines; PORT_DETAILS
| (block = blockname, port = pv) € line.destinations
A port_type = UnknouwnPT

A line_name = force_signal_name pv line.name
e pv — OPORT_DETAILS}

initial_opds: PVALUE — F LINE — (PVALUE - PORT_DETAILS)

V lines: F LINE; blockname: PVALUE

e initial_opds blockname lines =
{pv: PVALUE; line: lines; PORT_DETAILS
| (block = blockname, port = pv) = line.source
A port_type = UnknouwnPT

A line_name = NullString
e pv — OPORT_DETAILS}

empty_pi: PORT_INFO

empty_pi =
(input_port_details = {},

output_port_details = {})

initial_pi: PVALUE — F LINE — PORT_INFO

V lines: F LINE; blockname: PVALUE
e initial_pi blockname lines =

(input_port_details = initial_ipds blockname lines,
output_port_details = initial_opds blockname lines)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

7

input_ports: (PVALUE + A_BLOCK) — F PVALUE

V blockmap: PVALUE + A_BLOCKe
input_ports blockmap =

{pv: PVALUE; alb: A_LIB_BLOCK

| pv — ALibBlock alb € blockmap

A (sc2pn " BlockType") — InPort € (param_value alb.block_info.pars)
o pv}

libblock_to_a_block: F PARAM — PVALUE — F LINE — A_BLOCK

V pars: B PARAM:; lines: ¥ LINE; pi: PORT_INFO; bi: BLOCK _INFO; bn: PVALUE
| ((name = BlockType, value = InPort) € pars A pi = initial_pi bn lines
V (name = BlockType, value = InPort) & pars N\ pi = empty_pi)

A bi = (pars = pars,
input_port_types = {},
output_port_types = {},
specification = (),
invocation = (Nolnv, ({}, (), ())),
virtual = VUnknown,
used_maskvars = {})
e [ibblock_to_a_block pars bn lines =
ALibBlock (block_info = bi, port_info = pi)

Subsystems are treated similarly, but there are two relevant sets of parameters, those for the subsys-
tem block and those in the enclosed system block. The block map is also set up, containing all the
blocks in the subsystem, and the action_info is set up, raising as errors any violations of the specified
constraints.

We first specify the setup of the action info and the required checks.

The required checks are:

1. Each action subsystem has only one output port.

[\)

. The output of an action subsystem goes only to Merge blocks.
. All inputs to Merge blocks come from action subsystems.

3
4. Action subsystems driven by the same block feed the same Merge block.

ot

. Action subsystems feeding the same Merge block are driven by the same block.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

78

6. For the purposes of the above checks a subsystem does not qualify as a block even if the relevant
port of the subsystem does connect inside the subsystem to a block of the relevant type.

In this specification the error reporting is informally indicated by supplying a function with the
relevant error information. Invocation of this function should result in an error message of the
following form:

Action complex checks failed in subsystem path

e the following action subsystems do not have exactly one output connection: erri

e the following action subsystems have an output connected to something other than a Merge
block: err2

e the following Merge blocks have an input which does not come from an action subsystem: err3

e the following If or SwitchCase blocks are not each connected through action subsystems to a
single Merge block: err/

e the following Merge block has inputs from action subsystems which are not all driven by the
same If or SwitchCase block: errd

In the above error message any clauses for which the blockname set is empty should be omitted, and
if no clauses are included no error report should be made.

Z

action_subsys_errors: (PATH -+
lerrl, err2, err3, err, err5: F PVALUE))

block_type: A_LIB_BLOCK — PVALUE

V alb: A_LLIB_BLOCK; pv: PVALUEe
alb — pv € block_type

=
(37 pv2: PVALUE | (name = BlockType, value = pv2) € alb.block_info.pars
e pv2 = pv)

V = (37 pv2: PVALUE e (name = BlockType, value = pv2) € alb.block_info.pars)
A pv = NullString

In the make_action_complex which follows lines to compile a single action complex given the block-
name of the root of the complex, the local names should be read:

Lemma 1 Ltd.

root

ralb

rol
subsys_map
asol
merge_map
asdb

tail

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

Blockname of an If or a SwitchCase block

Root A_LIB_BLOCK

Root Output Lines (lines whose source ports are on the root block)

Map from root portnames to action subsystem blocknames

Action Subsystem Output Lines

Map from action subsystem blocknames to Merge block input portnames
Action Subsystem Destination Blocknames (should be just one Merge block)
Blockname of Merge block

79

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

make_action_complex:
(PVALUE x (F LINE) x (PVALUE + A_BLOCK))
-+ ACTION_COMPLEX

Y root: PVALUFE; lines: F LINE; blockmap: PVALUE + A_BLOCK;
ac: ACTION_COMPLEX e

((root, lines, blockmap) — ac) € make_action_complex

=4

(V ralb: A_LIB_BLOCK; rol, asol: F LINFE;

asdb: F PVALUE; type, tail: PVALUE; open: BOOL;

subsys_map, merge_map: PVALUE + PVALUE

root +— (ALibBlock ralb) € blockmap

type = block_type ralb

rol = {line: lines | line.source.block = root}

subsys_-map = {sp, db: PVALUE; dp: PORT; line: rol

| sp = line.source.port

> > > e

A dp € line.destinations
A db = dp.block
e sp — db}

>

asol = {line: lines | line.source.block € ran subsys_map}
A merge_map = {sb, dpl: PVALUE; dp2: PORT; line: asol
| sb = line.source.block
A {dp2} = line.destinations
A dpl = dp2.port
o sb— dpl}
A asdb = {port: PORT; line: asol | port € line.destinations e port.block}
{tail} = asdb
N open =
if type = If
then (name = ShowkFElse, value = on) ¢& ralb.block _info.pars
else

>

if type = SwitchCase
then (name = CaseShowDefault, value = on) & ralb.block_info.pars
else true

A ac = (root = root, type = type, tail = tail, open = open,

subsys_map = subsys_map, merge_map = merge_map))

This function specifies how the first five error checks are performed.

80

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 81

Lemma 1 Ltd.

roots Names of If or SwitchCase blocks

ass Action subsystem block names

ms Merge block names

errn set of blocks violating check n (as specified above)

Key to names:

Note that a block is deemed an action subsystem for the purposes of these checks if there is a line
connecting to an action port on the block. This replaces the previous test for it being a subsystem
containing an action port, since a block reference to an action subsystem must also be accepted.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

82

action_complex_checks:
((F LINE) x (PVALUE + A_BLOCK) x (F PVALUFE)) —
(F PVALUE) x (F PVALUE) x (F PVALUE) x (F PVALUE) x (F PVALUE)

V lines: ¥ LINE; blockmap: PVALUE + A_BLOCK; roots: F PVALUE;
ass, ms, mis: ¥ PVALUEFE; errl, err2, err3, err4, errb: F PVALUFE

| ass = {pv: PVALUE; line: lines; port: line.destinations | port.port = ActionQ
A port.block = pv e pv}

A ms = {pv: PVALUEFE; alb: A_LIB_BLOCK | pv — ALibBlock alb € blockmap
A block_type alb = Merge o pv}

A errl = {pv: ass; as: A_SUBSYS | pv — ASubsys as € blockmap
A = (Jop: PVALUEe dom as.port_info.output_port_details = {op})
° pv}

A err2 = {pv: ass; line: lines; d: PORT

| line.source.block = pv
A d € line.destinations N d.block ¢ ms e pv}

A err8 = {line: lines; port: line.destinations

| port.block € ms A line.source.block & ass e port.block}
A errf = {pvr: roots; mbs: F PVALUE

| mbs = {linel, line2: lines; portl, port2: PORT

| linel.source.block = por
A portl € linel.destinations
A line2.source.block = portl.block
A port2 € line2.destinations e port2.block}
A (3 pvm: ms e {pvm} = mbs) e pur}
A errd = {pvm: ms; sbs: F PVALUE
| sbs = {linel, line2: lines; portl, port2: PORT
| portl € linel.destinations
A portl.port = ifaction
A line2.source.block = portl.block
A port2 € line2.destinations
A port2.block = pvm
e linel .source.block}
A =(3 pur: roots e {pur} = sbs) e pum}

e action_complex_checks (lines, blockmap, roots) = (errl, err2, err3, errs, errs)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

ifs If block names
ifswe Names of If blocks with ShowElse = on
scs SwitchCase block names

Key to names: scswd Names of SwitchCase blocks with CaseShowDefault = on

acs map from root blockname to ACTION_COMPLEX
errn set of blocks violating check n (as specified above)

make_action_complexes:
((F LINE) x (PVALUE + A_BLOCK) x PATH)
— F ACTION_COMPLEX

V lines: F LINE; blockmap: PVALUE + A_BLOCK; path: PATH,
ifs, scs, ass, ms: F PVALUE;
errl, err2, err3, err4, errd: ¥ PVALUF;
acs: F ACTION_COMPLEX
| ifs = {pv: PVALUE; alb: A_LIB_BLOCK
| pv — ALibBlock alb € blockmap
A block_type alb = If e pv}
A scs = {pv: PVALUE; alb: A_LIB_BLOCK
| pv — ALibBlock alb € blockmap
A block_type alb = SwitchCase o pv}
A acs = {pv: ifs U scs; ac: ACTION_COMPLEX
| (pv, lines, blockmap) — ac € make_action_complex ® ac}
A (errl, err2, err3, err4, errd)
= action_complex_checks (lines, blockmap, ifs U scs)
A path — (errl = errl, err2 = err2, errd = err3,
erry = err4, errd = errd)

€ action_subsys_errors

e make_action_complexes (lines, blockmap, path) = acs

83

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

84

subsys_template: HOLD_CONTEXT — PATH — F PARAM — F PARAM
— F LINE — PORT_INFO — (PVALUE + A_BLOCK) — A_BLOCK

YV he: HOLD_CONTEXT; path: PATH; pars2, pars: ¥ PARAM,;
ipi: PORT_INFO; blockmap: PVALUE + A_BLOCK;
lines: F LINE; acs: F ACTION_COMPLEX ; action_subsys: BOOL
| acs = make_action_complezes (lines, blockmap, path)
A action_subsys = (

{pv: PVALUE; alb: A_LIB_BLOCK

| pv — ALibBlock alb € blockmap

A block_type alb = ActionPort

o pv} # {})
o subsys_template hc path pars2 pars lines ipi blockmap = ASubsys (

subsys_info = (

subpars = pars,

syspars = pars2,

lines = lines,

specification = (),

invocation = (Nolnv, ({}, (), ())),

virtual = VUnknown,

used_maskvars = {},

mu_ctrt = {},

action_info = (action_subsys = action_subsys,

complezes = acs, held_context = hc)),
port_info = ipi,

blocks = blockmap)

A special case in construction of the blockmap is that for a stateflow subsystem. In this case all
blocks except port blocks are omitted. The following function discards the unwanted blocks.

Z

ports_only_blockmap: (PVALUE + A_BLOCK) — (PVALUE + A_BLOCK)

YV blockmap: PVALUE + A_BLOCKe
ports_only_blockmap blockmap =

{pv: PVALUE; alb: A_LIB_BLOCK; bt: port_block_types

| pv — ALibBlock alb € blockmap

A (sc2pn " BlockType") — bt € (param_value alb.block_info.pars)
e pv — blockmap pv}

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

85

The following function returns the set of masked variable for some block, given the block parameters.
If the block isn’t masked the empty set is returned.

Z

get_maskvars: F PARAM — F PVALUE

V pars: F PARAMe

get_maskvars pars = ran

(if (sc2pn "MaskVariables") € dom (param_value pars)

then parse_maskvar_param (param_value pars (sc2pn " MaskVariables"))

else {})

For support of action subsystems it is necessary to track the held context as we recurse through the
subsystems in a model. This held context is changed whenever an action subsystem is encountered,
according to the InitialiseStates parameter on the action block in the subsystem. The following
function checks whether the current subsystem contains an action block and updates the held context
accordingly.

Z
new_held_context: BOOL x HOLD_CONTEXT x (F BLOCK)
— HOLD_CONTEXT

V lib: BOOL; he: HOLD_CONTEXT; blocks: F BLOCK;
init_states: F PVALUE
| init_states =
{pv: PVALUFE; pars: F PARAM
| (name = BlockType, value = ActionPort) € pars
A (name = InitializeStates, value = pv) € pars
A LibBlock pars € blocks
 pv}
e new_held_context (lib, hc, blocks) =
if init_states = {reset} then HCReset
else if init_states = {held} then HCHeld
else if init_states = {} then
if lib then HCUnknown else hc
else HC'Unknown

The following two functions transform a SYSTEM into an A_BLOCK. A special case is made of
systems which have no lines connecting to them. This is intended primarily to cover the input ports
at the top level of a model, which are all assumed to be scalars. It also applies to subsystems with
no lines attached to input ports, in which case the port details are set up by looking at the port
blocks and assuming that they are scalar. This is necessary to give sufficient signal information for
signal analysis and block synthesis.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

blocks_to_blockmap: BOOL — HOLD_CONTEXT — PATH — F BLOCK
— F LINE — (PVALUE + A_BLOCK);

subsystem_to_a_block: BOOL — HOLD_CONTEXT — PATH — F PARAM
— PORT_INFO — SYSTEM — A_BLOCK

V path: PATHe
(V lib: BOOL; he: HOLD_CONTEXT:; blocks: F BLOCK; lines: F LINEe
blocks_to_blockmap lib hc path blocks lines =
{ pv:PVALUE; ab:A_BLOCK; path2: PATH; b:blocks;
pi: PORT_INFO; pars2: F PARAM
| path2 = path — (pv)
A pi = initial_pi pv lines
A ((b = LibBlock pars2
A Name — pv € param_value pars2
A ab = libblock_to_a_block pars2 puv lines)
v (3 sys: SYSTEM
o b = SubSystem (pars = pars2, system = sys)
A Name — pv € param_value pars2
A ab = subsystem_to_a_block lib hc path2 pars2 pi sys))
* (pv — ab)

D

A (Vhe, he': HOLD_CONTEXT; pars: F PARAM; system: SYSTEM ;
pars2: B PARAM: lines, lines’: F LINE; blocks: F BLOCK;
blockmap, blockmap': PVALUE + A_BLOCK; lib: BOOL;
ipds’: PVALUE + PORT_DETAILS; pi: PORT_INFO

| system = System (pars = pars2, blocks = blocks, lines = lines)

A he' = new_held_context (lib, hc, blocks)

A blockmap = blocks_to_blockmap lib hc' path blocks lines

A (blockmap', lines') =
if param_value pars (sc2pn " MaskType") = sc2pv" Stateflow"
then (ports_only_blockmap blockmap, {})
else (blockmap, lines)

o subsystem_to_a_block lib hc path pars pi system

= subsys_template hc' path pars2 pars lines’ pi blockmap’)

Finally we package it up for the top level:

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

87

system_to_a_block: BOOL — PVALUE — SYSTEM
— A_BLOCK

YV lib: BOOL; pv:PVALUE; sys: SYSTEM; pi: PORT_INFO
| pi = (input_port_details = {},
output_port_details = {})

o system_to_a_block lib pv sys
= subsystem_to_a_block lib (if lib then HCUnknown else HCVoid) (pv) {} pi sys

6.2 Block Traversal Functions

For general use we first define various mapping functions for A_ BLOCKs.

This version allows accumulation of context and result as well as modification of the A_BLOCK. Its
argument is a triple of functions which are:

libmap a function for processing a library block
ssmap a function for processing subsystems give the results of processing the blocks in the subsystem

newc a function which computes the new context in which blocks in a subsystem are to be processed

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

_[C,R]

a_block_-map_cr: (C — A_LIB_.BLOCK — R x A_LIB_BLOCK)
x (C — A_SUBSYS x (PVALUE - R) — R x A_SUBSYS)
x (C — A_SUBSYS — PVALUE — ()
— (C — A_BLOCK + R x A_BLOCK)

vV libmap: C — A_LIB_BLOCK — R x A_LIB_BLOCK;
ssmap: C — A_SUBSYS x (PVALUE + R) — R x A_SUBSYS;
newc: C — A_SUBSYS — PVALUE — C,
c: Ceo
(V alb, alb’: A_.LIB_BLOCK; r:R
| (r, alb’) = libmap ¢ alb
e a_block_map_cr (libmap,ssmap,newc) ¢ (ALibBlock alb) = (r, ALibBlock alb’))

(V ass, ass’, ass": A_SUBSYS; r:R; rabm: PVALUE + (R x A_BLOCK);
rm: PVALUE -+ R; abm: PVALUE + A_BLOCK
| rabm = {pv: PVALUE; r: R; ab, ab’: A_.BLOCK; ¢': C
| pv — ab € ass.blocks N ¢’ = newc ¢ ass pv
A a_block_map_cr (libmap,ssmap,newc) ¢ ab = (r, ab’)
o pv — (r, ab’)}
A rm = rabm § first
A abm = rabm § second
A ass’ = (subsys_info = ass.subsys_info,
port_info = ass.port_info,
blocks = abm)
A (r, ass") = ssmap ¢ (ass’, rm)
e a_block_map_cr (libmap,ssmap,newc) ¢ (ASubsys ass) = (r, ASubsys ass"))

This one updates the A_ BLOCK without returning a result.

88

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

89

a_block_map: (PATH — A_BLOCK -+ A_BLOCK)
— PATH — A_BLOCK - A_BLOCK

V m: PATH — A_BLOCK + A_BLOCK: path: PATH; ab, ab': A_BLOCKe
ab — ab’ € (a_block_map m path)
(3 alb: A_LLIB_BLOCK | ab = ALibBlock albe ab — ab’ € (m path))

(3 as, as’: A_SUBSYS,; blocks, blocks’: PVALUE + A_BLOCK
| ab = ASubsys as
A blocks = as.blocks
A blocks' = {bname: PVALUE; ablock, ablock’: A_BLOCK
| bname — ablock € blocks

A ablock — ablock’ € (a_block_-map m (path ~ (bname)))
e bname — ablock'}
A as’ = (subsys_info = as.subsys_info,
port_info = as.port_info,
blocks = blocks @ blocks’)
o ASubsys as’ — ab’ € m path)

The following function selects a block using a path.
Z

a_block_select: PATH — A_BLOCK - A_BLOCK

YV p:PATH; ab,ab’: A_BLOCK e

(ab, ab") € a_block_select p

=

p={_)Aab =ab

V

(3 ass: A_SUBSYS; bs: PVALUE + A_BLOCK; ab”: A_.BLOCKe
ab = ASubsys ass A\ bs = ass.blocks N (head p — ab") € bs

A ab” — ab’ € a_block_select (tail p))

6.3 Ports, Lines and Equations

When considering a Simulink system it is necessary to distinguish between ports internal to the
diagram defining the system, which are not accessible at the higher level when the system is used as
a subsystem, and ports which are external to the system and will appear as ports on the block used
to incorporate the system as a subsystem of a larger system.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

90

When a system diagram is viewed, the lines on the diagram connect internal ports. External ports
are blocks in the diagram (from the connections library), each having a single internal port. To
make a connection to an external port, a connection is made to the internal port on the appropriate
external port library block.

Though external port blocks in a Simulink subsystem have names, these names are not used when
connection are made to the port in the system containing the subsystem. Furthermore, no names are
available for instances of library blocks. For our purposes ports in Simulink are therefore numbered
rather than named.

The port configuration of a Simulink System is shown by the following information in the model:

1. A Ports parameter for each block consisting of a 5-tuple of numeric port counts, giving the
highest numbered input and output ports and O or 1 to indicate the absence or presence
respectively of enable, trigger and state ports. Though this usually gives the numbers of input
and output ports, this is not always the case. There may be gaps in the port numbers. At
most one each of the latter three are permitted. Trailing zeros are now usually omitted. The
information is represented abstractly in this model by the structure PORT_PARAM

2. Input and Output Port blocks from the connection library. These enable the external ports of
a system to be shown as blocks with a single internal port each, enabling the connections to
external ports to be shown by connection to these internal ports.

3. Trigger and Enable blocks

These blocks, which have blocktype “TriggerPort” and “EnablePort” respectively, are included
in a subsystem to make that subsystem triggered or enabled respectively. Unlike input and
output ports no connection can be made to these ports from within the subsystem.

4. The line information showing how the external ports are connected internally.

6.3.1 Port Naming Conventions

Note that in the Simulink model the only way to tell whether a line is connecting to an input port
or an output port (on a library or subsystem block) is by observing which side of the line the port
is, i.e. lines always connect their source to an output port and their destinations to input ports. On
the Simulink diagram the output port is shown by a blob and the input port by an arrowhead on
the line.

This uniform naming convention will generate a lot of potential name clashes in the Z, since all the
blocks in the diagram will re-use the same names for their inputs and outputs. It is proposed that
a renaming algorithm based on adding a prefix be used. In the first instance the prefix will be the
block name.

The following functions map port numbers (as PVALUES) to the corresponding IDENT'Ss, with special
cases for non-numeric input ports.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

91

Note that numbered action ports do not appear in port details and are therefore not covered by the
following specification.

Z

inport_name: PVALUE — IDENT

YV port: PVALUE e
mport_name port =
(wi: IDENT; n: N; s: seq CHAR
| port = sc2pv "trigger" A i = pvalueZident TriggerQ
V port = sc2pv "enable" A i = pvaluelident EnableQ)
V port = ifaction A i = pvalue2ident Action@
V port = numZpvalue n
A sc2pv s = numZpvalue n
A i = pvaluelident (sc2pv ("In" T s T "7M))
i)

outport_name: PVALUE — IDENT

V port: PVALUE e
outport_name port =
(w 0i: IDENT; n: N; s: seq CHAR
| port = num2pvalue n
A sc2pv s = numZpvalue n
A oi = pvaluelident (sc2pv ("Out" — s — "I"))
e 07)

6.3.2 Equations

The set of equations is primarily derived from the set of LINEs in the diagram, but with virtualization
and support for action subsystems other sources of information are also necessary. These include the
information about which blocks have been virtualized and the results of the virtualization (which may
be thought of as functionality absorbed into the wiring equations), and information about the action
subsystem complexes (which is used to create additional connections transferring the activation state
of action ports to the relevant merge blocks).

The model coordinate positions (block/port) have to be translated into a compound name consisting
of the block name (local to and as specified on the diagram, subject to sanitization) followed by a
dot followed by the relevant conventional port component name. Where the block is an external port
a simple portname is required. To tell which case applies it is necessary to know the type of each
block, this information is supplied by a parameter of type BLOCK_TYPES.

Lemma 1 Ltd.

ZED504: ClawZ - Model Translator Specification

©Lemma 1 Ltd. 26 January 2004 99

Each line has its ports specified as block/port combinations.

The following function expresses the claim that a PORT p is in fact a connection to an input port
block whose IDENT should be i, in the context of a given set of blocks. It also covers TriggerPort,
EnablePort and ActionPort.

Z

winport_ident: (F A_.BLOCK) — P (PORT x IDENT)

=

> > > e

(

(name

V blocks: F A_BLOCK; p: PORT; i: IDENT e
(p,i) € (zinport_ident blocks)

(3 bi: BLOCK_INFO; pi: PORT_INFO; params: F PARAM; pp: PVALUE
ALibBlock (block_info = bi, port_info = pi) € blocks
params = bi.pars

= Name, value = p.block) € params

(name = BlockType, value = InPort) € params

A (name = Port, value = pp) € params

A i = inport_name (strip_pval pp)

(name = BlockType, value = TriggerPort) € params
A 1 = pvaluelident TriggerQ

(name = BlockType, value = EnablePort) € params
A 1 = pvaluelident Enable@

(name = BlockType, value = ActionPort) € params
A i = pvalueZident Action@

The following function expresses the claim that a PORT p is in fact a connection to an output port
block whose IDENT should be i, in the context of a give set of blocks.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

93

xoutport_ident: (F A_.BLOCK) — P (PORT x IDENT)

YV blocks: F A_BLOCK; p: PORT; i: IDENT e

(p,i) € (zoutport_ident blocks)

=

(3 bi: BLOCK _INFO; pi: PORT_INFO; params: F PARAM; pp: PVALUE

° ALibBlock (block_info = bi, port_info = pi) € blocks
A params = bi.pars

A (name = BlockType, value = OutPort) € params

A (name = Name, value = p.block) € params

A (name = Port, value = pp) € params

A i = outport_name (strip_pval pp)

)

The identifier used for non-port blocks is retrieved from the INVKEY in the INVOCATION of the
block. Previously this was derived from the path to the block, but this fails when referring to a
block in the main system from an artificial subsystem which does not change that block (because
the identifier is resolved in the wrong context). The following function specifies how the required
identifier is retrieved:

Z

get_invocation: A_BLOCK — INVOCATION

(V alb: A_.LIB_BLOCK e

get_invocation (ALibBlock alb) = alb.block _info.invocation)
A
(V ass: A_LSUBSYSe

get_invocation (ASubsys ass) = ass.subsys_info.invocation)

This function obtains the identifier for a (non input port) block from the invocation key (INVKEY)
of the block.

Z

block_ident: PATH — (PVALUE + A_BLOCK) — PVALUE — IDENT

V path: PATH; blocks: PVALUE + A_BLOCK; blockname: PVALUEe
block_ident path blocks blockname =
(i: IDENT; invkey: INVKEY
| invkey = (first o get_invocation) (blocks blockname)
A (Otherlnv i@ = invkey
V (invkey = Nolnv A i = path2loci (path ~ (blockname))))
° i)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

Next we define the functions which translate each PORT into a Z_ EXPR.

Z

eitherport_ident: (F A_.BLOCK) — P (PORT x IDENT)) —
(PVALUE — IDENT) —
PATH — (PVALUE + A_BLOCK) — PORT — Z_EXPR

V zotherport_ident: (F A_BLOCK) — P (PORT x IDENT);
name_fnc: PVALUE — IDENT;
path: PATH; blocks: PVALUE + A_BLOCK; port: PORT e
(V i: IDENT | (port, i) € (zotherport_ident (ran blocks))
e citherport_ident xotherport_ident name_fnc path blocks port = Ident 1)
A (= (3 i: IDENT e (port, i) € (xotherport_ident (ran blocks)))
=
eitherport_ident xotherport_ident name_fnc path blocks port
= Selection (Ident (block_ident path blocks port.block),
Ident (name_fnc port.port))

inport_ident: PATH — (PVALUE + A_BLOCK) — PORT — Z_EXPR,
outport_ident: PATH — (PVALUE + A_BLOCK) — PORT — Z_EXPR

inport_ident = eitherport_ident xinport_ident inport_name;

outport_ident = eitherport_ident xoutport_ident outport_name

The outputs from virtualized blocks are expressions specified as follows.

First we define a function to extract the map from the wvirtual field of a block.

Z

virtual_map: A_.BLOCK + (PVALUE + Z_EXPR)

YV block: A_BLOCK; map: PVALUE +~ Z_EXPR e
block — map € virtual_map
=
(3 alb: A_LLIB_BLOCK
| ALibBlock alb = block
e alb.block_info.virtual = Virtual map)
V
(3 ass: A_SUBSYS
| ASubsys ass = block
e ass.subsys_info.virtual = Virtual map)

94

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

95

Note that the following function is partial.

Z

outport_expression: (PVALUE + A_BLOCK) — PORT -+ Z_EXPR

V blocks: PVALUE + A_BLOCK; port: PORT; ze: Z_EXPR e
port +— ze € outport_expression blocks
54
(3 block: A_BLOCK; map: PVALUE - Z_EXPR
| port.block +— block € blocks
A block — map € virtual_map

e port.port — ze € map)

Then we define how an equation can be derived from a LINE.

There are two cases to consider, simple equations between line names corresponding to connections
between non-virtual blocks, and equations giving values to non-virtual block input ports as expres-
sions for the values of the relevant output port of a virtual block.

It is useful here to define the set of virtual blocks:
zZ

virtual_block: P A_BLOCK

virtual_block =
{b: A_LBLOCK; ass: A_SUBSYS; alb: A_LIB_BLOCK;,
v: VIRTUAL; zemap: PVALUE + Z_EXPR
| (b = ALibBlock alb N v = alb.block_info.virtual
V b = ASubsys ass N\ v = ass.subsys_info.virtual)
A v = Virtual zemap
e b}

The final source of information for line equations is the ACTION_INFO which contains information
about the action subsystems sufficient to permit extra connections to be made from their action
ports to ports on the relevant merge blocks. In fact we connect the merge blocks to the source of
the signal at the action ports, which will always be an output port on an If or SwitchCase block.

The ClawZ implementation of Merge blocks includes an extra port for each input port m which is
named “Actionn?”, the following function maps an input port name on a merge block to the namer
of the corresponding action input port.

Lem

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 96

ma 1 Ltd.

merge_action_port_name: PVALUE — IDENT

V p: PVALUE; ident: IDENT; s: seq CHAR o
p — tdent € merge_action_port_name
=4
p = sc2pv §
A ident = pvalue2ident (sc2pv ("Action™ — s 7 "7"))

merge_action_port_ident: PATH — (PVALUE + A_BLOCK)
— PORT — Z_EXPR

V path: PATH; blocks: PVALUE + A_BLOCK; p: PORT e
merge_action_port_ident path blocks p

= Selection(Ident(block_ident path blocks p.block),

Ident(merge_action_port_name p.port))

This function is not currently used in this specification.

Z

get_port_info: A BLOCK — PORT_INFO

(V alb: A_LLIB_BLOCK e

get_port_info (ALibBlock alb) = alb.port_info)
A

(V ass: A_LSUBSYSe

get_port_info (ASubsys ass) = ass.port_info)

It is necessary to inhibit the generation of equations which refer to ports which have been filtered

out

of an artificial subsystem. This is done using port check functions which refer to the port_info

for the block.

The

Z

following functions specify the tests.

input_port_names: A_BLOCK — P PVALUE

V ab: A_LBLOCK; pv: PVALUEe
pv € input_port_names ab
=4
(3 alb: A_LIB_BLOCKe ab = ALibBlock alb)
V (3 as: A_SUBSYSe ab = ASubsys as
A pv € dom as.port_info.input_port_details)

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification o7

Lemma 1 Ltd.

output_port_names: A_BLOCK — P PVALUE

V ab: A_LBLOCK; pv: PVALUEe
pv € output_port_names ab
=4
(3 alb: A_LIB_BLOCKe ab = ALibBlock alb)
V (3 as: A_SUBSYSe ab = ASubsys as
A pv € dom as.port_info.output_port_details)

valid_source_ports: (PVALUE + A_BLOCK) — F PORT

Y blocks: PVALUE + A_BLOCKe
valid_source_ports blocks =
{block: dom blocks; ab: A_BLOCK; port: PVALUE
| ab = blocks block
A port € output_port_names ab
e YPORT}

valid_destination_ports: (PVALUE + A_BLOCK) — F PORT

Y blocks: PVALUE + A_BLOCKe
valid_destination_ports blocks =
{block: dom blocks; ab: A_BLOCK; port: PVALUE
| ab = blocks block
A port € input_port_names ab
e YPORT}

The following function determines the set of supplementary destinations for a line which starts at
a port on the root of an action complex. This will be either empty or a singleton set which is the
relevant action port on the merge block to which the source port is connected through some action
subsystem.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

98

merge_dests: PATH — (PVALUE + A_BLOCK) —
(F ACTION.COMPLEX) — PORT — (F Z_EXPR)

V blocks: PVALUE + A_BLOCK; lines: F LINFE,
path: PATH; acs: F ACTION_COMPLEX; sourceport: PORT
e merge_dests path blocks acs sourceport =
{ ac: ACTION_COMPLEX; mergeport: PVALUE
| ac.root = sourceport.block

A sourceport.port — mergeport € ac.subsys-map § ac.merge_map

e merge_action_port_ident path blocks (block = ac.tail, port = mergeport)}

Now we deal with the non-virtual connections (incorporating action connections).

This is a partial map which delivers a result only if the LINE starts from a present non-virtual block
and connects to at least one block which is present and non-virtual. The check is made against a
block map which may have been restricted if we are processing an artificial subsystem.

Z
line_equations: PATH — (PVALUE + A_BLOCK)
— (F ACTION_COMPLEX) — LINE -+ Z_PRED

V blocks: PVALUE + A_BLOCK; line: LINE; srce: Z_EXPR;
dests: ¥y Z_EXPR; path: PATH; acs: F ACTION_COMPLEX e
(line — PredEq(srce, dests)) € line_equations path blocks acs
=
line.source € valid_source_ports blocks
A (blocks line.source.block) ¢ wvirtual_block
srce = outport_ident path blocks line.source
A dests = {p: PORT
| p € line.destinations

>

A p € valid_destination_ports blocks
A (blocks p.block) & wvirtual_block
e inport_ident path blocks p}

U (merge_dests path blocks acs line.source)

A dests # {}

Now we specify the equations for non-virtual inputs connected to virtual outputs.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification

99

virtual_line_equations: PATH — (PVALUE + A_BLOCK) — LINE
+ Z_PRED

V blocks: PVALUE + A_BLOCK; line: LINE; srce: Z_EXPR;
dests: ¥; Z_EXPR; path: PATH e
(line — PredEq(srce, dests)) € virtual_line_equations path blocks

54
line.source € wvalid_source_ports blocks
A (blocks line.source.block) € wvirtual_block
A line.source +— srce € outport_expression blocks

A dests = {p: PORT
| p € line.destinations
A p € valid_destination_ports blocks
A (blocks p.block) & virtual_block
e inport_ident path blocks p}

dests #+ {}

>

Finally we combine the production of virtual equations and line equations into a single specification.

An implementation may consider issuing a warning about one-ended lines, though this lies outside

the scope of this formal specification. Though not formally specified it is required that the virtual

equations appear first in the resulting predicate, then normal line equations, and last action equations.
VA

lines_equations: PATH — (PVALUE + A_BLOCK) — (F LINE)
— (F ACTION_COMPLEX) — Z_PRED

V blocks: PVALUE + A_BLOCK; lines: F LINFE,
path: PATH; acs: F ACTION_COMPLEX
e lines_equations path blocks lines acs = PredConj(

(virtual_line_equations path blocks (lines))

U (line_equations path blocks acs (lines)))

6.4 Library Metadata Matching and Block Instantiation

Block which are not subsystems will be matched against available library specifications. The effects
of parameterisation of Simulink library blocks are complex, and early prototypes of the translator
will be limited in their ability cope with complex parameterisation. A simple but flexible method is
proposed as an interim pending a fuller evaluation of the full range of effects which can be achieved
by parameterisation.

The basic idea is to permit any set of parameters to be specified as preconditions for the use of a
library definition, without requiring a one-one mapping between Simulink block types and Z defi-

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

100

nitions. Where Simulink realises a kind of overloading by parameterisation, this can be translated
by providing several Z specifications. Control of which specification is selected for any particular
instance of the block type can then be achieved by specifying appropriate parameter values in the
library metadata. For example, the selection may be based on the number of input and output ports
to the instantiated block.

Where complex effects are achieved by parameterisation in Simulink, these affects may be realised
in different places in the proposed architecture. An effect may be realised by special provision in the
code of the translator, by the provision of extra information in the library metadata or by inference
from the form of definitions available in the relevant Z library. It is preferred where possible that no
special provision for a Simulink library block be made beyond providing an appropriate Z specification
for that block. Where for technical reasons this cannot suffice, it is preferred that supplementary
information be injected into the library metadata, rather than additional complexity in the translator
code. It is expected however, that to cope with the full range of features in the Simulink library all
three methods will be required.

6.4.1 Matching

There are three stages in matching.

In the first stage a potential match will be rejected if the metadata contains a “BlockPath” parameter
which does not match the path of the block for which the match is sought.

In the second stage potential matches are selected from the metafile by comparing the set of param-
eters provided to instantiate the block in the Simulink model with the set of selection parameters
specified with each META_ELEMENT in the META_FILE.

If this selection criterion is passed, the match may later be rejected by the parameter translation
facilities.

The function match assists in checking whether the meta-elements associated with a library are
consistent with the parameters on some block in the Simulink model.

Z

match: PVALUE — F PARAM — P META_ELEMENT

YV as_name: PVALUEFE; pars: F PARAM e
match as_name pars =

{me: META_ELEMENT

| me.select_pars C pars

A me.as-name = as-name}

The function path_match checks whether a PATH complies with a PATTERN.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

101

path_match: P (PATH x PATTERN)

V p: PATH; bp: PATTERN e
(p, bp) € path_match <
(Isspv: seq seq PVALUE | #sspv = #bp
o 7/ sspv =p
A (VYn: dom(sspv); pv: PVALUFEe
bp n = QueryPat = #(sspv n) = 1
A bp n = PlainPat pv = sspv n = (pv))

6.4.2 Library Block Instantiation

This method can either succeed or it can fail in either of two ways. It can fail the match or accept
the match and raise errors in instantiation.

The following free type is used for the result returned from the instantiation function.

Z

‘INSTANTIATION_RESULT =
\ IMatch BLOCK _INFO
| | INoMatch

| \ IFail

The following function will create a definition for an instance of a library block and a declaration
which can be used to invoke that definition. Its primary information source is the matching META_
ELEMENT, but it also takes the blockname and a context as parameters, since these are required to
determine both the name of the schema defined and the name of the variable used when subsequently
invoking the definition.

In addition it is necessary to know which of the variables used in parameters transmitted to the
block are local i.e. are in the scope of a masked subsystem with a variable of that name. If there
are any local variables in the parameter expressions then the values of these variables will have to
be passed to the point at which the expression is translated and to achieve this effect a lambda
expression is wrapped round the expression which instantiates the library block, and the invocation
of the specification is complicated by adding an application to the corresponding theta term.

First it is necessary to check that a full set of transmitted parameters is available for instantiation, if
this is not the case the match is rejected. Next the parameters must be translated according to their
translation codes. Each parameter translation can either suceed, reject the match, or fail. If any one
fails, the instantiation fails. If none fail but one or more rejects the match then the instantiation
rejects the match. If all succeed, the required details of the instantiation can be constructed.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

102

The details are as follows:

e The definition of the schema for the block instance uses a schema name which is formed from
the concatenation of the enclosing system and subsystem block names (from the PATH) ended
by the name given to the library block instance under consideration.

e The core of the right hand side of this definition will be a simple schema reference if there
are no transmitted parameters and no implicitly passed mask variables, otherwise it will be
the application of a Z function to a binding display formed by translating each of the actual
parameter values which are identified in the META_ELEMENT as “Transmitted Parameters”,
and filling in with any mask variables to be transmitted.

e If there are any local variables either used in parameter expressions or passed as nask variables
then the core instantiation of the library block must be enclosed in a lambda expression which
is abstracted over the type of bindings grouping together the required set of variable values.

e The declaration required to invoke this definition consisting of a variable name to be declared,
which is the blockname in the Simulink diagram, and a type for the variable, which is either
a simple reference to the schema defined or an application of the named abstraction to an
appropriate theta term, formed using a horizontal schema.

e Since the schema or abstraction name is formed from the blockname by prefixing it with the
containing system and subsystem names it will be different from the blockname unless these
names are empty. Empty system and blocknames are therefore not supported.

vars2udecs: F PVALUE — seq Z_DEC

YV vars: F PVALUEe
vars2udecs vars =
(1 decs: seq Z_DEC
| ran decs =
{v:vars
e DecDec (
names = (pvalue2ident v),
type = Ident Ui)})

vars2uhschem: F PVALUE — Z_EXPR

YV vars: F PVALUEe
vars2uhschem vars = ZHSchema(

decl = wvars2udecs wvars,
pred = PredConj{})

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

103

The following function, give a set of variable names and a Z_ EXPR returns the Z_ EXPR which con-
sists of a lambda expression of which the declaration part is a horizontal schema whose components
are the names supplied and the body is the supplied Z_EXPR.

Z

make_hschema_abstraction: F PVALUE — Z_EXPR — 7Z_EXPR

YV vars: ¥ PVALUE; ze: Z_EXPRe
make_hschema_ abstraction vars ze =
ZLambdaExp (
decl = (DecSchema(vars2uhschem wvars)),
exp = ze)

The following function defines the specifications generated to invoke a library block. Since the
introduction of support for action subsystems there may be up to three library specifications for
each variant of a library block, one giving the normal function and one each for helding or resetting
the state, if there is any. Each of these is instantiated in exactly the same way, they are required
to have the same parameterization, though each has a distinct name in the library (all names are in
the metadata) and each is given a distinct name after instantiation, in this case by use of a suffixing
convention.

The following two functions, which create a specification and an invocation (i.e. a declaration to be
used when referring to the specification) each address one of the possible three schemas which may
be in the library. The are supplied with the required names and will be used up to three times when
constructing the block info for the library block.

The parameters are:

1. the name to be used for the schema being defined
2. the name of the library definition to be instantiated

3. the information about parameter values necessary to construct a binding display passing their
values

4. the set of local variables which occur in the parameter expressions (varsl)

5. the set of local variables which must be passed to the schema to be invoked (vars2)

Support for implicit passing of local variables has been introduced for use in block references to
subsystems in libraries, but there is no reason in principle why this feature should not also be used
in specifications for library blocks invoked in the usual way.

In the following specification of the specification to be produced for instantiating a library block the
parameters are:

1. the Z name to be defined

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004 104

ZED504: ClawZ - Model Translator Specification

2. the name of the Z library specification to be instantiated

3. a binding giving the translated actual values of the transmitted parameters

4. the set of local variables which occur in the actual parameter expressions

5. the set of local variables which are used in the body of the target specification

The specification will consist of an abstraction in which the value required consists of a binding
formed from all the local variables in the two sets. the body of the abstraction applies the target
specification to a binding which includes all the actual parameter values and any other local variables
used in the body of the target (but not transmitted parameters). These latter values are intended
to cover block references to masked subsystems translated by ClawZ, but could in principle also be
used in hand written library specifications.

Z

make_lib_spec: WORD — IDENT — F (IDENT x Z_EXPR)

— F PVALUE — F PVALUE — seq Z_PARA

then (SchemaDef (
name =

value =

else (AbbrevDef (
ident =
value =

Y defname: WORD; z_name: IDENT; binding: F (IDENT x Z_EXPR);
varsl, vars2 : F PVALUE e
make_lib_spec defname z_name binding varsl vars2

if wvarsl U vars2 = {}

defname,

if binding = {} then Ident z_name

else Application(Ident z_name,
BindingDisplay binding)))

word2ident defname,
make_hschema_ abstraction (varsl U vars2) (
Application(
Ident z_name,
BindingDisplay (
{v:vars2e pvaluelident v — Ident (pvalueZident v)}
@ binding)))))

The following function defines the manner of invocation of the above specification. Only one set of
variables is supplied which is required to be the union of those which are used in the parameters and
those which are used in (required by) the library block.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

105

make_invocation: WORD — IDENT — F PVALUE — Z_DEC

V defname: WORD:; localname: IDENT; vars: F PVALUE
e make_invocation defname localname vars
= DecDec(
names = (localname),
type = if vars = {}
then Ident (word2ident defname)
else Application (
Ident (word2ident defname),
ZBrackets (ZTheta (vars2uhschem wvars))))

The following function makes a complete specification by invoking make_lib_spec up to three times.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 106

Lemma 1 Ltd.

make_lib_specs:

HOLD_CONTEXT — META_ELEMENT — PATH —
(F IDENT x Z_EXPR) — (F PVALUE) —

((seq Z_-PARA) x INVOCATION)

YV he: HOLD_CONTEXT; me: META_ELEMENT; path: PATH;
binding: F (IDENT x Z_EXPR); used_muvs, used_muvs', me_mvs: F PVALUEFE;
specs: seq Z_PARA; invocation: INVOCATION ; defname: WORD:;
localname, hzname, rzname: IDENT
spec, specy, specy: seq Z_PARA; inv, invy, inv,: seq Z_DEC
| defname = path2globw path
A localname = path2loci path
A me_mvs = me.used_maskvars
A used_mus' = used_mvs U me_muvs
A spec = make_lib_spec defname me.z_name binding used_muvs me_muvs
A inv = (make_invocation defname localname used_mus')
A (he ¢ {HCHeld, HCUnknown} V me.held_z_name = Nil =
spec, = () A invy, = ()
A (he € {HCHeld, HCUnknown} N me.held_z_name = Value hzname =
spec, = make_lib_spec (wy, defname) hzname binding used_muvs me_mus
A invy = (make_invocation (wy, defname) localname used_mus'))
A (he ¢ {HCReset, HCUnknown} V me.reset_z_name = Nil =
specy = () A invy = ())
A (he € {HCReset, HCUnknown} A me.reset_z_name = Value rzname =
spec, = make_lib_spec (w, defname) rzname binding used_muvs me_mus
A inv, = (make_invocation (w, defname) localname used_muvs'))
A specs = spec " specp, T spec,
A invocation = (OtherInv localname, (inv, invy, inv,))

e make_lib_specs hc me path binding used_muvs = (specs, invocation)

The following specification defines the BLOCK_INFO constructed for a library block from the fol-
lowing parameters:

1. the path in the Simulink model to the block being translated

2. the set of local (masked) variables which occur in the parameters to the block
3. the blockname

4. the full set of parameters for the block from the Simulink model

5. a map giving the translations of the transmitted parameters

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

107

6. the META_ELEMENT against which the block has been matched
7. the HOLD_CONTEXT which indicates which specifications should be generated

make_block_info: PATH — F PVALUE — F PARAM
— (PNAME + TRANSLATION_RESULT) — META_ELEMENT
— HOLD_CONTEXT — BLOCK _INFO

Y path: PATH; portval: PVALUE; pars: (F PARAM); me: META_ELEMENT;
he: HOLD_CONTEXT; tr_pars: PNAME + TRANSLATION_RESULT
binding: F (IDENT x Z_EXPR);
inport_types, outport_types: PVALUE +—~ PORT_TYPEFE,
pparam: PORT_PARAM ; used_muvs, me_mus, used_muvs': F PVALUE;
inv: INVOCATION; spec: seq Z_PARA

| binding = {i: IDENT; z: Z_EXPR; n: PNAME

| (n — (TMatch z)) € tr_pars A i = pnameZ2ident n
° (i, 2)}
A (name = Ports, value = portval) € pars
A (portval — pparam) € parse_ports_param
A inport_types = {pn:1 .. pparam.maz_ine num2pvalue pn — UnknownPT}
& (me.input_port_types o num2pvalue™)
A outport_types = {pn:1 .. pparam.max_oute num2pvalue pn — UnknownPT}
5>} (me.output_port_types o num2pvalue™)
A (spec, inv) = make_lib_specs hc me path binding used_mus
° make_block_info path wused_muvs pars tr_pars me hc =
(pars = pars, input_port_types = inport_types,
output_port_types = outport_types,
mvocation = inv,
specification = spec,
virtual = VInhibit,
used_maskvars = used_mus’)

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

instantiate_lib_block: PATH — F PVALUE — (F PARAM)
— HOLD_CONTEXT — META_ELEMENT — INSTANTIATION_RESULT

Y path: PATH; portval: PVALUE; pars: (F PARAM); me: META_ELEMENT;
mask_vars, used_maskvars: ¥ PVALUEFE; needed_pars, available_pars: F PNAME;
tr_pars: PNAME + TRANSLATION_RESULT x F PVALUF,
trs: PNAME + TRANSLATION_RESULT:;hc: HOLD_CONTEXT

needed_pars = {p: PARAM | p € me.transmit_pars e p.name}
A available_pars = {p: PARAM | p € pars e p.name}
A tr_pars = {par, tpar: PARAM
| tpar € me.transmit_pars A par € pars
A tpar.name = par.name
e par.name — par_trans?2 mask_vars tpar.value par.value}
A trs = first o tr_pars
A used_maskvars = |J (ran (second o tr_pars))
instantiate_lib_block path mask_vars pars hc me =
if (path, me.block_path) € path_match
then
if needed_pars C available_pars
then if TNoMatch € ran trs then INoMatch
else if TFail € ran trs then IFail
else IMatch (make_block_info path used_maskvars pars trs me hc)
else INoMatch
else INoMatch

108

The function instantiate_last_match yields the instantiation of the last META_ELEMENT of a
META_FILE which matches a parameter set.

The following specification prescribes that the metafile is to be searched backwards for a match,
taking into account the rejection of matches both by the selection criteria and by the translation of
parameters. So long as these give no match the search will continue, but if the parameter translation
yields a failure the search will fail.

This specification does not propagate a failure, since the primary function of the failure code is to
inhibit further attempts to match. If no match is sucessfully instantiated the INoMatch result code
is returned.

Lemma 1 Ltd. ©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 109

instantiate_last_match: PVALUE — META_FILE — HOLD_CONTEXT
— PATH — F PVALUE — (F PARAM) — INSTANTIATION_RESULT

YV as_name: PVALUE; mf, match_-mf: META_FILE; hc: HOLD_CONTEXT;
mask_vars: ¥ PVALUE; pars: (F PARAM); path: PATH;
instantiate_ fun: META_ELEMENT — INSTANTIATION_RESULT;

instantiate_results, non_fail_results: seq INSTANTIATION _RESULT
| match_mf = mf [match as_name pars

A instantiate_ fun = instantiate_lib_block path mask_vars pars hc
A instantiate_results = instantiate_fun o match_mf
A non_fail_results = instantiate_results

I ({IFail} U (ran IMatch))

instantiate_last_match as_name mf hc path mask_vars pars =
last non_fail_results

The following four functions define the invocations for the various kinds of supported port blocks.

In order to use sort_by_invkey on the declarations, we specify first how to derive INVOCATIONs
from the PORT_INFO, then sort them and discard the invocation keys.

Z

inport_invkey: PVALUE - INVKEY

V port: PVALUE; ik: INVKEY e
port — ik € inport_invkey
54
port = sc2pv "trigger" A ik = TriggerInv
V port = sc2pv "enable" A ik = Enablelnv
V port = ifaction N ik = Actionlnv 0
V(3n N

e port = numZpvalue n

A ik = InportInv n)

outport_invkey: PVALUE - INVKEY

V port: PVALUE; ik: INVKEY e
port — ik € outport_invkey
< (3 n: N

e port = numZpvalue n

A ik = OutportIinv n)

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 110

inport_block_invocation: PVALUE +~ INVOCATION

V input_port: PVALUEFE; invk: INVKEY; decl, held, reset: Z_DECLe
input_port — (invk, (decl, held, reset)) € inport_block_invocation
=4

mput_port — invk € inport_invkey
A decl = (DecDec (names = (inport_name input_port), type = Ident Ui))
A held = reset = ()

outport_block_invocation: PVALUE +~ INVOCATION

YV output_port: PVALUE; invk: INVKEY; decl, held, reset: Z_DECLe
output_port — (invk, (decl, held, reset)) € outport_block_invocation
=4

output_port — invk € outport_invkey
A decl = (DecDec (names = (outport_name output_port), type = Ident Ui))
A held = reset = ()

action_block_invocation: INVOCATION

action_block _invocation =
(ActionInv 0,
({(DecDec (names = (pvalueZident Action@Q), type = Ident Ui)), (), ()))

This specification concerns invocations for the numbered action ports which are added to synthesized
Action blocks.

Z

action_port_id: N; — IDENT

Vn: Nye action_port_id n

n

= pualuelident (sc2pv ("Action (pv2sc(num2pvalue n)) ~ "7"))

action_port_invocation: N; — INVOCATION

Vn: Nje action_port_invocation n = (ActionInv n, ((DecDec (
names = (action_port_id n),

type = Ident Ut)), (), ()))

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 11

action_port_invocations: N; — F INVOCATION

Vn: Nje action_port_invocations n =
{m: Ny | m < n e action_port_invocation m}

trigger_block_invocation: INVOCATION

trigger_block _invocation =

(TriggerInv,
({(DecDec (names = (pvalueZident TriggerQ), type = Ident Ui)), (), ()))

enable_block_invocation: INVOCATION

enable_block_invocation =

(EnableInv,
((DecDec (names = (pvalue2ident EnableQ), type = Ident Ut)), (), ()))

The following specifies the block_info for port blocks.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 112

port_block_info: PVALUE — BLOCK_INFO + BLOCK_INFO

The

Y block_type: PVALUE; block_info, block_info’: BLOCK _INFO
e (block_info — block_info’) € port_block_info block_type
< (3 inv: INVOCATION e
(3 port: PVALUEe
(name = Port, value = port) € block_info.pars
A (block_type = InPort
A port — inv € inport_block_invocation
V block_type = OutPort
A port — inv € outport_block_invocation))
V block_type = ActionPort
A tnv = action_block_invocation
V block_type = EnablePort
A tnv = enable_block_invocation
V block_type = TriggerPort
A inv = trigger_block_invocation
A block_info' = (pars = block_info.pars,
input_port_types = {}, output_port_types = {},
mvocation = nv,
specification = (),
virtual = VInhibit, used_maskvars = {}))

following specification describes how a BLOCK_INFO is updated when a successful library

lookup takes place, and also covers the treatment of port blocks, including trigger and enable blocks.

Z

do_lib_block: PVALUE — META_FILE — HOLD_CONTEXT — PATH
— F PVALUE — BLOCK_INFO - BLOCK_INFO

YV as_name: PVALUE; mf: META_FILE; hc¢: HOLD_CONTEXT; path: PATH,
block_type: PVALUE; block_info, block_info’: BLOCK _INFO; mask_vars: F PVALUE
| (name = BlockType, value = block_type) € block_info.pars
e (block_info — block_info') € do_lib_block as_name mf hc path mask_vars
& (block_type & port_block_types N
instantiate_last_match as_name mf hc path mask_vars block_info.pars
= IMatch block_info’)
vV (block_type € port_block_types N
port_block_info block_type block_info
= block_info’)

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 113

In the following the required PORT must be a destination port. It is assumed that there will be only
one line with any given destination. If there is no line or the line name is empty the value “signaln”
is used where “n” is the relevant port number.

Z

line_name: ((F LINE) x PORT) — PVALUE

V lines: ¥ LINE; port: PORTe

(3line: linese port € line.destinations)
A line_name (lines, port) =
(u line: lines; name: PVALUE
| port € line.destinations
A name = force_signal_name port.port line.name
e name)
— (Jline: linese port € line.destinations)
A line_name (lines, port) = port2signal port.port

input_details_from_type: (F LINE) — PORT
— PORT_TYPE — PORT_DETAILS

V lines: ¥ LINE; port: PORT; ptype: PORT_TYPFEe
input_details_from_type lines port ptype =
(line_name = line_name (lines, port),

port_type = ptype)

ipds_from_ipts: (PVALUE x (F LINE)) — (PVALUE + PORT_TYPE)
— (PVALUE + PORT_DETAILS)

YV bname: PVALUEFE; lines: F LINFE; ipts: PVALUE + PORT_TYPFEe
ipds_from_ipts (bname , lines) ipts =
{pname:PVALUE; pt: PORT_TYPE; pd: PORT_DETAILS; port: PORT
| pname — pt € ipts
A port = (block = bname, port = pname)
A pt — pd € (input_details_from_type lines port)

e pname — pd}

In the case of the output details the line name is irrelevant and is set to NullString.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 14

output_details_from_type: PORT — PORT_TYPE — PORT_DETAILS

V port: PORT; ptype: PORT_TYPFEe
output_details_from_type port ptype =
(line_name = NullString,

port_type = ptype)

opds_from_opts: PVALUE — (PVALUE + PORT.TYPE
pds_ f D ()
— (PVALUE + PORT_DETAILS)

YV bname: PVALUE; ipts: PVALUE + PORT_TYPFEe
opds_from_opts bname ipts =
{pname:PVALUE; pt: PORT_TYPE; pd: PORT_DETAILS; port: PORT
| pname — pt € ipts
A port = (block = bname, port = pname)
A pt — pd € (output_details_from_type port)
e pname — pd}

The context for this traversal is the combination of the path, the accumulated set of maskvariables,
and the set of lines for the current subsystem. The following function updates this context.

Z

newc_maskvars:
(PATH x (F PVALUE) x (F LINE) x HOLD_CONTEXT) —
A_SUBSYS — PVALUE —
(PATH x (F PVALUE) x (F LINE) x HOLD_CONTEXT)

Y path, path’: PATH; maskvars, newmaskvars: F PVALUE; lines, lines’: F LINFE;
ass: A_SUBSYS; pv: PVALUE; hc, hc¢': HOLD_CONTEXT

| path’ = path ™ (pv)

A newmaskvars = get_maskvars ass.subsys_info.subpars

A lines’ = ass.subsys_info.lines

A he' = ass.subsys_info.action_info.held_ context

e newc_maskvars (path, maskvars, lines, hc) ass pv
= (path’, maskvars U newmaskvars, lines’, hc')

Next we specify the handling of library blocks on this traversal. This involves matching the block
against the library.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

115

libmap_maskvars: META_FILE —
(PATH x (F PVALUE) x (F LINE) x HOLD_CONTEXT) —
A_LIB_BLOCK — {0} x A_LIB_BLOCK

YV mf: META_FILFE; path: PATH; maskvars: ¥ PVALUF,
lines: ¥ LINE; hc¢: HOLD_CONTEXT:; alb, alb’: A_LIB_BLOCK;
bi, bi': BLOCK _INFO; pi, pi': PORT_INFO
| bi = alb.block_info
A bi' = if bi € dom(do_lib_block NullString mf hc path maskvars)
then do_lib_block NullString mf hc path maskvars bi
else bi
A pi" = (input_port_details = alb.port_info.input_port_details
@ ipds_from_ipts (last path, lines) bi’.input_port_types,
output_port_details = alb.port_info.output_port_details
@ opds_from_opts (last path) bi'.output_port_types)
A alb = if bi € dom(do_lib_block NullString mf hc path maskvars)
then (block_info = bi’, port_info = pi’)
else alb

e libmap_maskvars mf (path, maskvars, lines, hc) alb = (0, alb’)

Now the handling of subsystems. At this stage little happens, since subsystem translation cannot take
place until block synthesis has been attempted on blocks which fail to match against the library. The
only thing that happens here is to record the mask variable context, i.e. the set of variable which
have been masked by surrounding subsystems. Note that the specification, invocation and used_
maskvars fields are assumed to be empty and are not propagated.

Z
ssmap_maskvars: (PATH x (F PVALUE) x (F LINE) x HOLD_CONTEXT)
— A_SUBSYS x (PVALUE + {0}) — {0} x A_SUBSYS

V path: PATH; maskvars: F PVALUFE; lines: ¥ LINE; he: HOLD_CONTEXT;
ass, ass': A_SUBSYS; ssi, ssi': SUBSYS_INFO; rmap: PVALUE + {0}
| ssi = ass.subsys_info
N ssi’ = (subpars = ssi.subpars, syspars = ssi.syspars, lines = ssi.lines,
specification = (), invocation = (Nolnv, (), (), ())),
virtual = VUnknown, used_maskvars = {}, mv_ctat = maskvars,
action_info = ssi.action_info)

A ass’ = (subsys_info = ssi’, port_info = ass.port_info, blocks = ass.blocks)

e ssmap_maskvars (path, maskvars, lines, hc) (ass, rmap) = (0, ass’)

Finally these components are tied together to give a library look-up traversal over an A_ BLOCK.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 116

Lemma 1 Ltd.

library_lookup: META_FILE — A_BLOCK - A_BLOCK

Y mf: META_FILE; ab: A_.BLOCK; ass: A_SUBSYS
| ab = ASubsys ass
e (0, library_lookup mf ab) = a_block_map_cr
(libmap_maskvars mf, ssmap_maskvars, newc_maskvars)
((param_value ass.subsys_info.syspars Name),
{H
ass.subsys_info.lines,
ass.subsys_info.action_info.held_ context)
ab

6.5 Port Type Injection

Information about the types of ports may be supplied in the ClawZ steering file.

6.5.1 Steering File Processing

The ClawZ steering file is to be parsed according to the grammar in section 2.9 and saved as a
STRUCTURE in steering_file. This section defines some processing on the port type information in
the steering file.

This function extracts a set of port type assignments from a steeringfile and is parameterised by the
name of the relevant structure (i.e. InPortTypes or OutPortTypes). If any paths occur more than
once they are ignored; a warning should be raised.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

117

gettypes: PNAME — STRUCTURE — (PATH + seq PORT_TYPE)

Vpn: PNAME; struc : STRUCTURE; strucs: F STRUCTURE;
snv: seq [name: PNAME; value: VALUE]; ptas :IF (PATH x seq PORT_TYPE)
| Structure snv = struc
A strucs = {s: STRUCTURE | (name = pn, value = Struct s) € ran snv}
A ptas =

{snv2: seq [name: PNAME; value: VALUE]; pathn: PNAME;

types: PVALUE; path: PATH; spt: seq PORT_TYPE

| Structure snv2 € strucs

A (name = pathn, value = Simple (Qualue, types)) € ran snv2

A pathn — path € parse_pathn

N types — spt € parse_port_types

e path — spt}
e gettypes pn struc =

{path : PATH | 3; spt: seq PORT_TYPFe path — spt € ptas}

< ptas

inport_types: PATH + seq PORT_TYPE;
outport_types: PATH + seq PORT_TYPE

inport_types = gettypes InPortTypes steering_file

A outport_types = gettypes OutPortTypes steering_file

6.5.2 Model Processing

In this section a pass over the model is specified in which the port type information supplied in the
steering file is inserted into the model. The information overrides any type information already in
place (e.g. information obtained during library matching and instantiation).

The following updates a port details map from a sequence of port types. The line names are retained
from the original, any new ports have no line name associated with them.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

118

update_port_details: (seq PORT_TYPE) — (PVALUE + PORT_DETAILS)
— (PVALUE + PORT_DETAILS)

V spt :seq PORT_TYPE; pdts, pdts’ :PVALUE + PORT_DETAILS
| pdts’ = pdts &
{n: dom spt; pv, name :PVALUE
| pv = num2pvalue n
A name = if pv € dom pdts
then (pdts pv).line_name
else NullString
e pv — (line_name = name, port_type = spt n)}
e update_port_details spt pdts = pdts’

The following function updates the PORT_INFO for a block and returns the new value together with
two sets of paths indicating which paths have had their input/ouput ports updated respectively (these
will be empty or the singleton set containing the supplied path parameter). The port information is
obtained from inport_types and outport_types.

Z

update_port_info. PATH x PORT_INFO +
(F PATH) x (F PATH) x PORT_INFO

V path: PATH; pi, pi': PORT_INFO; pseti, pseto: F PATH;
ipd', opd’ : PVALUE -+ PORT_DETAILS
| (ipd’, pseti) =
if path € dom inport_types
then (update_port_details (inport_types path) pi.input_port_details, {path})
else (pi.input_port_details, {})
A (opd', pseto) =
if path € dom outport_types
then (update_port_details (outport_types path) pi.output_port_details, {path})
else (pi.output_port_details, {})
A pi’ = (input_port_details = ipd’, output_port_details = opd’)
e update_port_info (path, pi) = (pseti, pseto, pi’)

We are now ready to specify the functions used for the traversal. The update is done in one pass
over the model, many references to the port information, assuming that the former is much larger
less efficiently accessed than the latter.

The first function defines action on subsystems. Information about which paths have been processed
is accumulated. Setting port information on subsystems is supported.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 119

ssmap_pti: PATH — A_SUBSYS x (PVALUE - (F PATH) x (F PATH))
— ((F PATH) x (F PATH)) x A_SUBSYS

V as, as’ :A_SUBSYS; pathmap :PVALUE + (F PATH) x (F PATH);
path :PATH; matchl, match2 : ¥ PATH;
port_info': PORT_INFO; ipd', opd': PVALUE - PORT_DETAILS
| (matchl, match2, port_info') = update_port_info (path, as.port_info)
A as' = (subsys_info = as.subsys_info,
port_info = port_info’,
blocks = as.blocks)
e ssmap_pti path (as, pathmap) =
((U (ran (pathmap g first)) U matchl,
U (ran (pathmap § second)) U match2),
as’)

Now we define the action on library blocks. The two path sets in the result indicate what updates
if any took place.

Z

libmap_pti: PATH — A_LIB_BLOCK —
((F PATH) x (F PATH)) x A_LIB_BLOCK

Vpath :PATH; alb, alb’ :A_LIB_BLOCK; matchl, match2 : F PATH;
port_info': PORT_INFO; ipd', opd': PVALUE - PORT_DETAILS

| (matchl, match2, port_info') = update_port_info (path, alb.port_info)
A alb’ = (port_info = port_info’, block_info = alb.block_info)

e libmap_pti path alb = ((matchl, match2), alb’)

The traversal will work with a path as the context. The following function augments this context.

Z

newc_path: PATH — A_SUBSYS — PVALUE — PATH

V p:PATH; ass: A_SUBSYS; pv: PVALUFEe
newc_path p ass pv = p — (pv)

The following function determines the set of paths mentioned in the port type information in the
steering file which were not found in the pass over the model.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

120

incorrect_paths: (F PATH) x (F PATH) — (F PATH) x (F PATH)

Vip, ip’, op, op’: F PATH
| op’ = dom outport_types \ op
A ip’ = dom inport_types \ ip

e incorrect_paths (ip, op) = (ip’, op’)

We now specify a pass over the model which applies the port type information in the steering file.
Incorrect path information is evaluated but not returned. It is required that this information be
reported in a warning message.

Z

set_port_types: A_.BLOCK — A_BLOCK

Vab, ab’: A_BLOCK; ass: A_SUBSYS,

ip, ', op, op’: F PATH

| ab = ASubsys ass

A ((ip, op), ab’) = a_block_map_cr
(libmap_pti, ssmap_pti, newc_path)
((param_value ass.subsys_info.syspars Name))
ab

A (ip’, op’) = incorrect_paths (ip, op)

e set_port_types ab = ab’

6.6 Signal Analysis

Signal Analysis propagates information about signals from output ports along lines to inputs ports,
and then infers output port information using “hard-coded” knowledge of Mux/Demux and bus
constructor /selector blocks. This process is iterated until no more information can be derived, in
preparation for synthesis of virtual blocks.

6.6.1 Port Type Specificity

A well-founded relation over PORT_DETAILS will be needed to ensure that signal type propagation
terminates.

This version of the ordering is written on the assumption that BusPT items will not be produced with
unknown length (specified as zero), but will only be produced when the width of all the constituent
signals is known. If this were later to be changed the ordering would have to be changed.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 121

Lemma 1 Ltd.

more_specific_type: PORT_TYPE «— PORT_TYPE

more_specific_type = (
{(UnknownPT, GenericPT),

(ScalarPT, UnknownPT),

(VectorPT 0, UnknownPT)}
U{n:N|n > 0 e (VectorPT n, VectorPT 0)}

U {n : N; si: se¢ PORT_DETAILS e (BusPT (n, si), VectorPT n)}
)+

The ordering is lifted to PORT_DETAILS as follows.

Z

more_specific_details: PORT_DETAILS <« PORT_DETAILS

more_specific_details =
{pd1, pd2: PORT_DETAILS
| (pd1.port_type, pd2.port_type) € more_specific_type}

6.6.2 Propagation Over Lines

In the following, remember that a PORT by itself may be ambiguous since standard ports are given
numeric values both for input and for output ports, and the only way to know whether a port is an
input or an output port is by reference to the context (source or destination) in which it occurs in a
LINE. In all the following definitions involving port values as inputs it is essential that it is known
whether the relevant ports are input (destination) or output (source) ports, and that these are not
mixed together.

The following function derives a port-to-port relation for use in signal propagation. Note that the
PORTs in the domain are input/destination ports and those in the codomain output/source ports.
Since a line can have only one source, and no two lines can connect to the same destination, the line
map is a function

Z

LINE_MAP = PORT + PORT

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 122

Lemma 1 Ltd.

lines_to_map: F LINE — LINE_MAP

V lines: F LINEe

lines_to_map lines =
{inport, outport: PORT; line: lines
| inport € line.destinations

A outport = line.source

e inport — outport}

This function takes a line map and a set of values for output ports, returning the resulting set of
values for input ports (assuming that the line map maps input (destination) ports to output (source)
ports).
VA
map_along_lines: LINE_MAP — (PORT + PORT_DETAILS)
— (PORT + PORT_.DETAILS)

YV line_map: LINE_MAP; outport_map: PORT - PORT_DETAILSe

map_along_lines line_map outport_map = line_map § outport_map

The following function updates an A_ BLOCK from a set of new PORT_DETAILS for one or more
of its input ports. It checks whether a prospective update to the details of a port on an A_BLOCK
are material and admissible. They are material if they differ from the current details, and admissible
if more specific than the current details, both of these are checked using more_specific_details.

Note that in updating the PORT_DETAILS the line name is left unchanged. This is because line
names are correct on input ports but set to NullString on output ports, as set up by the library
lookup procedures.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 123

Lemma 1 Ltd.

update_block_input_ports: (PVALUE + PORT_DETAILS) x A_BLOCK)
+ A_BLOCK

V new_detail_map: PVALUE - PORT_DETAILS; ab, ab’: A_BLOCK e
(new_detail_map, ab) — ab’ € update_block_input_ports
54
(3 si: SUBSYS_INFO; pi, pi': PORT_INFO; bi: BLOCK_INFO; port: PVALUE;
old_detail_map: PVALUE + PORT_DETAILS; blocks: PVALUE + A_BLOCK;
good_detail_changes: PVALUE + PORT_DETAILS
e (ab = ALibBlock (block_info = bi, port_info = pi)
A ab’ = ALibBlock (block_info = bi, port_info = pi’)
V. ab = ASubsys (subsys_info = si, port_info = pi, blocks = blocks)
A ab’ = ASubsys (subsys_info = si, port_info = pi’, blocks = blocks)
)
A old_detail_map = pi.input_port_details
A good_detail _changes =
{pv: PVALUE; new_detail, new_detail’, old_detail: PORT_DETAILS
| pv — old_detail € old_detail_map
A pv — new_detail € new_detail_map
A (new_detail, old_detail) € more_specific_details
A new_detail’ =
(line_name = old_detail.line_name,
port_type = new_detail.port_type)
e pv — new_detail’
}
A good_detail _changes # {}
A pil = (input_port_details = old_detail_map @& good_detail _changes,
output_port_details = pi.output_port_details)

The following function is used to apply the results of propagating signal types over the lines in
a subsystem. It updates an A_SUBSYS from a set of locations of input ports (of blocks in the
subsystem) and details. It returns, as well as the new A_SUBSYS a set of blocknames for blocks
whose inputs were changed in this process.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 124

Lemma 1 Ltd.

update_subsys_input_ports: (PORT - PORT_DETAILS) x A_SUBSYS
— (A_SUBSYS x F PVALUFE)

V pdets: PORT - PORT_DETAILS; as, as’: A_SUBSYS; pvs: F PVALUE;
ssi: SUBSYS_INFO; pi: PORT_INFO; blocks, blocks’: PVALUE + A_BLOCK
| ssi = as.subsys_info A pi = as.port_info A blocks = as.blocks
A blocks’ = {blockname: PVALUE; ab, ab’: A_BLOCK;;
details: PVALUE +— PORT_DETAILS
| details = {portname: PVALUE; p:PORT; pds: PORT_DETAILS
| p.block = blockname
A p.port = portname
A p +— pds € pdets
e portname +— pds}
A blockname — ab € blocks
A (details, ab) — ab’ € update_block_input_ports
e blockname — ab'}
A pvs = dom blocks’
A as’ = (subsys_info = ssi, port_info = pi, blocks = blocks @ blocks")

e update_subsys_input_ports (pdets, as) = (as’, pvs)

The type LINE_FUN is introduced for a function which propagates values over a set of lines in a
subsystem, returning a new subsystem and a set of blocknames of blocks whose input ports have

been changed.
VA

‘ LINE_FUN = (PORT - PORT_DETAILS)
‘ — A_SUBSYS — (A_SUBSYS x F PVALUE)

The following function propagates values from a set of changed output ports over the lines of a
subsystem yielding a new subsystem and a set of blocknames of blocks whose input values have been
modified.

Z

prop_over_lines: LINE_MAP — LINE_FUN

V line_map: LINE_MAP; ports: PORT +~ PORT_DETAILS; as, as’: A_SUBSYS

e prop_over_lines line_map ports as =

update_subsys_input_ports (line_map § ports, as)

6.6.3 Block Propagation Preliminaries

This section contains specification generic to block processing and is followed by sections specific to
library and to subsystem blocks.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

125

The type of a block processing function is as follows:

VA
| BLOCK_FUN = F PVALUE — A_SUBSYS
| — (A_SUBSYS x (PORT + PORT_DETAILS))

The update is to be confined to blocks whose names are in the first parameter. The right element of
the resulting pair indicates which output ports have changed.

We will need to combine block processing functions which is done as follows:

Z

then_block_fun: BLOCK_FUN — BLOCK_FUN — BLOCK_FUN

Vbf1, bf2: BLOCK_FUN; as, as’, as”": A_SUBSYS; bnames: F PVALUE;
pdl, pd2: PORT + PORT.DETAILS

| (as’, pd1) = bfl bnames as

A (as”, pd2) = bf2 bnames as’

e then_block_fun bf1 bf2 bnames as = (as”, pdl & pd2)

Note that this is not really sequential, and is only used to combine the effects of updating the library
block and subsystem block outputs. It is intended for use only where the domains of pdI and pd2
are disjoint, so that the override can be implemented as union, or as list concatenation.

6.6.4 Propagation Through Library Blocks

The following function performs an update on the output port details for a block. It takes the
original port details, the new details and the block name, and returns the updated details together
with port update information for the next step of iteration.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 126

Lemma 1 Ltd.

update_output_ports: (PVALUE - PORT_DETAILS)
x (PVALUE - PORT_DETAILS) x PVALUE)
— ((PVALUE -+ PORT_DETAILS) x (PORT + PORT_DETAILS))

YV old_detail_map, new_detail_map, good_changes, results:PVALUE - PORT_DETAILS;
blockname: PVALUE; updates: PORT - PORT_DETAILS
| good_changes =
{pv: PVALUE; new_detail, old_detail: PORT_DETAILS
| pv — new_detail € new_detail_map
A (pv +— old_detail € old_detail_map
= (new_detail, old_detail) € more_specific_details)
e pv — new-_detail
}
A results = old_detail_map & good_changes
A updates = {port: PORT; details: PORT_DETAILS; portname: PVALUE
| portname — details € good_changes
A port = (block = blockname, port = portname)
e port — details}

e update_output_ports(old_detail_map, new_detail_map, blockname) = (results, updates)

The following functions pull together knowledge of how signals propagate through non-subsystem
blocks, and use it to update the output ports.

The following type is of functions which are give a blockname and a library block. They then use
the information on input ports for this block to infer output types, modifying the output port details
and returning information about which output ports had their details changed.

Z

| LIB.BLOCK_FUN = (PVALUE x A_LIB_BLOCK)
| + ((PVALUE x A_LIB_BLOCK) x (PORT + PORT_DETAILS))

The following is the type of a function which knows only about the inference from input types to
output types for a single type of library block, and does not know how to update the library block
representation. The function is therefore given just the block parameters and the input port details,
and returns the inferred output port details (which may or may not be different to the previous
output port details).

A function will fail to return a value either because it does not support the particular variant of its
block type which has been supplied to it, or because there is insufficient information about the input
port types. In the latter case the function might succeed when better port type information becomes
available. It is not expected to check the block type parameter.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

127

‘ LIB_BLOCK_FUN2 =F PARAM — (PVALUE - PORT_DETAILS)
‘ + (PVALUE - PORT_DETAILS)

We now specify how a LIB_.BLOCK_FUNZ2 can be converted into a LIB_. BLOCK_FUN.

Z

lift_tbf: LIB_.BLOCK_FUNZ2 — LIB_BLOCK_FUN

Vibf2: LIB_BLOCK_FUNZ2; bname: PVALUE; alb, alb’: A_LIB_BLOCK;
updates: PORT - PORT_DETAILSe
(bname, alb) — ((bname, alb’), updates) € lift_Ibf 1bf2

(3 indets, outdets, oldoutdets, newoutdets: PVALUE - PORT_DETAILS
e indets = alb.port_info.input_port_details

A (indets — outdets) € [bf2 alb.block_info.pars

A oldoutdets = alb.port_info.output_port_details

A (newoutdets, updates) = update_output_ports (oldoutdets, outdets, bname)
A alb’ = (block_info = alb.block_info, port_info =

(input_port_details = alb.port_info.input_port_details,
output_port_details = newoutdets))

In calculating the width of a bus it is necessary to add together the width of all the signals which
are included in the bus. The following specifies the sum of a sequence of signal widths.

nat_seq_sum: seq N — N

nat_seq_sum () = 0

~

A (Vn: N; ns: seq N o nat_seq_sum ({n) ~ ns) = n + nat_seq_sum ns)

VA

|

|
In the following, which specifies the width of a signal of some given PORT_TYPFE, the value zero
should be read “unknown”.

Z

pt2_width: PORT_TYPE — N

Vn: N; spd: seq PORT_DETAILSe

pt2_width ScalarPT =
pt2_width (VectorPT n) =
pt2_width GenericPT =
pt2_width UnknownPT =
pt2_width (BusPT (n, spd)) =

> > > >
S O 3~

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

128

The same convention also applies on extracting the width of a PORT_DETAILS.

pd_width: PORT_DETAILS — N

YV pd: PORT_DETAILSe

VA
|
|
‘ pd_width pd = pt2_width (pd.port_type)

Default type inference for library blocks is to propagate signal types across generic ports. To do
this we need to have available the original type information so that we can tell which ports were
originally generic, and therefore type LIB-BLOCK_FUNZ2 is not good enough. We first define a
function which when supplied with the required extra information gives a LIB_BLOCK_FUNZ2, and
then we use that to define the required LIB_.BLOCK_FUN.

In the following specification:

gipns = generic input port numbers

gopns = generic output port numbers

gipts = generic input port types

ubgipts = upper bounds on the generic input port types

lubgipt = least upper bounds on the generic input port types (at most one!)

opds = output port details (for generic output ports)

de fault_update_outputs_aux: BLOCK_INFO — LIB_BLOCK_FUN2

V bi: BLOCK_INFO; pars: F PARAM:; gipns, gopns: F PVALUE;

ipds, opds: PVALUE +~ PORT_DETAILS;

gipts, ubgipts, lubgipts: ¥ PORT_TYPE
| gipns = dom (bi.input_port_types > {GenericPT})
A gopns = dom (bi.output_port_types > {GenericPT})
A gipts = ran (gipns < (ipds § (A\PORT_DETAILSe port_type)))
A ubgipts = {pt: PORT_TYPE | Vpt2:giptse (pt, pt2) € more_specific_type V pt2 = pt}
A lubgipts = {pt:ubgipts | UnknownPT & gipts N\

(Vpt2:ubgiptse (pt2, pt) € more_specific_type V pt2 = pt)}

A opds = gopns X {pt: lubgiptse (line_name = NullString, port_type = pt)}
o default_update_outputs_auz bi pars ipds = opds

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 129

Lemma 1 Ltd.

de fault_update_outputs: LIB_BLOCK_FUN

V pv: PVALUFE; alb: A_LIB_BLOCK e
default_update_outputs (pv, alb) =
lift_Ibf (default_update_outputs_auz alb.block_info) (pv, alb)

Bus creators can have only one output, and this is assumed here but not checked. The output port
details will have only one entry.

It assumed that there are no gaps in the input port numbering, though this is effectively checked
(the existential turns out false because details is not then a sequence) and no result is returned if it
fails.

It is assumed that there are no non-numeric input ports (e.g. Action, Trigger or Enable). If there
are then according to this spec they will be ignored if they have positive width and will otherwise
inhibit returning a result.

The width of all input ports must be known. There must be a ports parameter. The input ports
must be consecutive and match the number in the ports parameter. Full details of the output port
type will then be supplied.

Z

update_bus_creator_outputs: LIB_.BLOCK_FUN2

Vparams: F PARAM; ipds, opds: PVALUE - PORT_DETAILSe
ipds +— opds € update_bus_creator_outputs params
54
(3 pt2: PORT_TYPE; details: seq PORT_DETAILS;
n: N; param: PARAM; pp: PORT_PARAM
| param.name = Ports
A param.value — pp € parse_ports_param
A dom ipds = num2pvalue (1..pp.maz_in)
A details = (id(1 .. pp.maz_in)) § num2pvalue § ipds
A n = nat_seq_sum (details § pd_width)
A pt2 = BusPT (n, details)
e opds = {One — (line_name = NullString, port_type = pt2)})

The following function follows an element of the OutputSignals parameter to a BusSelector block
through the port details of the input port to select the port details for the corresponding output
port. You only get an answer if the PORT_DETAILS is a bus or the selector is an empty sequence
(which will never happen on the BusSelector block but happens as a result of recursion of this
function).

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

130

There is now provision to accept selectors of the form “signaln” for the nth position in any bus even
if that is not the name of the nth signal in the bus.

Z

select_from_bus: PORT_DETAILS — seq PVALUE - PORT_DETAILS

Vpds, pds': PORT_DETAILS; spv: seq PVALUEe
spv — pds' € select_from_bus pds

=
spv = () A pds’ = pds

(3 width, port: N; spd: seq PORT_DETAILS; pv: PVALUE; pds: PORT_DETAILS
| pds.port_type = BusPT (width, spd)
A port — pds € spd
A (pds.line_name = head spv
V —=(3pd: ran spde pd.line_name = head spv)
A head spv = port2signal (num2pvalue port))

o (tail spv) — pds' € select_from_bus pds)

We require that a bus selector has exactly one input. If it has muxed output then it also has
exactly one output, otherwise it has the same number of outputs as the number of entries in the
OutputSignals parameter. The following specification checks that there is one element in the input
port details and delivers details for an appropriate number of output ports, but does not actually
check that the ports match the port details.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

131

update_bus_selector_outputs: LIB_BLOCK_FUN2

Vparams: F PARAM; ipds, opds: PVALUE +~ PORT_DETAILSe

ipds — opds € update_bus_selector_outputs params

=4

dom ipds = {One}

A (3 ospar, muxpar: params; osp: OUTPUTSIGNALS_PARAM,

tbusdets: seq PORT_DETAILS,
outdets: seq PORT_DETAILS; inwidth, outwidth: N

e BusPT (inwidth, ibusdets) = (ipds One).port_type

A inwidth > 0
A ospar.name = sc2pn " OutputSignals"
A ospar.value — osp € parse_outputsignals_param
A outdets = osp g (select_from_bus (ipds One))
A muzxpar.name = sc2pn " MuzedOutput"
A (muzpar.value = on

A outwidth = nat_seq_sum (outdets § pd_width)

A opds = {One — (line_name = NullString,

port_type = BusPT (outwidth, outdets))}
\% muzxpar.value = off

A num2pvalue § opds = outdets)

For present purposes a Mux block is the same as a BusC'reator.

update_mux_outputs: LIB_BLOCK_FUN2

update_muzx_outputs = update_bus_ creator_outputs

This auxiliary function is used to determine the width of an output vector from a demux block with
a scalar Outputs parameter. The signals are distributed among the output ports in as well balanced
a way as possible. The function is supplied the width of the input port and the number of ouput
ports as a pair, and the the output port number whose width is required.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

132

output_width: (N x N) - N —- N

vV ipw, nop, pn: N e
output_width (ipw, nop) pn
= if pn <1 then 0
else if pn > nop then 0
else ipw div nop +

if pn < ipw mod nop then 1

else 0

The following specification deduces output port details for a Demuz block not in bus selection mode,
given the type of the input port and the Outputs parameter. It may also be used for a Demux block
in bus selection mode with a vector Qutputs parameter. Though the Simulink Help for Demux says
it only works on vectors, this is not strictly the case, vector-like buses are also accepted, and since all
the buses supported by ClawZ are vector-like this function works with all buses, provided that the
outputs selection is consistent with the bus width. (i.e. it treats a bus just the same as a vector of
the same width). If a Demuz is used on a bus then all the signal name information is lost, and even
if a subbus is output intact it cannot be understood by bus selector block (it will be a plain vector).

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 133

analyse_nonbus_demux: (OUTPUTS_PARAM x PORT_TYPE)
+ (PVALUE - PORT_DETAILS)

YV op: OUTPUTS_PARAM; pt2: PORT_TYPE;
pvmap: PVALUE - PORT_DETAILSe
(op, pt2) — pvmap € analyse_nonbus_demux
54
(3 iw, ow: N; ows: seq N; pdets: seq PORT_DETAILS
| pt2 = VectorPT iw V pt2 = BusPT (iw, pdets) V pt2 = ScalarPT N iw = 1
e (op = OPScalar ow
A ow < jw
A pvmap =
{pn: 1..ow; pt2: PORT_TYPE
| pt2 = (p w:N | w = output_width (iw, ow) pn
o if w= 1 then ScalarPT else VectorPT w)

e num2pvalue pn — (line_name = NullString, port_type = pt2)}
V

op = OPVector ows N\ nat_seq_sum ows = iw
A pvmap =
{n: dom ows; pv: PVALUE; pt2: PORT_TYPE
| pv = num2pvalue n
A pt2 = if ows n = 1 then ScalarPT else VectorPT (ows n)
e pu — (line_name = NullString, port_type = pt2)}

Now we turn this into a LIB_.BLOCK_FUN2. This involves parsing the Outputs parameter and
checking the BusSelectionMode parameter. Strictly speaking we do not support bus selection mode,
but since this is the same as non-bus-mode when a vector parameter is supplied we allow this case.

It would probably be easy to do bus selection mode fully, if required.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

134

update_demux_outputs: LIB_BLOCK_FUN2

Vparams: F PARAM; ipds, opds: PVALUE +~ PORT_DETAILSe
ipds — opds € update_demuz_outputs params
=4
dom ipds = {One}
A (3 opar: params; op: OUTPUTS_PARAM,
isigtype: PORT_TYPE; opvec: seq N;
outdets: seq PORT_DETAILS
e isigtype = (ipds One).port_type
A opar.name = sc2pn " Outputs"
A opar.value — op € parse_outputs_param
A ((3 bsmpar: paramse
bsmpar.name = sc2pn " BusSelectionMode"
A bsmpar.value = on)
A op = OPVector opvec
A (op, isigtype) — opds € analyse_nonbus_demux
V —(3 bsmpar: paramse
bsmpar.name = sc2pn " BusSelectionMode"
A bsmpar.value = on)

A (op, isigtype) — opds € analyse_nonbus_demux)

Some blocks must infer type information from their parameters. The following specification gives
the type of a PARAMETER as a PORT_DETAILS.

Z

parameter_pds: MVARTYPES — PARAMETER + PORT_DETAILS

Vmuartypes: MVARTYPES; param: PARAMETER; pds: PORT_DETAILSe
param +— pds € parameter_pds muvartypes
54
(Imut: MVARTYPEe
param — mut € parameter_type muartypes
A pds =
if #mut = 0
then (line_name = NullString, port_type = ScalarPT)

~

else (line_name = NullString, port_type = VectorPT (mut_length mut)))

This is a variant which interprets unit vectors as scalars.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

135

parameter_pds_nouv: MVARTYPES — PARAMETER - PORT_DETAILS

Vmoartypes: MVARTYPES; param: PARAMETER; pds: PORT_DETAILSe
param +— pds € parameter_pds_nouv muartypes
=4
(Imut: MVARTYPEe
param — mut € parameter_type muvartypes
A pds = (line_name = NullString, port_type =
if #mot = 0
then ScalarPT
else if mut_length mvt = 1
then ScalarPT
else VectorPT (mut_length mut)))

This function obtains a similar result given a set of PARAMs and the name of the parameter whose
type is required.

Z

get_parameter_details: MVARTYPES — F PARAM
— PNAME - PORT_DETAILS

Vmuartypes: MVARTYPES; params: F PARAM; pn: PNAME;
pds: PORT_DETAILSe
pn +— pds € get_parameter_details mvartypes params
54
(3pv: PVALUEFE; param, param’: PARAMETER; used_mvars: F PVALUE
e (name = pn, value = pv) € params
A pv — param € parse_param

A (param’, used_muvars) = change_parameter_minames {} param

A param’ — pds € parameter_pds muvartypes)

This is a “no unit vector” version of the above

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 136

get_parameter_details_nouv: MVARTYPES — F PARAM
— PNAME - PORT_DETAILS

Vmuartypes: MVARTYPES; params: F PARAM; pn: PNAME;
pds: PORT_DETAILSe
pn +— pds € get_parameter_details_nouv mvartypes params
54
(3pv: PVALUEFE; param, param’: PARAMETER; used_mvars: F PVALUE
e (name = pn, value = pv) € params
A pv — param € parse_param
A (param’, used_muvars) = change_parameter_minames {} param
A param’ — pds € parameter_pds_nouv muvartypes)

For Constants Type inference will fail unless there is a parameter named “Value” whose type can be
ascertained.

Z

update_constant_outputs: MVARTYPES — LIB_BLOCK_FUN2

Vmoartypes: MVARTYPES; params: F PARAM,

ipds, opds: PVALUE - PORT_DETAILSe
ipds — opds € update_constant_outputs mvartypes params
54
(3 pds: PORT_DETAILS
e ValuePN — pds € get_parameter_details mvartypes params
A opds = {One — pds}

)

For Unit Delays Type inference will fail unless there is a parameter named “X0” whose type can be
ascertained.

Z

update_unit_delay_outputs: MVARTYPES — LIB_BLOCK_FUN2

Vmoartypes: MVARTYPES,; params: F PARAM,
ipds, opds: PVALUE - PORT_DETAILSe
ipds — opds € update_unit_delay_outputs muartypes params
=4
(3 pds: PORT_DETAILS
e X0 — pds € get_parameter_details muvartypes params
A opds = {One — pds}

)

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

137

For Selectors Type inference will fail unless there is a parameter named “Elements” whose type
can be ascertained. There must be an “InputType” parameter whose value is “Vector” and an
“InputSource” parameter whose value is “Internal”.

Z

update_selector_outputs: MVARTYPES — LIB_BLOCK_FUN2

Vmuvartypes: MVARTYPES; params: F PARAM,
ipds, opds: PVALUE - PORT_DETAILSe
ipds +— opds € update_selector_outputs muvartypes params
=4
(3 pds: PORT_DETAILS; n: N
e (name = InputType, value = Vector) € params
A (name = ElementSrc, value = Internal) € params
A Elements — pds € get_parameter_details_nouv muvartypes params
A opds = {One — pds}

)

Type inference for Merge requires that the parameter AllowUnequallnputPort Widths have value “off”,
and that all input ports have the same type and a positive width, in which case that type is trans-
mitted to the output port.

Z

update_merge_outputs: LIB_BLOCK_FUNZ2

Vmoartypes: MVARTYPES,; params: F PARAM,
ipds, opds: PVALUE - PORT_DETAILSe

ipds — opds € update_merge_outputs params
=4
(name = AllowUnequallnputPort Widths, value = off) € params
A (3 pt: PORT_TYPE

o {pt} = {pds:ran ipdse pds.port_type}

A pt2_width pt > 0

A opds = {One — (line_name = NullString, port_type = pt)}

)

We now specify a table giving the applicable LIB- BLOCK_FUN for each block type (if there is one).

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

138

update_outputs_table: MVARTYPES — PVALUE -+ LIB_BLOCK_FUN
Vmovartypes: MVARTYPESe update_outputs_table mvartypes = {
BusCreator +— lift_Ibf update_bus_creator_outputs,
BusSelector +— lift_Ibf update_bus_selector_outputs,

Constant — lift_Ibf (update_ constant_outputs muvartypes),
Demuzx — lift_Ibf update_demuz_outputs,

Mux — lift_Ibf update_muz_outputs,

Merge — lift_Ibf update_merge_outputs,

Selector — lift_Ibf (update_selector_outputs muvartypes),
UnitDelay — lift_Ibf (update_unit_delay-outputs mvartypes)
}

Which is used in this function which updates the outputs of a single library block.

Z

update_libblock_outputs: MVARTYPES — LIB_BLOCK_FUN

Vmuvartypes: MVARTYPES; blockname: PVALUE; alb, alb’: A_LIB_BLOCK;
pdets: PORT - PORT_DETAILSe
(blockname, alb) — ((blockname, alb’), pdets) € update_libblock_outputs muvartypes
54
(3 param: alb.block_info.pars; pname: PVALUE; pfun: LIB_BLOCK_FUN
| param = (name = BlockType, value = pname)
A pname +— pfun €
{pn: PVALUE e pn — default_update_outputs}
@ (update_outputs_table muvartypes)
e (blockname, alb) — ((blockname, alb’), pdets) € pfun)

The following specification defines the effect of updating the outputs of a set of library blocks in
some subsystem (the names of the blocks to be processed are passed as the first parameter).

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 139

Lemma 1 Ltd.

update_libblocks_outputs: MVARTYPES — BLOCK_FUN

Vmuartypes: MVARTYPES; bnames: F PVALUEFE; as, as’: A_SUBSYS,
pdets: PORT - PORT_DETAILS; blocks, blocks': PVALUE + A_BLOCK;
updates: P((PVALUE x A_LIB_BLOCK) x (PORT + PORT_DETAILS))
| updates = {name:bnames; alb: A_LIB_BLOCK;
upd: (PVALUE x A_LIB_BLOCK) x (PORT - PORT_DETAILS)
| name — ALibBlock alb € as.blocks
A (name, alb) — upd € update_libblock_outputs mvartypes
e upd}
A blocks’ = blocks @
{name: PVALUE; alb: A_LIB_BLOCK; pds: PORT - PORT_DETAILS
| ((name, alb), pds) € updates o name — ALibBlock alb}
A pdets = |J {block: PVALUE x A_LIB_BLOCK; pds: PORT - PORT_DETAILS
| (block, pds) € updates
e pds}
A as' = (subsys_info = as.subsys_info,
port_info = as.port_info,
blocks = blocks')
e update_libblocks_outputs muvartypes bnames as = (as’, pdets)

6.6.5 Propagation Through Subsystem Blocks

This function extracts from an A_SUBSYS the input port details of the internal output port blocks.

Z

extract_subsys_outputs: A_SUBSYS + (PVALUE - PORT_DETAILS)

V as: A_LSUBSYSe
extract_subsys_outputs as =

{pname: PVALUE; block:A_LIB_BLOCK; btp,bpp: PARAM; dts:PORT_DETAILS
| pname — (ALibBlock block) € as.blocks
A {btp, bpp} C block.block_info.pars
A btp.name = BlockType A bitp.value = OutPort
A bpp.name = Port N bpp.value = pname
A One > dts € block.port_info.input_port_details

e pname — dts}

This function extracts from an A_SUBSYS the output port details of the internal input port blocks.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 140

extract_subsys_inputs: A_SUBSYS - (PVALUE + PORT_DETAILS)

V as: A_SUBSYSe
extract_subsys_inputs as =

{pname: PVALUEFE; block:A_LIB_BLOCK; btp,bpp: PARAM; dts:PORT_DETAILS
| pname — (ALibBlock block) € as.blocks

A {btp, bpp} C block.block_info.pars

A btp.name = BlockType A btp.value = InPort

A bpp.name = Port N\ bpp.value = pname

A One v+ dts € block.port_info.output_port_details

e pname — dts}

The following function returns details of all the output ports of the blocks in a subsystem. This will
be used as a starter for iteration the first time a subsystem is invoked for signal propagation.

Z

all_subsys_outports: A_SUBSYS — (PORT - PORT_DETAILS)

Vas: A_SUBSYSe
all_subsys_outports as =
{ bname, pname: PVALUE; alb: A_LIB_BLOCK;

as2: A_SUBSYS; details: PORT_DETAILS
| bname — ALibBlock alb € as.blocks

A (pname — details) € alb.port_info.output_port_details
V bname — ASubsys as2 € as.blocks

A (pname — details) € as2.port_info.output_port_details
e (block = bname, port = pname) — details}

The following function pushes down information on the input ports of a subsystem to the output
ports of the input port blocks inside the subsystem. Information about which ports were updated is
returned for use in initiating propagation of values through the subsystem.

This process detects its first use on a particular subsystem, from the lack of prior PORT_DETAILS
on the input port blocks, and in that case returns the complete set of library block output port
details for propagation. This ensures that all the available port information is brought into play at
the start of the process, but that only changes are subsequently propagated.

No check is made for increased specificity here, since that will already have taken place when the
port details on the subsystem itself were updated.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 141

Lemma 1 Ltd.

push_subsys_inputs: A_SUBSYS
+ (A_SUBSYS x OPT [PORT -» PORT_DETAILS])

V as, as’: A_SUBSYS; pdets: OPT [PORT + PORT_DETAILS)
e as — (as’, pdets) € push_subsys_inputs <
(3 ipds: PVALUE + PORT_DETAILS; initialised_input_ports: F PVALUE;
blocks, block_updates, blocks': PVALUE + A_BLOCK
e ipds = as.port_info.input_port_details
A blocks = as.blocks
A block_updates =
{bname, pname: PVALUE; alb, alb’: A_LIB_BLOCK;
params: F params; details: PORT_DETAILS
| bname — (ALibBlock alb) € blocks
A params = alb.block_info.pars

A (name = BlockType, value = InPort) € params

~

A (name = Port, value = pname) € params
A pname +— details € ipds
A One — details &€ alb.port_info.output_port_details
A alb’ = (block_info = alb.block _info,
port_info =
(input_port_details = {},
output_port_details = {One — details}))
e bname — (ALibBlock alb’)}
A blocks’ = blocks @ block_updates
A as’ = (subsys_info = as.subsys_info,
port_info = as.port_info,
blocks = blocks’)
A tnitialised_input_ports =
{bname: PVALUE; alb: A_LIB_BLOCK
| bname — (ALibBlock alb) € blocks
A (name = BlockType, value = InPort) € alb.block_info.pars
A alb.port_info.output_port_details # {}
e bname}
A pdets = if initialised_input_ports = {} then Nil
else Value
{ port:PORT; alb: A_LIB_BLOCK; port_details: PORT_DETAILS
| port.block — (ALibBlock alb) € block_updates
A port.port = One
A One +— port_details € alb.port_info.output_port_details

e port — port_details})

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

142

This function takes a subsystem which has already been subjected to internal signal propagation and
lifts the resulting changed output ports to the next higher level. This involves propagation of PORT_
DETAILS from the contained port blocks to the subsystem itself, and conversion of the PORTS used
to index the details to refer to the ports on the subsystem rather than those in the subsystem.

Z
lift_subsys_outputs: (PVALUE x A_BLOCK)
+ ((PVALUE x A_BLOCK) x (PORT -» PORT_DETAILS))

Y blockname: PVALUE; block, block’: A_BLOCK; outputs: PORT + PORT_DETAILSe
(blockname — block) — (blockname +— block’, outputs) € lift_subsys_outputs
54
(3 as, as’: A_SUBSYS, pi, pi": PORT_INFO,;
new_outputs, old_outputs, output_changes: PVALUE +— PORT_DETAILS
e block = ASubsys as A block’ = ASubsys as’
A new_outputs = extract_subsys_outputs as
A old_outputs = as.port_info.output_port_details
A (output_changes,outputs) = update_output_ports(old- outputs, new_outputs, blockname)
A pi = as.port_info

A pi’ = (output_port_details = pi.output_port_details & output_changes,
input_port_details = pi.input_port_details)

A as’ = (subsys_info = as.subsys_info, port_info = pi’, blocks = as.blocks))

The following function specifies by recursion the iteration which propagates signal values through
a subsystem. At each step the result includes information about what has changed, either as a set
of output ports (resulting from propagation through blocks) or as a set of blocknames (resulting
from propagation along lines), which limits the scope of the update on the next step. When the set
becomes empty the iteration terminates. The set will become empty because every time a signal value
changes it must become more specific, specificity being a well-founded partial ordering on PORT_
DETAILS (most specific at bottom of this ordering). It is therefore important to ensure when the
line and block propagation is written or amended that it does respect the relevant partial ordering
and only makes and registers changes which do make the relevant output port details more specific.

Note that as well as the explicit recursion in this definition which implements the iteration, there will
be another level of recursion when a suitable BLOCK_FUN is defined later, since the propagation of
signals through subsystems will also involve recursion.

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 143

iterate_subsys: LINE_FUN x BLOCK_FUN
— (A_SUBSYS x (PORT + PORT_DETAILS))
— A_SUBSYS

YV If: LINE_FUN; bf: BLOCK_FUN; as, as’, as”, as"”': A_SUBSYS,
portdata, portdata’: (PORT + PORT_DETAILS); pvs: F PVALUE
| portdata = {} A as"”" = as
V portdata # {}
A (as’, pvs) = If portdata as
A (as”, portdata’) = bf puvs as’
A as" = iterate_subsys (If, bf) (as”, portdata’)
o iterate_subsys (If, bf) (as, portdata) = as"

The first time signals are propagated through a subsystem all lines and blocks must be processed,
as follows:

Z
first_iterate_subsys: LINE_FUN x BLOCK_FUN
— A_SUBSYS — A_SUBSYS

V If: LINE_FUN; bf: BLOCK_FUN; as, as’, as”, as"': A_SUBSYS,
portdata, portdata’: (PORT + PORT_DETAILS); pvs, ipvs: F PVALUE

| portdata = all_subsys_outports as

A ipvs = dom as.blocks

A (as', pvs) = If portdata as

A (as”, portdata’) = bf ipvs as’

A as" = iterate_subsys (If, bf) (as”, portdata’)

o first_iterate_subsys (If, bf) as = as”

The propagation of signal information through subsystems is then accomplished as follows. This

involves pushing the input information into the subsystem, iterating, and then lifting the output
information out of the subsystem.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

144

update_subsystem_outputs: BLOCK_FUN — (PVALUE x A_SUBSYS)
+ ((PVALUE x A_SUBSYS) x (PORT -» PORT_DETAILS))

Vblock_fun: BLOCK _FUN; blockname: PVALUE; as, as’: A_SUBSYS,
pdets: PORT - PORT_DETAILSe
(blockname,as) — ((blockname,as’),pdets) € update_subsystem_outputs block_fun
54
(3 initial_pdets: OPT[PORT + PORT_DETAILS]; line_fun: LINE_FUN;
initial_as, iterated_as: A_SUBSYS
e as — (initial_as, initial_pdets) € push_subsys_inputs
A line_fun = prop_over_lines (lines_to_map initial_as.subsys_info.lines)
A iterated_as =
if initial_pdets = Nil
then first_iterate_subsys (line_fun, block_fun) initial_as
else iterate_subsys (line_fun, block_fun) (initial_as, (Value™) initial_pdets)
A ((blockname — ASubsys as’), pdets)
= lift_subsys_outputs (blockname — ASubsys iterated_as))

The following function does this for a set of selected subsystems, (the ones whose input port details
have just been changed).

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

update_subsystems_outputs: MVARTYPES — BLOCK_FUN

6.6.

Vmuartypes: MVARTYPES; bnames: F PVALUEFE; as, as’: A_SUBSYS,
pdets: PORT - PORT_DETAILS; blocks, blocks': PVALUE + A_BLOCK;
updates: P((PVALUE x A_SUBSYS) x (PORT + PORT_DETAILS))
| updates =
{name:bnames; ass: A_SUBSYS;
upd: (PVALUE x A_SUBSYS) x (PORT -» PORT_DETAILS)
| name — ASubsys ass € as.blocks
A (name, ass) — upd € (update_subsystem_outputs
(then_block_fun (update_libblocks_outputs muartypes)
(update_ subsystems_outputs muartypes)))
o upd}
A blocks’ = blocks @
{name: PVALUE; ass: A_SUBSYS; pdets: PORT + PORT_DETAILS
| ((name, ass), pdets) € updates ® name — ASubsys ass}
A pdets = |J {block: PVALUE x A_SUBSYS; pdets: PORT - PORT_DETAILS
| (block, pdets) € updates
e pdets}
A as’ = (subsys_info = as.subsys_info,
port_info = as.port_info,
blocks = blocks')
e update_subsystems_outputs muartypes bnames as = (as’, pdets)

6 Propagation Through Blocks

Now we package it up for the top level:

Z

propagate_signal_details: MVARTYPES — A_BLOCK — A_BLOCK

YV muartypes: MVARTYPES; ab, ab’: A_BLOCK; pv: PVALUFE;
as, as’: A_SUBSYS; pdets: PORT -+ PORT_DETAILS

| ab = ASubsys as N ab' = ASubsys as’

A (name = Name, value = pv) € as.subsys_info.syspars

A (pv, as) — ((pv, as’), pdets)

€ update_subsystem_outputs
(then_block_fun (update_libblocks_outputs muartypes)
(update_ subsystems_outputs muartypes))

e propagate_ signal_details mvartypes ab = ab’

145

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

146

6.7 Virtualization

This section and section 6.8 cover the capability of ClawZ to translate Simulink blocks without using
the ClawZ library. The intention was originally to deal with those blocks called by Simulink “virtual”
blocks, which are effectively absorbed by Simulink into the wiring of the model. The first attempt
to deal with these blocks independently of the Z library involved generating definitions similar in
character to those provided in the library. This approach was adopted to minimise disruption to
the style of specification produced and hence to QuinetiQ tools automating the processing of the
specifications. This approach to dealing with “virtual” blocks has a scope of applicability which goes
beyond the types of block treated as virtual by Simulink and is now called “synthesis” throughout
this specification.

A more radical approach to handling virtual blocks has also been thought desirable, and is specified
here alongside synthesis. This more radical approach we call “virtualization”, and is attempted for
certain block types if the flag virtualize is set by the ClawZ user. It has a narrower scope than the
method used for synthesis, being confined to blocks which are purely functional, and is not suitable
for dealing with cycles in the wiring diagram (unless broken by a non-virtualized block). It has the
benefit of potentially reducing the size of the resulting specification (at least as measured by the
number of components in the subsystem schemas).

6.7.1 Traversal Strategies

Virtualization requires a traversal of the A BLOCK which does not fit within the available traversal
methods. This method is not thought likely to be more generally applicable and is therefore custom
coded for virtualization. This is because virtualization of a block requires virtualization of any other
blocks whose outputs are connected to the input of the block, influencing the order of treatment
of blocks in a subsystem, and special measures are necessary to ensure termination which might
otherwise be jeopardized by cycles in the wiring diagram.

In order to undertake a complex recursive traversal of our tree-like A- BLOCK data structure in a
manner which is both reasonably efficient and maximally intelligible some consideration has been
given to general principles in these matters, which we take a moment here to discuss.

One general method common in functional programming is to separate a general traversal method
from the specifics of a particular traversal, and to implement or specify that method as a higher order
function or operator. This operator accepts as parameters functions which ecapsulate the specifics of
a particular application, and which do not themselves need to be recursive. The method of traversal
can then be understood once separately from the details of the applications, and the details of the
applications can then be approached without the additional complexity arising from recursion to
achieve traversal. Two general methods of traversal have been specified in section 6.2 and have been
used where appropriate in this specification.

For virtualization we have attempted an application specific recursion done in a systematic manner
as follows.

For the purposes of explaining the method we introduce some terminology. The core of the speci-

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

147

fication is a set of functions defined by mutual recursion. These functions are called the “principal
functions”. In order that the principal functions can be defined in separate Z paragraphs spanning
several pages of this document, one of the principle functions is singled out for special treatment. We
call this function the “key” function, it must amount to the most generally convenient form of the
virtualization functionality. The key function will be defined last, and all other principal functions
will be define prior to it as operators which derive their function from the key function, i.e. they take
the key function as a parameter. The use of a key function in this way permits a large scale mutual
recursion to be presented as a set of operators followed by a single recursive function of moderate or
low complexity. Because the principal functions other than the key function are parameterized by
the key function they do not strictly participate in the recursion, but we will nevertheless talk as if
all the principal functions are involved in the recursion.

It is desirable at all stages to separate out as much functionality as possible from the main complex
of mutual recursion, i.e. from the principal functions. The largest body of material separated out
from the recursion is the aspects of virtualization which are specific to particular Simulink block
types (see sections 6.7.2 to 6.7.11). A second body of material consists of auxiliary functions which
are used in defining the principal functions but which are not themselves principals (i.e. they need
not participate in the recursion, and do not require the key function as a parameter).

6.7.2 Library Block Virtualization Method

In this section we specify the library block specific aspects of virtualization in a way which decouples
these specifications from the recursion supporting the traversal.

It is the intention that virtualization of an instance of a library block will make use of information
derived from the virtualization of the blocks connected to its input ports. To avoid the recursion
which might otherwise arise from this dependence the core block specific aspect of virtualization is
undertaken in two stages.

The virtualization function first returns the set of input port names whose values are required in
order to complete virtualization, together with a function which will complete the virtualization
when supplied with the required values. “Completing the virtualisation” in this context simply
means returning an output port expression map and the set of used maskvariables. In this way
the library block virtualization exports to its calling function the problem of virtualizing the blocks
connected to its input ports.

The latter stage of this process is undertaken by a function having the following type:

Z

LIB_BLOCK_VIRT _FUN1 = (PVALUE + Z_EXPR) — VIRTUAL x F PVALUE

which is expected to be specific not only to a particular block type but to the full required context
excepting only the input port expression map. The parameter to this function is a map of input port
names to Z_ EXPRs which denote the values on those lines. The result is a VIRTUAL (which in the
case of successful virtualization will include a similar map of expressions for the output ports) and
the set of mask variables which have been used in forming the expressions.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

148

A LIB_BLOCK_VIRT_FUNI1 is obtained from a function which undertakes the first stage of the
process, and returns with the function the set of portnames for the input ports whose values are
required for virtualization. This first stage function is specific only to a Simulink block type, and is
therefore supplied a more substantial collection of information to work on.

The information available to the virtualization function for this purpose is as follows:

e The matlab variable types.
e The A_LIB_BLOCK which is to be virtualized.

e The set of mask variables in scope.

and it therefore has the following type:
VA
‘ LIB.BLOCK_VIRT_FUN2 =
‘ MVARTYPES x A_LIB_BLOCK x (F PVALUE)
‘ + LIB_BLOCK_VIRT_FUN1 x (F PVALUE)

in which the set of PVALUEFEs returned is the set of input portnames whose values are required to
complete virtualization.

As in signal inference and block synthesis, the collection of these functions for each supported block
type are compiled below into a mapping and thence compounded into a single function.

6.7.3 Block Virtualization Auxiliaries

The general policy in specification and implementation of virtualizers is to undertake optimization
on-the-fly. This means that instead of constructing expressions for the output ports of virtualized
block in a manner independent of the expressions for the input port values and then simplifying
the result, the construction is undertaken in a manner sensitive to the expressions for the relevant
input ports, and is optimal ab initio. This of course makes the constructors more complex and
makes it more important not to duplicate construction specification and implementation, which is
also desirable to limit the cost of enhancements to the optimization.

In this section belongs material concerned with analysis and construction of expressions which is not
specific to some particular Simulink block type.

The following values are trivial kinds of LIB_.BLOCK_FUNI1 and LIB_-BLOCK_FUNZ2, where no
construction of expressions is involved.

First where virtualisation is inhibited:

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

149

bv f1_inhibit: LIB_BLOCK_VIRT_FUNI;
lbvf2_inhibit: LIB_BLOCK_VIRT_FUN2

(Vemap: PVALUE + Z_EXPRe
Ibuf1 _inhibit emap = (VInhibit, {}));

(Ymuartypes: MVARTYPES; alb: A_LIB_BLOCK; mv_ctxt: P PVALUE e
Ibuf2_inhibit (movartypes, alb, mv_ctzt) =
(Ibuf1 _inhibit, {}))

The following provide generic support for source blocks, i.e. blocks which have no input ports. They
are parameterized by an output expression map and a set of mask variables (used in the translated
parameters), and request expressions for no input ports.

Z
lbvfl_source: (PVALUE + Z_EXPR) x F PVALUE — LIB_BLOCK_VIRT_FUNI;
lbvf2_source: (PVALUE + Z_FEXPR) x F PVALUE — LIB_BLOCK_VIRT_FUN2

(Voemap, iemap: PVALUE + Z_EXPR; used_maskvars: F PVALUEe
Ibuf1 _source (oemap, used_maskvars) iemap
= (Virtual oemap, used_maskvars));

(Viemap, oemap: PVALUE + Z_EXPR; used_maskvars: F PVALUE;
moartypes: MVARTYPES; alb: A_LIB_BLOCK; mv_ctzt: P PVALUFEe
Ibuf2_source (oemap, used_maskvars) (mvartypes, alb, mv_ctzt)

= (Ibvf1 _source (oemap, used_maskvars), {}))

Where virtualisation is trivial (e.g. for sinks) we have a source (because the input ports are irrelevant)
with no output ports. No LIB_BLOCK_VIRT_FUNI need be specified.

lbv f2_triv: LIB_.BLOCK_VIRT_FUNZ2

Ibvf2_triv = Ibvf2_source ({},{})

The following function derives a set of input portnames to be returned by a LIB_BLOCK_FUNZ.
It cross checks the number of input ports on the Ports param against the domain of the input port
details, and returns the empty set as a failure indication if they do not match. Not to be used
for blocks which have trigger or enable ports, or which have no Ports parameter or which have
non-consecutive numeric input ports.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

150

Z

ipset_from_ports_param: (F PARAM) x PORT_INFO — F PVALUE

Vpars: B PARAM; pi: PORT_INFOe
ipset_from_ports_param (pars, pi) =

{ pn, ppv: PVALUE; pp: PORT_PARAM

| (name = Ports, value = ppv) € pars

A ppv — pp € parse_ports_param

A dom pi.input_port_details = num2pvalue (1..pp.max_in)
A pn € dom pi.input_port_details

[] p’ﬂ

}

Next we have auxiliaries which are used for translation of parameter expressions (e.g. for constant
blocks).

The parameters to this function are:

e a set of PARAMs

e the set of free mask variables

then a map assigning:

e the name of a parameter to be translated

e a parameter translation code

to output port names (as PVALUESs).

The result is:

e a map assigning to output port names the Z_ EXPR of the translated parameter. As specified,
if translation fails the relevant portname simply has no value assigned to it in the resulting
map.

e the set of mask variables used in the translations
This function is provided supporting a set of parameter translations since this is the easiest way to

deal with the possibility that there will be no sucessful translations, so far we have no blocks with
more than one expression to translate.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

151

param_zexp: (F PARAM) x F PVALUE
— (PVALUE + PNAME x PVALUFE)
— (PVALUE + Z_EXPR) x F PVALUE

YV params: F PARAM; mv_ctat: ¥ PVALUE; pmap: PVALUE +» PNAME x PVALUEe
param_zexp (params, mv_ctct) pmap =
(wamp:{{op, trc, pv: PVALUE; pn: PNAME; ze: Z_EXPR; used_maskvars: F PVALUE
| op — (pn, trc) € pmap
A (name = pn, value = pv) € params
A (TMatch ze, used_maskvars) = par_trans2 mu_ctzt tre pv

e (op — ze, used_maskvars)}}
e (first(amp), U (second(amp))))

The following auxiliary is for parameters which must be translated by special_par_trans, e.g. the
selector block. The structure is broadly similar, but SPECIAL_RESULTs and PARAMETERs are
returned rather than Z_ EXPRs.
Z
param_sr: (F PARAM) x (F PVALUE) x MVARTYPES
— (PVALUE + PNAME x PORT_TYPE)

— (PVALUE + PARAMETER x SPECIAL_RESULT) x F PVALUE

V params: F PARAM; mv_ctat: F PVALUE; mvartypes: MVARTYPES;
pmap: PVALUE + PNAME x PORT_TYPEe
param_sr (params, mv_ctxt, mvartypes) pmap =
(wamp:{{op, pv: PVALUE; pt: PORT_TYPE; pn: PNAME; ze: Z_EXPR,
parameter: PARAMETER; sr: SPECIAL_RESULT; used_maskvars: F PVALUE
| op = (pn, pt) € pmap
A (name = pn, value = pv) € params
A (parameter, sr, used_maskvars)
= special_par_trans_wp muvartypes muv_ctxt pt pv
e (op — (parameter, sr), used_maskvars)}}
o (first(amp), U (second(amp))))

We now present specifications which are concerned with the analysis of expressions (for signal values)
on which constructions are to be performed, and with constructions optimised on the basis of the
analyses. It is intended that these be presented in as generic a way as is feasible, both with respect
to their possible application to multiple Simulink block types, and with respect to their application
in synthesis as well as in virtualization. The synthesis method does not permit optimisation, but
the constructions in the cases where no optimisation is possible correspond to the construction of
expressions for the predicates of synthesized block schemas.

It is not intended that existing synthesis functions will be rewritten to use the specifications here,

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 152

Lemma 1 Ltd.

but that support for synthesis of additional block types will do so when appropriate.

The initial offering on optimisation is basic, and the analysis necessary to support that is elementary.
The analysis is packaged and used in a manner which is intended to facilitate extension of the analysis
to support a wider range of optimisations.

The initial analysis distinguishes only three kinds of signal expression.

e vector displays (constructor ZSequence)
e bus contructions (constructor ZBus)

e other expressions

The following operators are provided to facilitate construction of specifications which are conditional
on the kind of input signal.

The first is a three way switch:

Z

=[X]

signal_kind_swaitch:
(seq Z_EXPR - X) x (seq Z_EXPR + X) x (Z_EXPR + X)
— (Z_-EXPR +~ X)

V ze: Z_EXPR; vecpf, buspf: seq Z_EXPR - X; opf: Z_EXPR - Xe
signal_kind_switch (vecpf, buspf, opf)
= {ze: Z_EXPR; sze: seq Z_EXPR; x:X
| ze = ZSequence sze
A sze — © € vecpf
V ze = ZBus sze
A sze — = € buspf
® ze — 1}
U {ze: Z_EXPR; z:X
| =(3sze: seq Z_EXPRe ze = ZSequence sze N ze = ZBus sze)
A ze — T € opf

® ze — 1}

A couple of two way switches are also defined. The first for treating displays only as a special case.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

153

—[X]

display_swaitch:
(seq Z_EXPR - X) x (Z_EXPR + X)
— (Z_-EXPR + X)

V ze: Z_EXPR; vecpf: seq Z_EXPR + X; opf: Z_EXPR + Xe
display_ switch (vecpf, opf)
= signal_kind_switch

(vecpf, opf o ZBus, opf)

The second for treating ZBus only as a special case.

=[X]

bus_sw:itch:
(seq Z_EXPR - X) x (Z_EXPR + X)
— (Z_-EXPR - X)

V ze: Z_EXPR; buspf: seq Z_EXPR - X; opf: Z_EXPR -+ Xe
bus_switch (buspf, opf)
= signal_kind_switch

(opf o ZSequence, buspf, opf)

When a construction takes place over a set of inputs (e.g. bus construction or mux) it is desirable
to know whether the set of inputs can be combined into a single sequence display. This depends not
only on the SIGNAL_KIND but also on the PORT_TYPE, the condition being that all but scalar
inputs are themselves sequence displays.

This separation of testing for this condition from the composition of a single vector display is prob-
ably not useful so this function does the construction if it can be done. Care should be taken in
implementation to get the domain of this function correct.

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 154

Z

display_from_inputs: (PVALUE + PORT_DETAILS) x (PVALUE + Z_EXPR)
+ Z_EXPR

YV pdmap: PVALUE + PORT_DETAILS; zemap: PVALUE + Z_EXPR; ze: Z_FEXPRe
(pdmap, zemap) — ze € display-from_inputs
54
(3 ssze: seq seq Z_EXPR
| dom pdmap = dom zemap = num2pvalue (1..(#ssze))
A (Y ip: dom pdmap; n: dom ssze | ip = num2pvalue n
((pdmap ip).port_type = ScalarPT
= ssze n = (zemap ip))
A ((pdmap ip).port_type # ScalarPT
= ZSequence (ssze n) = zemap ip))

o ze = ZSequence (") ssze))

Where a sequence display is not possible the results are to be combined using ZBus so that the bus
structure remains transparent. Again it is necessary to know the port types.

Z

zbus_from_inputs: (PVALUE + PORT_DETAILS) x (PVALUE + Z_EXPR)
-+ Z_EXPR

YV pdmap: PVALUE + PORT_DETAILS; zemap: PVALUE + Z_EXPR; ze: Z_EXPRe
(pdmap, zemap) — ze € zbus_from_inputs
=4
(3 seqze: seq Z_EXPR
| dom pdmap = dom zemap = num2pvalue (1..(#seqze))
A (Y ip: dom pdmap; n: dom seqze; pt: PORT_TYPE
| ip = numZpvalue n
A pt = (pdmap ip).port_type
e pt # UnknounPT
A (pt = ScalarPT = seqze n = ZSequence (zemap ip))

A (pt # ScalarPT = seqze n = zemap ip))

e z¢ = ZBus seqze)

6.7.4 Virtualize Constant

The translated Value parameter is used as the output expression for port One. A possible enhance-
ment would be to take account of the type on the output port, as is done for the Selector block.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

155

virtualize_constant: LIB_BLOCK_VIRT_FUN2

YV mvartypes: MVARTYPES; alb: A_LIB_BLOCK; mv_ctxt: F PVALUEe
virtualize_ constant (muvartypes, alb, mv_ctxt)
= lbvf2_source
(param_zexp (alb.block_info.pars, mv_ctxt) {One — (ValuePN, SVM)})
(muartypes, alb, mv_ctxt)

6.7.5 Virtualize Bus Selector

Different methods of selection are appropriate depending on whether the input is a ZBus or not. This
diffence applies at each stage in a multistage selection, so there could be several stages of selection
from ZBus constructors, possibly followed by selections either from a vector display or from some
other kind of expression. First we specify the expressions for a single output, then if muxed output
is required these will be combined using ZBus.

The following function determines the location of a selection from a bus, as a pair of natural numbers.
These values are required when the bus is not presented as a ZBus, and also during synthesis.

Z

selection_position: PORT_TYPE — seq PVALUE + (N x N)

V pt2: PORT_TYPE; spv: seq PVALUE; lp, rp: N e
spv — (lp, rp) € selection_position pt2
=4
(3 w: N; bdets: seq PORT_DETAILSe
pt2 = BusPT (w, bdets)
A (spr = O ANlp=1ANrp=w
\% (3 p, rlp, rrp, offset: N; h: PVALUE; t: seq PVALUE
| (h) ™t = spv
A ((bdets p).line_name = h
V =(3pd:ran bdetse pd.line_name = h)
A h = port2signal (num2pvalue p))
At — (rlp, rrp) € selection_position (bdets p).port_type
A offset = nat_seq_sum ((id(1..(p—1))) g bdets g pd_width)
o lp = rlp + offset
A rp = rrp + offset)
)
)
Vv (3 w: N @ pt2 = VectorPT w A spv =) ANlp =1 A rp = w)
\% (pt2 = ScalarPT N spv = () ANlp =1 ANrp=1)

©Lemma 1 Ltd. 26 January 2004

Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 156

The following defines the construction of a selection expression which delivers a vector:

Z

vector_selection_exp: (N x N) — Z_EXPR + Z_EXPR

Vip, rp: N e
vector_selection_exp (lp, mp)
= display_switch (
(A\sze: seq Z_EXPRe ZSequence ((Ip :, mp) g sze)),
(Aze: Z_EXPRe ZInfixOps
(ze,
((Composei,
ZBrackets (
ZInfizOps
(PvalueZexpr (num2pvalue Ilp),
((pvalue2ident (sc2pv ":,"),

PualueZexpr (num2pvalue rp)

A scalar selection is done by function application.
VA

scalar_selection_exp: N — Z_EXPR + Z_EXPR

V p: Ne
scalar_selection_exp p
= display_switch (
(Asze: seq Z_EXPR | p € dom sze o sze p),
(Aze: Z_EXPRe Application
(ZBrackets ze,
ZBrackets(PvalueZexpr (num2pvalue p)))))

Now we combine these using the width as selection criterion.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 157

Lemma 1 Ltd.

selection_exp: (N x N) — Z_EXPR + Z_EXPR

V ize, oze: Z_EXPR; Ip, rp: N e
ize — oze € selection_exp (lp, D)
S af lp=rp
then ize — oze € scalar_selection_exp Ip
else (ize — oze € wvector_selection_exp (Ip, mp))

The following specification concerns bus selection on a signal whose Z_ EXPR is not a ZBus. This
may be selection using the tail end of a selection on a component of a ZBus. The procedure is first to
calculate (using the port type and the selection information) the position of the required portion of
the signal (as first and last indexes), and then to make the selection. The way in which the selection
is made depends upon whether the expression is a vector display. If it is, the required slice of the
display is computed and returned as a vector display, otherwise the expression is composed with the
relevant interval. Note that the port type supplied to nonbus_bus_selection need not be a BusPT.
Like selection_position it is specified to cover other types as the base cases of a recursion down the
signal structure. It should not be used for bus selection from Z_EXPR which is a ZBus since it will
deliver a suboptimal expression in that case.

Z

nonbus_bus_selection: (PORT_TYPE x seq PVALUE)
— (Z_EXPR + Z_EXPR x N)

Y ize, oze: Z_EXPR; pt: PORT_TYPE; spv: seq PVALUFE; w: Ne
ize — (oze, w) € nonbus_bus_selection (pt, spv)

54

(3 lp, rp: N

| spv — (Ip, mp) € selection_position pt

e ize — oze € selection_exp (Ip, mp)

AN w=rmp+1-—1Ip

)

This function is for the case that the Z_ EXPR for the bus is a ZBus. It expects the ZBus to have
been stripped off, hence requiring a seq Z_ EXPR parameter.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

158

Z
bus_bus_selection:
(seq Z_EXPR) x (seq PORT_DETAILS) x PVALUE
+ (Z_EXPR x PORT_TYPE)

Y spd: seq [line-name: PVALUE; port_type: PORT _TYPE];

pv: PVALUE; sze: seq Z_EXPR; oze: Z_EXPR; opt: PORT_TYPFEe
(sze, spd, pv) — (oze, opt) € bus_bus_selection
=4
(3 n: N; sze: seq Z_EXPR
| oze = sze n
A opt = (spd n).port_type
e ((spd n).line_name = pv

V =(3pd: ran spde pd.line_name = pv)

A pv = port2signal (num2pvalue n)

)

The following specification provides a map of expressions for the outputs of a bus selector together
with the width of each output. Outputs of unit width are scalars, the rest are vectors. The outputs
may later be muxed together, and in that case the output width is used to determine which are
scalars (and therefore need to be made into unit vectors for muxing).

Lemma 1 Ltd.

Z

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 159

bus_selector_outputw: Z_EXPR x PORT_TYPE — (seq PVALUE - Z_EXPR x N)

The

(VY ize, oze: Z_EXPR; pt: PORT_TYPE; w: Ne
() — (oze, w) € bus_selector_outputw (ize, pt)
& oze = ize N w = pt2_width pt);

(VY ize, oze: Z_EXPR; pt: PORT_TYPE; w: N; hpv: PVALUE; spv: seq PVALUEe
((hpv) ™ spv) — (oze, w) € bus_selector_outputw (ize, pt)
54
ize — (oze, w) € bus_switch (
(1 n: N; ssd: seq [line_name: PVALUE; port_type: PORT _TYPFE]
| pt = BusPT (n, ssd)
o {sze: seq Z_EXPR; zel, ze2: Z_EXPR; pt2: PORT_TYPE; w2: N
| (sze, ssd, hpv) — (zel, pt2) € bus_bus_selection
A spv — (ze2, w2) € bus_selector_outputw (zel, pt2)
o sze — (ze2, w2)}),

nonbus_bus_selection (pt, (hpv) ~ spv)

)

further transformation of this information depends on whether “MuxedOutput” is selected.

If the selection is to be used for a single output line then the type of the output line and the mode of
selection will both depend upon the width of the signal, a signal of width 1 is delivered as a scalar.

Z

nonmux_selection: (Z_EXPR x PORT_TYPE)
— (seq PVALUE + Z_EXPR)

V ze, ze': Z_EXPR; pt2: PORT_TYPE; spv: seq PVALUEe
spv +— ze' € nonmuz_selection (ze, pt2)

54

(Jw: Ne spv +— (z¢/, w) € bus_selector_outputw (ze, pt2))

If the signal is required for use in a muxed output then it will have to be made into a vector so the
the various outputs can be combined by ZBus.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

160

mux_selection: (Z_EXPR x PORT_TYPE)
— (seq PVALUE + Z_EXPR)

V ze, ze': Z_EXPR; pt2: PORT_TYPE; spv: seq PVALUEe
spv +— ze' € mux_selection (ze, pt2)

g

(Jw: Ne spv +— (ze/, w) € bus_selector_outputw (ze, pt2)
ANw >1)

V

(Iscze: Z_EXPRe spv — (scze, 1) € bus_selector_outputw (ze, pt2)
A ze! = ZSequence (scze))

The following function converts a port details map (which might contain non-numeric ports like
Trigger) to a sequence containing just the details for the numeric ports. Note that this function fails
to deliver a result if there are no (positive) numeric output ports or if there are gaps in the sequence
of numeric ouput ports. It is now generic, applying to any map whose domain is a set of PVALUES
which is an initial segment of the positive natural numbers.

=[X]
numeric_port_sequence: (PVALUE + X) - seq X

YV pds: PVALUE + X; spds: seq Xe
pds — spds € numeric_port_sequence
4

spds = num2pvalue § pds

We now provide a specification of how to obtain the correct ouput expression map by referring to
the MuzedOutput parameter and then using the appropriate choice of the above two methods.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

161

bus_selector_outputs: (F PARAM) x PORT_TYPE
— (Z_EXPR - (PVALUE + Z_EXPR))

YV pars: ¥ PARAM; pt: PORT_TYPEFE; ze: Z_EXPR; zemap: PVALUE + Z_EXPRe
ze +— zemap € bus_selector_outputs (pars, pt)
54
(3 par: pars; osp: OUTPUTSIGNALS_PARAM ; mopar: PARAM; sze: seq Z_EXPR
e par.name = QOutputSignals
A par.value — osp € parse_outputsignals_param
A mopar = (name = sc2pn " MuzedOutput", value = on)
N sze = osp § (
(if mopar € pars then muzx_selection else nonmuz_selection)
(ze, pt))
A zemap = if mopar € pars
then {One — ZBus sze}
else (numeric_port_sequence ™) sze)

Finally the LIB_.BLOCK_VIRT_FUNZ2 for BusSelector:

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 162

Lemma 1 Ltd.

virtualize_bus_selector: LIB_BLOCK_VIRT_FUN2

YV muvartypes: MVARTYPES; alb: A_LIB_BLOCK; muv_ctxt: F PVALUEe
virtualize_bus_selector (mwvartypes, alb, mv_ctzt) =
(u bufl: LIB_.BLOCK _VIRT_FUN1
| lbufl =
if dom alb.port_info.input_port_details # {One}
then [buf1_inhibit
else
{zemap: PVALUE + Z_EXPR; v: VIRTUAL
| v =if dom zemap = {One}
then if (zemap One) € dom (bus-selector_outputs (
alb.block _info.pars,
(alb.port_info.input_port_details One).port_type))
then Virtual (bus_selector_outputs (alb.block _info.pars,
(alb.port_info.input_port_details One).port_type)
(zemap One))
else VInhibit
else VInhibit
e zemap — (v, {})}
o (Ibufl, {One})
)

6.7.6 Virtualize Mux

For Muz (and BusConstructor) if possible (i.e. if all the inputs are vector displays or scalar expres-
sions) a vector display is used for the output, failing that the ZBus constructor is used to combine
the input signals.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 163

Lemma 1 Ltd.

virtualize_mux: LIB_BLOCK_VIRT_FUN2

YV muvartypes: MVARTYPES; alb: A_LIB_BLOCK; muv_ctxt: F PVALUEe
virtualize_muzx (muvartypes, alb, mv_ctat) =
(p Wbufl: LIB_.BLOCK _VIRT_FUN1; inports: F PVALUE
| inports = ipset_from_ports_param (alb.block_info.pars, alb.port_info)
A lbufl =
if inports = {}
then [buf1_inhibit
else
{zemap: PVALUE + Z_EXPR; v: VIRTUAL
| v =if dom zemap = dom alb.port_info.input_port_details
then if (alb.port_info.input_port_details, zemap)
€ dom display_ from_inputs
then Virtual {One —
display_from_inputs (alb.port_info.input_port_details, zemap)}
else if (alb.port_info.input_port_details, zemap)
€ dom zbus_from_inputs
then Virtual {One —
zbus_from_inputs (alb.port_info.input_port_details, zemap)}
else VInhibit
else VInhibit
e zemap — (v, {})}
o (lbufl, inports)

)

6.7.7 Virtualize Demux

The following functions are used in deciding which slice of an input vector or bus to output along
the various output lines of a Demux block. This is done using the output port details of the Demuz,
ignoring the input port structure (which will have been used to establish the output port details
earlier).

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 164

Lemma 1 Ltd.

demux_selection_pos: seg PORT_DETAILS - (seq N x N) x N

() — ((), 0) € demux_selection_pos

(V spds: seq PORT_DETAILS; pd: PORT_DETAILS; spos: seq (N x N); w: N e
spds™(pd) — (spos, w) € demux_selection_pos

=4

(3 spos2: seq (N x N); wf, wl: N

| spds — (spos2, wf) € demuz_selection_pos

A wl = pd_width pd N wl > 0

o spos = spos2” ((wf+1, wf+wl))

ANw = wf + wl))

Now we specify an output port expression sequence.
Z

demux_exp_seq: (seq PORT_DETAILS) — Z_EXPR -+ (seq Z_EXPR)

Y pdseq: seq PORT_DETAILS; ize: Z_EXPR; ozeseq: seq Z_EXPRe
ize — ozeseq € demux_exp_seq pdseq
-~
(3 spos: seq (N x N); w: N
| pdseq — (spos, w) € demuzx_selection_pos
eV n:N; oze: Z_FEXPR
e n — oze € ozeseq &
n € dom pdseq
A ize — oze € selection_exp (spos n))

Now we specify an output port expression map.
VA

demux_exp_map: (PVALUE + PORT_DETAILS)
— Z_EXPR + (PVALUE + Z_EXPR)

Y pdmap: PVALUE + PORT_DETAILS; ize: Z_EXPR;
ozemap: PVALUE + Z_EXPRe
ize — ozemap € demux_exp_map pdmap

(3 pdseq: seq PORT_DETAILS; ozeseq: seq Z_EXPR
| pdmap — pdseq € numeric_port_sequence
A ozemap +— ozeseq € numeric_port_sequence

e ize — ozeseq € demux_exp_seq pdseq)

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

165

And finally Demuz virtualization:

Z

virtualize_demux: LIB_BLOCK_VIRT_FUN2

YV muartypes: MVARTYPES,; alb: A_LIB_BLOCK; mv_ctxt: F PVALUEe
virtualize_ demux (muvartypes, alb, mv_ctxt) =
(u bufl: LIB_.BLOCK _VIRT_FUNI1; inports: F PVALUE
| inports = ipset_from_ports_param (alb.block_info.pars, alb.port_info)
A lbufl =
if inports # {One}
then lbufl_inhibit
else
{zemap: PVALUE + Z_EXPR; v: VIRTUAL
| v =if dom zemap = {One}
then if (zemap One) € dom (demux_exp_map
alb.port_info.output _port_details)
then Virtual
(demuz_exp_map
alb.port_info.output_port_details
(zemap One))
else VInhibit
else VInhibit
o zemap — (v, {})}
e (lbvf1, {One})
)

6.7.8 Virtualize Bus Creator

BusCreator is treated exactly the same as Muz.

Z

virtualize_bus_creator: LIB_.BLOCK_VIRT_FUN2

virtualize_bus_creator = wirtualize_mux

6.7.9 Virtualize Selector

For simplification of selector virtualizations we need to be able to select from a vector display.

Lemma 1 Ltd.

Z

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 166

select_from_seq_by_real: (seq Z_EXPR) — (seq R) + (seq Z_EXPR)

Y iseqze, oseqze: seq Z_FEXPR; seqr: seq Re

seqr +— oseqze € select_from_seq_by_real iseqze
-~

(3 seqn: seq N

| seqn g real = seqr

e oseqze = seqn § iseqze)

This could be generic, but its doubtful that any other uses would arise. Given the sequence of
expressions in some vector display this function specifies the subsequence selected by a PARAMETER
which is expected to be a parsed Elements parameter.

Z

select_from_seq_by_param: (seq Z_EXPR) — PARAMETER - (seq Z_EXPR)

Y iseqze, oseqze: seq Z_EXPR; parameter: PARAMETERe

parameter — oseqze € select_from_seq_by_param iseqze
-~

(3 vexp: VEXP; seqr: seq R

| ParVector vexp = parameter

A verp — seqr € vexp_val

e seqr — oseqze € select_from_seq_by_real iseqze)

V

(3 sexp: SEXP; n: N; ze: Z_EXPR

| ParScalar sexp = parameter

A sexp +— (real n) € sexp_val

A n — ze € iseqze

e oseqze = (ze))

The following function computes the expression for a Selector block when the input is not a sequence
display. There are opportunities for further optimization here.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 167

Lemma 1 Ltd.

Z

selector_expression_from_other: SPECIAL_RESULT — (Z_EXPR - Z_EXPR)

YV sr: SPECIAL_RESULT, ize: Z_EXPR; oze: Z_EXPRe
ize — oze € selector_expression_from_other sr
< (3 ze: Z_EXPR
o sr = SRVector ze
A oze = ZInfixrOps (ize,
((Composei, Ident R2zi),
(Composei, ZBrackets ze)))
V sr = SRScalar ze
N oze = Application (ize, ZBrackets (Application (Ident R2zi, ze))))

Now we specify for the sequence display case.

Z

selector_expression_from_display: PARAMETER x SPECIAL_RESULT
— (seq Z_-EXPR + Z_EXPR)

Y iseqze: seq Z_EXPR; p: PARAMETER; sr: SPECIAL_RESULT; oze: Z_EXPRe
iseqze — oze € selector_expression_from_display (p, sr)
-~
(3 ze: Z_EXPR; oseqze: seq Z_EXPR; seqr: seq R
| p — oseqze € select_from_seq_by_param iseqze
o sr = SRVector ze
A oze = ZSequence oseqze
V sr = SRScalar ze
A (oze) = oseqze)

The general case is then compounded as follows:

Z

selector_expression: (PARAMETER x SPECIAL_RESULT)
— (Z_.EXPR - Z_EXPR)

V p: PARAMETER; sr: SPECIAL_RESULT e
selector_expression (p, sr)
= display_ switch(
(ZSequence § (selector_expression_from_other sr))
@ selector_expression_from_display (p, sr),

selector_expression_from_other sr)

This

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

168

Z

virtualize_selector: LIB_BLOCK_VIRT_FUN2

YV muvartypes: MVARTYPES; alb: A_LIB_BLOCK; muv_ctxt: F PVALUEe
virtualize_selector (mwvartypes, alb, mv_ctzt) =
(ulbyfl: LIB_.BLOCK _VIRT_FUN1
| bufl =
Ibuf1 _inhibit @
{ izemap: PVALUE + Z_EXPR; used_maskvars: F PVALUE;
sr: SPECIAL_RESULT; v: VIRTUAL; p: PARAMETER,;
pt_map: PVALUE + PNAME x PORT_TYPE; ize, oze: Z_EXPR
| dom alb.port_info.input_port_details = {One}
A {One — ize} = izemap
A pt_map = {One — (Elements,
(alb.port_info.output_port_details One).port_type)}
A ({One — (p, sr)}, used_maskvars)
= param_sr (alb.block_info.pars, mv_ctzt, mvartypes) pt_map
A ize — oze € selector_expression (p, sr)
A v = Virtual {One — oze}
e izemap — (v, used_maskvars)

}
e (Ibufl, {One}))

6.7.10 Virtualize Terminator

Z

virtualize_terminator: LIB_BLOCK_VIRT_FUN2

virtualize_terminator = lbvf2_triv

6.7.11 Compounded Block Virtualizer

The following map assigns each block type supported for virtualization to its virtualization function.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

169

virtualize_table: PVALUE + LIB_BLOCK_VIRT_FUNZ2

virtualize_table = {
BusCreator — virtualize_bus_creator,

BusSelector — wvirtualize_bus_selector,
Constant — virtualize_ constant,
Demuzx — virtualize_demuzx,

Muzx — virtualize_mux,
Selector — wvirtualize_selector,
Terminator +— wvirtualize_terminator

}

Using the table we now define a virtualizer for arbitrary library blocks. This is total since in the
worst case it returns virtualize- dummy1.

Z

virtualize_libblock: LIB_BLOCK_VIRT_FUN2

virtualize_libblock =
{muvartypes: MVARTYPES; alb: A_LIB_BLOCK; mv_ctat: P PVALUE;
param: PARAM; bt: PVALUE
| param € alb.block_info.pars
A param = (name = BlockType, value = bt)
e (muartypes, alb, mv_ctzt) —
(((Apv: PVALUFEe lbuf2_inhibit) & virtualize_table) bt
(muartypes, alb, mv_ctxt))}

6.7.12 Traversal Types

The following two function types generalise the above to deal with arbitrary blocks. Two additional
results are required, the first an update to the block, the second a set of paths of blocks whose
virtualization has been inhibited because of loop detection.

The parameter to the following is a map of input port names to Z expressions. The results are:

e the updated block (details of virtualization and of used mask variables updated as appropriate)
e the result of attempting the virtualization of this block as a VIRTUAL
e a set of used maskvariables

e a set of paths for blocks whose virtualisation has been inhibited because of loop detection

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

170

| BLOCK_VIRT_FUN1 =
| (PVALUE + Z_EXPR)
| — A_BLOCK x VIRTUAL x (F PVALUE) x (F PATH)

The parameters to the following are, first:

e the path of the block to be virtualized
e the types of the matlab variables in context

e the mask variables in context
then:
e the block to be virtualized

The result is a pair consisting of a function to complete the virtualization and the set of names of
input ports whose translation is required to complete virtualization.

Z

\ BLOCK_VIRT_FUN2 =

\ PATH x MVARTYPES x (F PVALUE) — A_BLOCK
\ + BLOCK_VIRT_FUN1 x F PVALUE

The following is the type of a function which updates a subsystem by virtualising a block contained
in the subsystem. This is in fact our “key function”. Unlike the above functions, which expect to
be supplied with expressions for the values on the input ports of the blocks, this kind of function is
intended to find out this information for itself, if necessary virtualizing other blocks in the subsystem.
It is therefore given the entire subsystem, which it updates and returns along with the specifics for
the particular block whose virtualization was requested.

The parameters to the function are:

e the path of the subsystem containing the block to be virtualized
e the types of matlab variables

e a set of blocknames already visited (and hence whose output port values are to be considered
unavailable, since their use would create a loop).

If any block whose virtualisation is required is found to be dependent on one of these blocks
(i.e. to have a significant input port connected to an output port of that block) then the
virtualisation of that block is inhibited and its name reported in the result (for inclusion in a
warning message).

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

171
then:

e the blockname of the block to be virtualized

e the blocknames of blocks which may not connect to this block without resulting in a virtual
loop

e the subsystem containing the block to be virtualized

The function covers in principle the virtualisation of subsystem blocks, but in this version of ClawZ
this always fails (with the useful side effect, however, of virtualizing as many as possible of the blocks
within the subsystem)

The set of PVALUES returned by this function is the set of used mask variables. The set of paths
returned is the set of paths of blocks whose virtualization was inhibited because of a loop in the
wiring diagram, which is returned to permit a warning to be issued. Other reasons for failure to
virtualize do not give rise to warnings or errors.

Z

‘ BLOCK_VIRT _FUN3 = PATH x MVARTYPES x (F PVALUE)

‘ — PVALUE x (F PVALUE) x A_SUBSYS

‘ + VIRTUAL x A_SUBSYS x (F PVALUE) x (F PATH)

This is the type of the key function by which all principal functions are parameterized.

6.7.13 Traversal Auxiliaries

The following are two functions for making the specific modifications to components of the model
required in virtualization. [If these still only have single uses at the end then it might be better to
inline them.]

Z

vupdate_bi: (BLOCK_INFO x VIRTUAL x F PVALUE) — BLOCK_INFO

V bi: BLOCK_INFO; virtual: VIRTUAL; used_maskvars: P PVALUEe
vupdate_bi (bi, virtual, used_maskvars)
= (pars = bi.pars,

mput_port_types = bi.input_port_types,

output_port_types = bi.output_port_types,

specification = bi.specification,

invocation = bi.invocation,

virtual = virtual,

used_maskvars = used_maskvars

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 172

Lemma 1 Ltd.

vupdate_alb: (A_LIB_.BLOCK x VIRTUAL x F PVALUE) — A_LIB_BLOCK

V alb: A_LIB_BLOCK; virtual: VIRTUAL; used_maskvars: P PVALUEe

vupdate_alb (alb, virtual, used_maskvars)

= (block_info = wvupdate_bi (alb.block_info, virtual, used_maskvars),
port_info = alb.port_info

Note that in the following update specification the used_maskvars are supplemented rather than
replaced by the relevant parameter.

Z

vupdate_si: (SUBSYS_INFO x VIRTUAL x F PVALUE) — SUBSYS_INFO

V si: SUBSYS_INFO; virtual: VIRTUAL; used_maskvars: F PVALUFEe
vupdate_si (si, virtual, used_maskvars)

= (subpars = si.subpars,

~

syspars = si.syspars,

lines = si.lines,

specification = si.specification,

mvocation = si.invocation,

virtual = virtual,

used_maskvars = si.used_maskvars U used_maskvars,
mu_ctezt = st.mv_ctat,

action_info = si.action_info

vupdate_ass: (A_SUBSYS x VIRTUAL x F PVALUE) — A_SUBSYS

YV ass: A_SUBSYS; virtual: VIRTUAL; used_maskvars: P PVALUEe
vupdate_ass (ass, virtual, used_maskvars)
= (subsys_info = vupdate_si (ass.subsys_info, virtual, used_maskvars),

port_info = ass.port_info,
blocks = ass.blocks

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

173

vupdate_ab: (A_.BLOCK x VIRTUAL x F PVALUE) — A_BLOCK

V alb: A_LIB_BLOCK; virtual: VIRTUAL; used_maskvars: P PVALUEe
vupdate_ab (ALibBlock alb, virtual, used_maskvars)
= ALibBlock (vupdate_alb (alb, virtual, used_maskvars));

YV ass: A_SUBSYS; virtual: VIRTUAL; used_maskvars: P PVALUEe
vupdate_ab (ASubsys ass, virtual, used_maskvars)

= ASubsys (vupdate_ass (ass, virtual, used_maskvars))

The following is only intended for use where the blockname is the name of a block in the subsystem.
As defined it is the identity function elsewhere.

Z

vupdate_ab_in_ass: (A_SUBSYS x PVALUE x VIRTUAL x F PVALUFE)
— A_SUBSYS

YV ass: A_SUBSYS; ab: A.BLOCK; bn: PVALUF,
virtual: VIRTUAL; used_maskvars: P PVALUFEe
vupdate_ab_in_ass (ass, bn, virtual, used_maskvars)
= (subsys_info = ass.subsys_info,
port_info = ass.port_info,
blocks = ass.blocks &

{m:{bn — wvupdate_ab (ass.blocks bn, virtual, used_maskvars)}
| bn € dom ass.blocks})

virtual: A . BLOCK — VIRTUAL

VY as: A_SUBSYSe

virtual (ASubsys as) = as.subsys_info.virtual;

V alb: A_LLIB_BLOCK e
virtual (ALibBlock alb) = alb.block _info.virtual

This is a function for making a BLOCK_VIRT_FUNI for a block which does not have virtual
VUnknown.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 174

Lemma 1 Ltd.

nochange bvfl: A BLOCK — BLOCK _VIRT_FUNI1

V ab: A_LBLOCKe
nochange_bufl ab = (A emap: PVALUE + Z_EXPRe

(ab, virtual ab, {}, {}))

The following adapts virtualize_libblock to the form in which it is later required. It also imposes a
check on the domain of the emap so that virtualization will fail unless all the requested input ports
are available.

Z

virtualize_libblock2: PATH x MVARTYPES x F PVALUE
— A_LIB_BLOCK — BLOCK_VIRT_FUN1 x F PVALUE

V path: PATH; mvartypes: MVARTYPES; mv_ctzt: P PVALUE,
alb: A_LIB_BLOCK e
virtualize_libblock2 (path, mvartypes, muv_ctat) alb =
if alb.block_info.virtual = VUnknown
then (u lbvfl: LIB_.BLOCK _VIRT_FUNI1; inports: F PVALUE;
bufl: BLOCK_VIRT_FUN1
| (lbvf1, inports) = wirtualize_libblock (muvartypes, alb, mv_ctxt)
A bufl =
{emap: PVALUE + Z_EXPR; virtual: VIRTUAL;
used_muvs: ¥ PVALUFE
| dom emap = inports A (virtual’, used_muvs) = lbvfl emap
V dom emap # inports N (virtual’, used_muvs) = (VInhibit, {})
e emap — (ALibBlock (
block_info = vupdate_bi (alb.block_info, virtual', used_mus),
port_info = alb.port_info),
virtual’, used_mus, {})}
e (buft, inports))
else (nochange_bufl (ALibBlock alb), {})

The following function takes:

e the set of lines of some subsystem

e the name of a block in the subsystem and a set of input portnames on that block

and delivers a sequence of blocknames and map from input portname to block, output portname
pairs.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 175

Lemma 1 Ltd.

It is to be used to determine which blocks must be virtualized before some other block to be virtu-

alized.
Z

blocks_from_ports: F LINE — (PVALUE x F PVALUE)
— ((seq PVALUE) x (PVALUE + PVALUE x PVALUE))

V lines: ¥ LINE; bn: PVALUE; portnames: F PVALUFE,
portmap: PVALUE + PVALUE x PVALUFE
| portmap = {ip: portnames; line: lines
| (block = bn, port = ip) € line.destinations
e ip — (line.source.block, line.source.port)}
e blocks_from_ports lines (bn, portnames) =
((1w spv: iseq PVALUE | ran spv = dom (ran portmap)), portmap)

The following function takes:

e a map of VIRTUALSs obtained by virtualizing a set of blocks

e a map from input portname to block, output portname pairs, indicating which input ports (for
some other target block) are connected to output ports of blocks in the domain of the first
parameter

and returns a map of expressions for the input ports of the target block.

If a port is connected to a virtualized block and the VIRTUAL for that block includes an entry for
the relevant output port (which should always be the case), then that entry is used for the port.
If a port is connected to a block whose VIRTUAL status is VInhibit or VUnknown (which latter
should never happen) then an expression consisting of the relevant port name selected from the local

blockname is used.
Z

emap_from_virtual_map: (PATH x A_SUBSYS x (PVALUE -+ VIRTUAL))
— (PVALUE + PVALUE x PVALUE) — (PVALUE + Z_EXPR)

V path: PATH; ass: A_SUBSYS; vmap: PVALUE + VIRTUAL;
ipmap: PVALUE + PVALUE x PVALUFEe
emap_from_virtual_map (path, ass, vmap) ipmap =
{ip: PVALUE; ze: Z_EXPR; opmap: PVALUE + Z_EXPR;
bn, pn: PVALUE
| ip — (bn, pn) € ipmap
A (bn — Virtual opmap € vmap
A pn — ze € opmap
V —(Jopmap2: PVALUE + Z_EXPRe bn +— Virtual opmap2 € vmap)
A ze = outport_ident path ass.blocks (block = bn, port = pn))

e ip — ze}

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

6.7.14 Principal Functions

176

The following function recursively maps a BLOCK_VIRT_FUNS3 over a set of blocks in some sub-
system (and their subsystems).

Z

subsys_map_bvf3: BLOCK_VIRT_FUN3
— (PATH x MVARTYPES x F PVALUE)
— (A_SUBSYS x (F PVALUFE) x seq PVALUE)
— (A_SUBSYS x (PVALUE + VIRTUAL) x (F PVALUE) x F PATH)

V buf3: BLOCK_VIRT_FUNS;
path: PATH ; mvartypes: MVARTYPES; mv_ctxt: F PVALUE;
ass: A_SUBSYS; lblocks: F PVALUE; blocks: seq PVALUE; block: PVALUE
e subsys_map_buf3 buf3 (path, mvartypes, mv_ctat) (ass, lblocks, ())
= ((ISS, {}7 {}7 {})
A subsys_map_buf3 buf3 (path, mvartypes, muv_ctxt) (ass, lblocks, (block) ~ blocks)
= (u ass’, ass”: A_SUBSYS; vmap, vmap’: PVALUE + VIRTUAL,;
used_mus, used_muvs': F PVALUE; fpath, fpath’: F PATH; virtual: VIRTUAL
| (virtual, ass’, used_mus, fpath)
= buf3 (path, mvartypes, mv_ctat) (block, Iblocks,ass)
A (ass”, vmap, used_muvs’, fpath’)
= subsys_map_buf3 buf3 (path, mvartypes, mv_ctxt) (ass’, lblocks, blocks)
e (ass”, vmap U {block — wvirtual}, used_muvs U used_mvs’, fpath U fpath’))

The following specifies how to virtualize a subsystem given a BLOCK_VIRT_FUNS. The specification
is written on the assumption that the order of processing blocks does not matter. This may be the
case, but it should be noted that the order may affect the output from clawz if blocks have their
virtualization inhibited by loop detection. For example the set of blocks inhibited may depend on
the order in which blocks are processed. To give consistency the blocks should be processed in the
same order as they appear in the list representation of the block map (which the implementation
sorts earlier).

As curently specified no attempt is made to virtualize the subsystem itself. Only library blocks
within the subsystem are liable to be virtualized (the buf3 is mapped over all blocks in the system,
but since it will use this function to do the subsystems this will only virtualize library blocks in the
subsystems).

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

virtualize_subsys: BLOCK_VIRT_FUNS3
— PATH x MVARTYPES x P PVALUE
— A_SUBSYS — BLOCK_VIRT_FUN1 x F PVALUE

YV buf8: BLOCK_VIRT_FUNS3;
path: PATH; mvartypes: MVARTYPES; mv_ctxt: P PVALUEFE;
ass: A_SUBSYSe
virtualize_subsys buf3 (path, mvartypes, mv_ctxt) ass
= if ass.subsys_info.virtual = VUnknown
then (u buft: BLOCK_VIRT_FUNI1; ass': A_SUBSYS; vmap: PVALUE + VIRTUAL;
used_maskvars: ¥ PVALUE; fpaths: F PATH
| (ass’, vmap, used_maskvars, fpaths)
= subsys_map_buf3 buf3 (path, mvartypes, mv_ctxt)
(ass, {}, (u bnames: seq PVALUE | ran bnames = dom ass.blocks))
A bufl =
{emap: PVALUE + Z_EXPR
e emap — (ASubsys (
subsys_info = vupdate_si (ass’.subsys_info, VInhibit, used_maskvars),
blocks = ass’.blocks,
port_info = ass’.port_info),
VInhibit, used_maskvars, fpaths)}

o (buft, {}))
else (nochange_bufl (ASubsys ass), {})

177

Subsystem and library block virtualization are now combined to specify a virtualizer for all blocks.

Z

virtualize_block_p: BLOCK_VIRT_FUN3 — BLOCK_VIRT_FUNZ2

YV buf8: BLOCK_VIRT_FUNS;
path: PATH ; mvartypes: MVARTYPES; mv_ctxt: F PVALUE;
ab: A_BLOCK

(3 ass: A_SUBSYS | ASubsys ass = ab e
virtualize_block_p buf3 (path, mvartypes, mv_ctat) ab
= wvirtualize_subsys buf3 (path, mvartypes, mv_ctrt) ass)

(3 alb: A_.LIB_BLOCK | ALibBlock alb = ab e
virtualize_block_p buf3 (path, mvartypes, mv_ctat) ab
= wirtualize_libblock2 (path, mvartypes, mv_ctxt) alb)

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

178

6.7.15 The Key Function

We now specify the required BLOCK_VIRT_FUNS3 key function. This virtualizes a block by recur-
sively virtualizing the blocks connected to its input ports and then transforming the input expressions
in a manner specific to the block.

In the following specification of the key function virtualize_block_in_subsys:

blocknames’ is the set of all blocknames involved in the recursion in the current subsystem, and is
used for virtual loop detection.

inportnames is the list of input port names whose values are required to virtualize the block.
blockseq is the list of blocks which must supply the expressions required for the input ports.

portmap shows the relationship between the required input ports and the block/ouputport where
it is to be found.

vmap is the map of virtuals obtained by virtualizing all the blocks in blockseq.
emap is the Z expression map derived from vmap and portmap.
fpaths is a set of paths of blocks whose virtualization has been inhibited in this subsystem

fpaths2 is a set of paths of blocks whose virtualization has been inhibited in the block being virtu-
alized (always empty if it is a library block).

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 179

Lemma 1 Ltd.

virtualize_block_in_subsys: BLOCK_VIRT_FUNS3

V path: PATH; mvartypes: MVARTYPES;
blocknames, blocknames’: F PVALUE;
bn: PVALUE; ass: A_SUBSYS; buft: BLOCK_VIRT_FUNI;
inportnames: F PVALUE; lines: F LINE; blockseq: seq PVALUEFE;
portmap: PVALUE + PVALUE x PVALUFE,
maskvars: ¥ PVALUE

| maskvars = ass.subsys_info.muv_ctxt

A blocknames’ = blocknames U {bn}

A (bufl, inportnames) = wvirtualize_block_p virtualize_block_in_subsys

(path — (bn), mvartypes, maskvars) (ass.blocks bn)
A lines = ass.subsys_info.lines
A (blockseq, portmap) = blocks_from_ports lines (bn, inportnames)
e virtualize_block_in_subsys (path, mvartypes, blocknames) (bn, blocknames, ass)
= if blocknames’ N ran blockseq = {}
then
(1 ass’, ass”": A_SUBSYS; vmap: PVALUE + VIRTUAL,
used_musl, used_muvs2: F PVALUE; ab: A_BLOCK;
virtual: VIRTUAL; fpaths, fpaths2: F PATH;
blocks': PVALUE + A_BLOCK; emap: PVALUE + Z_EXPR
| (ass’, vmap, used_mus1, fpaths) = subsys_map_buf3 virtualize_block_in_subsys
(path, muvartypes, maskvars) (ass, blocknames’, blockseq)
A emap = emap_from_virtual_map (path, ass’, vmap) portmap
A (ab, virtual, used_muvs2, fpaths2) = bufl emap
A blocks’ = ass’.blocks @& {bn — ab}
A ass” = (subsys_info = ass’.subsys_info,
port_info = ass’.port_info, blocks = blocks")
o (virtual, ass”, used_muvsl U used_mws2 , fpaths U fpaths2)
)
else
(1 ass’: A_SUBSYS
| ass’ = vupdate_ab_in_ass (ass, bn, VInhibit, {})

o (VInhibit, ass’, {}, {path ™ (bn)})
)

We can now define non-parameterised versions of the required principal functions:

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 180

Lemma 1 Ltd.

virtualize_block: BLOCK_VIRT_FUN2

virtualize_block = wvirtualize_block_p virtualize_block _in_subsys

6.7.16 Virtualize System

Note that in the following function the set of paths fpaths should be reported by the implementation
in a warning. These are the paths of blocks whose virtualization was inhibited to break virtual cycles
in the wiring diagram.

Z

a_block_name: A_BLOCK + PVALUE

Y ab: A_BLOCK; pv: PVALUFEe
ab — pv € a_block_name
-~
(3 alb: A_.LIB_BLOCK e
ab = ALibBlock alb
A (name = Name, value = pv) € alb.block_info.pars)

Y (3 ass: A_SUBSYSe

ab = ASubsys ass
A (name = Name, value = pv) € ass.subsys_info.syspars)

virtualize_system: MVARTYPES — A_BLOCK — A_BLOCK

YV muartypes: MVARTYPES; ab, ab’: A_BLOCK;

sys_name: PVALUE; bufl: BLOCK_VIRT_FUNI;

rb, used_muvars: F PVALUE; v: VIRTUAL; fpaths: F PATH
| ab — sys_name € a_block_name
A (bufl, rb) = wvirtualize_block ({sys_name), mvartypes, {}) ab
A (ab', v, used_muars, fpaths) = bufl {}
o virtualize_system muvartypes ab = ab’

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

181

6.8 Block Synthesis

6.8.1 Invocation Sorting

The following specifies the order in which declarations of a schema are to be output. It applies both
to synthesised blocks and to subsystem schemas.

The following ordering is imposed on the declarations:

1. action then enable then trigger ports, if present
2. other input ports in ascending numeric order
3. other blocks in ascii ordering of local z name

4. output ports in ascending numeric order

This ordering is specified as a relation over INVKEY and then lifted over INVOCATIONS.

identbefore is to be understood as the reflexive ascii lexicographic ordering on Z identifiers.
VA

tdentbefore: IDENT «— IDENT

true

keybefore: INVKEY «— INVKEY

keybefore =

{lik, rik: INVKEY; n1, n2: N; 1, 12: IDENT
| n1 < n2 A (I1, 12) € identbefore N

(lik = ActionInv n1 A rik = Actionlnv n2

V lik = ActionInv n1 A rik = Enablelnv

V lik = EnableInv N\ rik = Triggerinv

V lik = TriggerInv N\ rik = InportInv nl

V lik = Inportlnv nl A rik = Inportlnv n2

V lik = Inportlnv nl A rik = Otherlnv 1

V lik = Otherlnv 1 A rik = Otherlnv 2

V lik = OtherInv 11 A rik = Outportinv nl

V lik = OutportInv n1 A rik = OutportInv n2)
o (lik, rik)}*

We now specify the required ordering on invocations by a function which maps sets of INVKEY
tagged values to ordered sequences (an invocation is one example of such a tagged value).

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 182

Lemma 1 Ltd.

—[X]

sort_by_invkey: F (INVKEY x X) — seq (INVKEY x X)

V invset: F (INVKEY x X); invseq: seq (INVKEY x X)e
sort_by_invkey invset = invseq
= invset = ran invseq
A (VY n1,n2: dom invseq; fil, fi2: INVKEY
| n1 < n2 A fil = first (invseq n1) N fi2 = first (invseq n2)
o fil # fi2 N (fil, fi2) € keybefore)

6.8.2 Synthesis Preliminaries

Block synthesis traverses the model looking for instances of synthesizable blocks. It then fills in the
specification and invocation fields for these blocks.

Following the established pattern we now address functions which synthesize specifications for certain
kinds of block. These will usually be specified the following type.

Z

| BLOCK_SYN_FUN2 = PATH x P PVALUE x A_LIB_BLOCK x A_SUBSYS
| + ((Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)) x (F PVALUE))

In the argument above the path is the pathname of the block to be synthesized and the set of
PVALUEs is the set of masked variables in the context of that block, i.e. the set of names which
should be treated as local variables rather than as the names of values set in a matlab .m file. The
A_SUBSYS is the smallest enclosing subsystem. The returned set of PVALUES is the set of masked
variables which were used in parameters translated into Z.

The synthesis functions will be required with the following type:
VA
‘ BLOCK_SYN_FUN = PATH x P PVALUE x A_SUBSYS
‘ — A_BLOCK - A_BLOCK

In the above the path is the pathname of the block to be synthesised and the set of PVALUES is
the set of masked variables in the context of that block, and the subsystem is the smallest enclosing
subsystem.

Conversion from one to the other is accomplished as follows:

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 183

Lemma 1 Ltd.

lift_bsf: BLOCK_SYN_FUN2 — BLOCK_SYN_FUN

YV bsf2: BLOCK_SYN_FUN2; path: PATH; muv_ctxt: F PVALUE; ass: A_SUBSYSe
lift_bsf bsf2 (path, mv_ctat, ass) =
{ ab, ab': A_BLOCK; alb, alb’: A_LIB_BLOCK; pars: F PARAM;
zspec: Z_SPEC; zdecls: Z_DECL x Z_DECL x Z_DECL;
used_muvs: I PVALUFE
| ALibBlock alb = ab N ALibBlock alb’ = ab’
A ((zspec, zdecls), used_muvs) = bsf2 (path, mv_ctzt, alb, ass)
A alt = (
block_info = (pars = alb.block_info.pars,
input_port_types = alb.block_info.input_port_types,
output_port_types = alb.block_info.output_port_types,
specification = zspec,
invocation = (OtherInv (path2loci path), zdecls),
virtual = VInhibit,
used_maskvars = used_muvs),
port_info = alb.port_info)
) ab — ab'}

The core block-type-specific part of synthesis is computation of the predicate for the schema. Con-
struction of the full specification and the method of invocation of this specification follows a general
pattern specified below as wrap_predicate.

Preliminary to that we show how the declarations for the schema are determined by the PORT-
INFO for the synthesized block.

Z

port_invocations: PORT_INFO — F INVOCATION

V pi: PORT_INFQe
port_invocations pi =
(inport_block_invocation (dom pi.input_port_details))

U (outport_block_invocation (dom pi.output_port_details))

Note that the main_inv is used here but that this is still OK for making the declaration part of
synthesized state held and reset schemas because these always have the same declarations as the
main schema. It would not do for state held and reset schemas for subsystems.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

184

zdecl_from_invs: F INVOCATION — Z_DECL

YV invs: F INVOCATION e

zdecl_from_invs invs = 7/ (sort_by_invkey invs § second § main_inv)

port_declarations: PORT_INFO — Z_DECL

YV pi: PORT_INFQOe

port_declarations pi = zdecl_from_invs (port_invocations pi)

The following specification gives the invocation for an element of the state in a synthesized block.

Z

state_invocation: PVALUE — INVOCATION

Vpv: PVALUEe
state_invocation pv = (OtherInv (pvalueZident pv),
((DecDec (
names = (pvalue2ident pv),

type = Ident Ut)), (), ()))

The following specifies the method of constructing the specification and its invocation when no
maskvariables have been used in the predicate.

Z
wrap_predicate_nomv: (WORD x IDENT)
— (Z_DECL x Z_PRED) — (Z_-SPEC x Z_DECL)

Y i: IDENT; pr: Z_PRED;

defname: WORD:; spec: Z_SPEC'; decl, inv: Z_DECL
| spec = (SchemaBox (name = defname, decl = decl, pred = pr))
A inv = (DecDec (names = (i), type = SchemaRef defname))

e wrap_predicate_nomv (defname, i) (decl, pr) = (spec, inv)

The more complex case involving maskvariables is as follows. This version should only be used with
a non-empty set of used maskvariables.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

185

wrap_predicate_mv: (WORD x IDENT x F PVALUE)
— (Z_DECL x Z_PRED) — (Z_.SPEC x Z_.DECL)

Vi: IDENT; used_maskvars: F PVALUE;
pr: Z_PRED; defname: WORD; spec: Z_SPEC'; decl, inv: Z_DECL
| spec = (AbbrevDef (

ident =

~

word2ident defname,
value = make_hschema_abstraction used_maskvars (
ZHSchema(decl = decl, pred = pr))))

A inv = (make_invocation defname i used_maskvars)

e wrap_predicate_mv (defname, i, used_maskvars) (decl, pr) = (spec, inv)

¢

This version can be used in ignorance of whether the set of used maskvariables is empty. The “_wi”
suffix distinguishes this version which requires a word and an identifier from the previous interface
which required a path. This version is used for state hold and reset schema synthesis where suffixed
need to be added to the names.

VA
wrap_predicate_wi: (WORD x IDENT x F PVALUE)
— (Z_DECL x Z_PRED) — (Z_.SPEC x Z_DECL)

Yw: WORD:; i: IDENT; used_maskvars: F PVALUE; zdecl: Z_DECL; pr: Z_PREDe
wrap_predicate_wi (w, i, used_maskvars) (zdecl, pr) =
if used_maskvars = {}
then wrap_predicate_nomv (w, i) (zdecl, pr)

else wrap_predicate_mv (w, i, used_maskvars) (zdecl, pr)

This version supports the original interface in which a path is supplied instead of the global and
local names.

Z
wrap_predicate: (PATH x F PVALUE) — (Z_DECL x Z_PRED)
— (Z_SPEC' x Z_DECL)

Vpath: PATH; used_maskvars: ¥ PVALUFE; zdecl: Z_DECL; pr: Z_PREDe
wrap_predicate (path, used_maskvars) (zdecl, pr) =
wrap_predicate_wi (path2globw path, pathlloci path, used_maskvars) (zdecl, pr)

We now specify how hold and reset schemas are prepared. These schemas must have exactly the
same declaration part as the plain schema which they are associated with, so this declaration part
is required as a parameter. In order to construct the predicate information about the names of the
state components is required. This is to be presented as a set of triples of names. Each triple consists
of the name of a state component, the name of the corresponding after state and the name of the

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

186

corresponding initial state component. These could be generated from the one name, but maybe we
shouldn’t wire in the conventions which allow this to be done.
VA
state_hold_schema:
(WORD x IDENT x (F PVALUE) x Z_DECL
x F (PVALUE x PVALUE x PVALUE))
— (Z_SPEC x Z_DECL)

Yw: WORD:; i: IDENT; used_maskvars: F PVALUE; zdecl: Z_DECL;
names: F (PVALUE x PVALUE x PVALUE)e
state_hold_schema (w, i, used_maskvars, zdecl, names) =
wrap_predicate_wi (w, w, i, used_maskvars)
(zdecl,
PredConj
{ tr: names; s, sp, is: PVALUE
| tr = (s, sp, is)
e PredEq (Ident (pvalueZident s), {Ident (pvalueZident sp)})}

state_reset_schema:

(WORD x IDENT x (F PVALUE) x Z_DECL
x F (PVALUE x PVALUE x PVALURE))

— (Z_SPEC x Z_DECL)

Yw: WORD:; i: IDENT; used_maskvars: F PVALUE; zdecl: Z_DECL,;
names: F (PVALUE x PVALUE x PVALUE)e
state_reset_schema (w, i, used_maskvars, zdecl, names) =
wrap_predicate_wi (w, w, i, used_maskvars)
(zdecl,
PredConyj
{ tr: names; s, sp, is: PVALUE
| tr = (s, sp, is)
e PredEq (Ident (pvalue2ident is), {Ident (pvalueZident sp)}) }

This version of wrap_ predicate is to be used for synthesis of blocks which have state. It returns up
to three schemas according to the setting of the hold context.

The parameter is a tuple with the following components:

e The full path of the block being synthesized.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

187

The mask variables used in the synthesized block predicate.

The declaration part of the block schema.

The predicate part of the block schema.

A set of triples of state component names: (before, after, initial).

state_wrap_predicate:
(PATH x (F PVALUE) x Z_DECL x Z_PRED

x HOLD_CONTEXT x F (PVALUE x PVALUE x PVALUE))
— (Z_SPEC x (Z_DECL x Z_DECL x Z_DECL))

Vpath: PATH; used_maskvars: F PVALUFE; zdecl: Z_DECL; zpred: Z_PRED;
names: F (PVALUE x PVALUE x PVALUE); hc: HOLD_CONTEXTe
state_wrap_predicate (path, used_maskvars, zdecl, zpred, hc, names) =
(1 zs, zsh, zsr: Z_SPEC; zd, zdh, zdr: Z_DECL; w: WORD:; i: IDENT
| w = path2globw path
A 1 = path2loci path
A (zs, zd) = wrap_predicate (path, used_maskvars) (zdecl, zpred)
A (zsh, zdh) =
if he € {HCHeld, HCUnknown}
then state_hold_schema (w, i, used_maskvars, zdecl, names)
else ((), ())
A (zsr, zdr) =
if he € {HCReset, HCUnknown}
then state_reset_schema (w, i, used_maskvars, zdecl, names)

else ({), ()
o (zs 7 zsh ™ zsr, (zd, zdh, zdr))

)

6.8.3 Synthesize Bus Creator and Mux

Note that this specification shows no check on the block type, and should therefore be used only
when the block type is known.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 188

Lemma 1 Ltd.

synthesize_bus_creator: BLOCK_SYN_FUN2

Vpath: PATH; mv_ctzt: ¥ PVALUFE; alb: A_LIB_BLOCK;

sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL);

used_muvs: ¥ PVALUE; ass: A_SUBSYSe

(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_bus_creator

~

dom alb.port_info.output_port_details = {One}

AN

(3seqze: seq Z_EXPR; pred: Z_PRED; zd: Z_DECL; zs: Z_SPEC
o seqze =

{n, w:N; pv: PVALUE; ze: Z_EXPR;
ipds: PVALUE - PORT_DETAILS; bpds: seq PORT_DETAILS
| pv = num2pvalue n
A ipds = alb.port_info.input_port_details
A pv € dom ipds
A ((ipds pv).port_type = ScalarPT
A ze = ZSequence(ldent (inport_name pv))
V ((ipds pv).port_type = VectorPT w V
(ipds pv).port_type = BusPT (w, bpds))
A ze = Ident (inport_name pv))
e n — ze}
A pred = PredEq(Application (Ident (pvalueZident (sc2pv " /")),
ZSequence seqze),
{Ident (outport_name One)})
A (zs, zd) = wrap_predicate (path, {}) (port_declarations alb.port_info, pred)

A sd = (zs, (2d, (),))

A used_muvs = {})

For present purposes a Mux is the same as a BusCreator.

synthesize_mux: BLOCK_SYN_FUN2

synthesize_mux = synthesize_bus_creator

6.8.4 Synthesize Bus Selector

Computation of selection position uses the function selection_position which is now shared with the
specification for virtualization.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

189

Now we give the details for synthesis of BusSelector blocks.

Z

synthesize_bus_selector: BLOCK_SYN_FUNZ2

Vpath: PATH; mv_ctzt: P PVALUE; alb: A_LIB_BLOCK; ass: A_SUBSYS;
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL); used_mvs: F PVALUFEe
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_bus_selector
54
dom alb.port_info.input_port_details = {One}
AN
(3 par: alb.block_info.pars; mopar: PARAM; osp: OUTPUTSIGNALS_PARAM;
seqze: seq Z_EXPR; pred: Z_PRED; pt2: PORT_TYPEFE;
selector: (Z_EXPR x PORT_TYPE) — seq PVALUE + Z_EXPR,
zs: Z_SPEC; zd: Z_DECL
e pt2 = (alb.port_info.input_port_details One).port_type
A par.name = OutputSignals
A par.value — osp € parse_outputsignals_param
A mopar = (name = sc2pn " MuzedOutput", value = on)
A selector = if mopar € alb.block_info.pars
then mux_selection else nonmux_selection
A seqze = osp § (selector (Ident (inport_name One), pt2))
A pred =
if mopar € alb.block_info.pars
then PredConj
{PredEq(Application (Ident (pvalueZident (sc2pv "/")),
ZSequence seqze),
{Ident (outport_name One)})}
else PredConj
{m:N; ze: Z_EXPR
| n— ze € seqze
e PredEq(ze, {Ident (outport_name(num2pvalue n))})}
A (zs, zd) = wrap_predicate (path, {}) (port_declarations alb.port_info, pred)

A sd = (zs, (2d, (),))

A used_muvs = {})

6.8.5 Synthesize Demux

The specification of the sequence of selections for the outputs of a Demuz block is shared in part
with virtualization.

The following specifies how to obtain demux selection information from the port map.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

190

demux_selection_positions: (PVALUE + PORT_DETAILS) + seq (N x N)

V pds: PVALUE + PORT_DETAILS; spos: seq (N x N)e
pds — spos € demuzx_selection_positions

-~
(3 spds: seq PORT_DETAILS; w: N
e pds — spds € numeric_port_sequence

A spds — (spos, w) € demux_selection_pos)

The following specification of DeMux synthesis expects that the bus analysis phase has assigned
types to the output ports of block, and will otherwise fail. For the DeMuz block this information is
sufficient to synthesize the block, there is no need to refer to the input port details or the Outputs
parameter, or the BusSelectionMode.

Z

synthesize_demux: BLOCK_SYN_FUN2

Vpath: PATH; mv_ctzt: F PVALUE; alb: A_LIB_BLOCK; ass: A_SUBSYS;
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL); used_muvs: F PVALUEe
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_demuz
=4
dom alb.port_info.input_port_details = {One}
AN
(3 opds: PVALUE + PORT_DETAILS; ssd: seq N x N;
seqze: seq Z_EXPR; pred: Z_PRED; pt2: PORT_TYPE;
281 Z_SPEC; zd: Z_DECL
e opds = alb.port_info.output_port_details
A opds — ssd € demuz_selection_positions
A pred = PredConj{n: dom ssd; ze: Z_EXPR
| (Ident (inport_name One)) — ze € selection_exp (ssd n)
e PredEq(ze, {Ident (outport-name(num2pvalue n))})}
A (zs, zd) = wrap_predicate (path, {}) (port_declarations alb.port_info, pred)

A sd = (zs, (2d, (),))

A used_muvs = {})

6.8.6 Synthesize Constant

The following is the specification of Constant synthesis. Input ports are ignored (there should be
none). There must be exactly one output port, number one, otherwise synthesis will fail. There must
be a parameter named “Value” which will be translated and used as the value of the output signal.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 191

Lemma 1 Ltd.

synthesize_constant: BLOCK_SYN_FUN2

Vmuartypes: MVARTYPES; path: PATH; mv_ctzt: F PVALUE; alb: A_LIB_BLOCK;
ass: A_SUBSYS; used_muvs: P PVALUE;
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)e
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_constant
54
dom alb.port_info.output_port_details = {One}
AN
(3 ze: Z_EXPR; pred: Z_PRED; par: PARAM; zs: Z_SPEC,; zd: Z_DECL
e par € alb.block_info.pars
A par.name = ValuePN
A (TMatch ze, used_muvs) = par_trans2 muv_ctat SVM par.value
A pred = PredEq(ze, {Ident (outport_name(One))})
A (zs, zd)
= wrap_predicate (path, used_mus) (port_declarations alb.port_info, pred)

A sd = (zs, (2d, (), ()

6.8.7 Synthesize Selector

The following is the specification of Selector synthesis. There must be exactly one input and one
output port, otherwise synthesis will fail. There must be a parameter named “Elements” which will
be translated and used in the value of the output signal.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 192

Lemma 1 Ltd.

synthesize_selector: MVARTYPES — BLOCK_SYN_FUN2

Vmuvartypes: MVARTYPES; path: PATH; mv_ctzt: F PVALUE;
alb: A_LIB_BLOCK; ass: A_SUBSYS; used_muvs: P PVALUFE,
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)e
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_selector muvartypes
54
dom alb.port_info.input_port_details = {One}
A dom alb.port_info.output_port_details = {One}
A
(3 opt: PORT_TYPE; sr: SPECIAL_RESULT' ze: Z_EXPR;
pred: Z_PRED; par: PARAM; In: PVALUE; zs: Z_SPEC; zd: Z_DECL
e One — (line_name = In, port_type = opt)
€ alb.port_info.output_port_details
A par € alb.block_info.pars
A par.name = Elements
A (sr, used_muvs) = special_par_trans mvartypes mv_ctzt opt par.value
A (sr = SRVector ze
A pred = PredEq(ZInfiztOps (Ident (inport_name(One)),
((Composei, Ident R2zi),
(Composei, ZBrackets ze))),
{Ident (outport_name(One))})
V sr = SRScalar ze
A pred = PredEq(Application (Ident (inport_name(One)),
ZBrackets(Application(Ident R2zi, ze))),
{Ident (outport_name(One))}))
A (zs, zd)
= wrap_predicate (path, used_mus) (port_declarations alb.port_info, pred)

A sd = (zs, (2d, (), ()

6.8.8 Synthesize Merge

The following is the specification of Merge synthesis.
There must be exactly one output port, otherwise synthesis will fail.

If the action complex is “open” then a schema with internal state will be synthesized. In that case
there must be a parameter named “InitialOutput” which will be translated and used as the initial
value of the state.

Whether or not there is state the synthesized block will have additional “Action” input ports, one

©Lemma 1 Ltd. 26 January 2004 103

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

for each inport, and these determine which value is selected for the output. If the schema has state
and none of them is selected then the value of the state variable is output.

First we define a functions which construct the declaration part of the schemas.

Z

closed_merge_invocations: A_LIB_BLOCK — F INVOCATION

Valb: A_LIB_BLOCK; m: N
| (name = Inputs, value = num2pvalue m) € alb.block_info.pars

° closed_merge_invocations alb
= port_invocations (alb.port_info) U action_port_invocations m

open_merge_invocations: A_LIB_BLOCK — F INVOCATION

Valb: A_.LIB_BLOCKe
open_merge_invocations alb
= closed_merge_invocations alb
U state_invocation ({state, stateP, initial_state})

closed_merge_decl: A_LIB_BLOCK — Z_DECL

Valb: A_LIB_BLOCKe
closed_merge_decl alb
= zdecl_from_invs (closed_merge_invocations alb)

open_merge_decl: A_LIB_BLOCK — Z_DECL

Valb: A_.LIB_BLOCKe
closed_merge_decl alb
= zdecl_from_invs (open_merge_invocations alb)

Then functions which construct the predicate.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification 194
Z
closed_merge_pred: N; — Z_PRED
Vn: N;e
closed_merge_pred n
= PredDisj
{m: N;
| m <mn
e PredConj {
PredBool (Ident (action_port_id m)),
PredEq (Ident (inport_name (num2pvalue m)),
{Ident (outport_name One)})}
}
In the following, absence of the InitialOutput parameter, or its having the value “[]”, should cause

an Error to be raised (not a warning). Synthesis of the Merge should fail, but processing should
continue.

The PATH parameter in the following is for error reporting only.

Z

open_merge_pred: (F PVALUE) x (F PARAM) x PATH
-+ Z_PRED x F PVALUE

Vmu_ctzt: F PVALUE; pars: F PARAM; path: PATH;

pred: Z_PRED; used_muvs: F PVALUEe

(mu_ctzt, pars, path) — (pred, used_muvs) € open_merge_pred

=4

(In: Ny; par: pars; ze: Z_EXPR

e (name = Inputs, value = numZpvalue n) € pars

A par.name = Initial OQutput

A = par.value = sc2pv "[]"

A (TMatch ze, used_muvs) = par_trans2 muv_ctat SVM par.value

A pred = PredConj {closed_merge_pred n,
PredEq (Ident (outport-name One), {Ident (pvalueZ2ident stateP)}),
PredEq (ze, {Ident (pvalue2ident initial_state)})}

Then a function for each of the hold and reset schemas, and one which generates whichever of these
is required according to the hold context.

Then these are combined to give the overall merge synthesis specification.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 195

Lemma 1 Ltd.

synthesize_closed_merge: MVARTYPES — BLOCK _SYN_FUN2

Vmuartypes: MVARTYPES; path: PATH; mv_ctzt: F PVALUE; alb: A_LIB_BLOCK;
ass: A_SUBSYS; used_muvs: P PVALUE;
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)e
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_closed_merge muvartypes
54
(3 par: PARAM; n: Ny; pred: Z_PRED; decl: Z_DECL;
28: Z_SPEC; zd: Z_DECL
e (name = Inputs, value = numZpvalue n) € alb.block_info.pars
A pred = closed_merge_pred n
A decl = closed_merge_decl alb
A used_muvs = {}
A (zs, zd) = wrap_predicate (path, used_muvs) (decl, pred)

A sd = (zs, (2d, (), ())))

synthesize_open_merge: MVARTYPES — BLOCK_SYN_FUNZ2

Vmuartypes: MVARTYPES; path: PATH; mv_ctxt: F PVALUFE,

alb: A_LIB_BLOCK; ass: A_SUBSYS; used_muvs: P PVALUF,

sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)e
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_open_merge muvartypes
=4
(3 pred: Z_PRED:; decl: Z_DECL
e (muv_ctat, alb.block_info.pars, path) — (pred, used_muvs) € open_merge_pred
A decl = open_merge_decl alb
A sd = state_wrap_predicate (path, used_muvs, decl, pred,

ass.subsys_info.action_info.held_context, {(state, stateP, initial_state)}))

open_merge: P (PATH x A_SUBSYYS)

Vpath: PATH; ass: A_SUBSYSe
(path, ass) € open_merge

< (3 ac: ACTION_COMPLEX e ac.tail = last path

A ac € ass.subsys_info.action_info.complexes

A ac.open)

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

synthesize_merge: MVARTYPES — BLOCK_SYN_FUNZ2

Vmuartypes: MVARTYPES; path: PATH; mv_ctzt: F PVALUE; alb: A_LIB_BLOCK;

ass: A_SUBSYS; used_muvs: P PVALUE;

sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL)e
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_merge muvartypes
54

dom alb.port_info.output_port_details = {One}
A = (name = AllowUnequallnputPort Widths, value = on) € alb.block_info.pars
A ((path, ass) € open_merge

A (path, mv_ctxt, alb, ass)

— (sd, used_mus) € synthesize_open_merge muartypes)

V

(= (path, ass) € open_merge

A (path, mv_ctxt, alb, ass)

— (sd, used_muvs) € synthesize_closed_merge muartypes)

6.8.9 Synthesize Terminator

The following is the specification of Terminator synthesis. Input ports are ignored.

Z

synthesize_terminator: BLOCK_SYN_FUN2

Vpath: PATH; mv_ctzt: F PVALUE; alb: A_LIB_BLOCK; ass: A_SUBSYS;
sd: Z_SPEC x (Z_DECL x Z_DECL x Z_DECL); used_muvs: P PVALUFEe
(path, mv_ctat, alb, ass) — (sd, used_muvs) € synthesize_terminator
=
(3 zs: Z_SPEC; zd: Z_DECL
o (28, zd)

= wrap-predicate (path, {}) (port-declarations alb.port_info, PredConj{})

A sd = (257 (Zd7 <>7 <>))
A used_muvs = {})

6.8.10 The Synthesis Traversal

196

The following table shows the correspondence between the block types for which a synthesis method
has been specified and the method for the block.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

197

block_syn_table: MVARTYPES — PVALUE + BLOCK_SYN_FUN

Vmovartypes: MVARTYPESe block_syn_table mvartypes = {
BusCreator — +— lift_bsf synthesize_bus_creator,

BusSelector +— lift_bsf synthesize_bus_selector,
Constant — lift_bsf synthesize_constant,

Demuz — lift_bsf synthesize_demuz,

Merge — lift_bsf (synthesize_merge muvartypes),
Mux — lift_bsf synthesize_muz,

Selector — lift_bsf (synthesize_selector muartypes),
Terminator — lift_bsf synthesize_terminator

}

Before arranging for this to be mapped over the A_ BLOCK, we need a spec of a BLOCK_SYN_FUN
which will create a dummy invocation for use in the output where instantiation and synthesis has
failed.

Z

dummuy_blocksyn: PATH — A_LIB_BLOCK — A_LIB_BLOCK

Vpath: PATH; alb, alb’: A_LIB_BLOCK e
(alb, alb’) € dummy_blocksyn path
54
alb’ =
(block _info =
(pars = alb.block_info.pars,
input_port_types = alb.block_info.input_port_types,
output_port_types = alb.block_info.output_port_types,
specification = (),
invocation = (OtherInv (path2loci path),
((DecDec (
names = (path2loci path),
type = Ident Ui)), (), (),
virtual = alb.block_info.virtual,
used_maskvars = {}),

port_info = alb.port_info)

Now we arrange for this to be mapped over the A_BLOCK.

The context for this traversal is the combination of the path and the set of maskvariables, which is
obtained from the muv_ctxzt of the enclosing subsystem. The following function updates this context.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

198

newc_blocksyn: (PATH x (F PVALUE) x A_SUBSYS) — A_SUBSYS
— PVALUE — (PATH x (F PVALUE) x A_SUBSYS)

Y path, path’: PATH; maskvars, newmaskvars: F PVALUE;
ass, asso: A_SUBSYS; pv: PVALUE

| path! = path ™ (pv)

A newmaskvars = ass.subsys_info.muv_ctxt

e newc_blocksyn (path, maskvars, asso) ass pv
= (path’, newmaskvars, ass)

In the following, the path set returned is empty unless the invocation is empty after any attempted
synthesis. I.e. we test the invocation before synthesis to see whether to attempt synthesis, and we
test it after synthesis to check whether it succeeded. Note that there are no synthesis functions for
port block types, and the implementation may assume this.

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 199

Z

libmap_blocksyn: MVARTYPES — PATH x (F PVALUE) x A_SUBSYS
— A_LIB_BLOCK — (F PATH) x A_LIB_BLOCK

YV muartypes: MVARTYPES; path: PATH; mv_ctzt: F PVALUFE;
alb: A_LIB_BLOCK; ass: A_SUBSYSe
libmap_blocksyn muartypes (path, mv_ctzt, ass) alb =
(w alb': A_LIB_BLOCK; param: PARAM; bt: PVALUE;
bsf: BLOCK_SYN_FUN; paths: F PATH
| param € alb.block_info.pars
A param = (name = BlockType, value = bt)
A (alb.block _info.invocation = (Nolnv, ((), (), ()))
A (alb.block_info.virtual = VUnknown
V' alb.block_info.virtual = VInhibit)
A (bt — bsf € block_syn_table mvartypes
A (ALibBlock alb) — (ALibBlock alb’) € bsf (path, mv_ctzt, ass)
A paths = {}
Vo (bt € (dom (block_syn_table mvartypes) U port_block_types)
V bt — bsf € block_syn_table muvartypes
A (ALibBlock alb) & dom (bsf (path, mv_ctzt, ass)))
A alb’ = dummy_blocksyn path alb
A paths = {path}
)
V (alb.block_info.invocation # (Nolnv, ((), (), ()))
V bt € port_block_types
V (emap: PVALUE + Z_EXPRe alb.block_info.virtual = Virtual emap))
A alb’ = alb N\ paths = {})
o (paths, alb'))

The processing of subsystems simply aggregates the set of failure paths:

Z

ssmap_blocksyn: PATH x (F PVALUE) x A_SUBSYS
— A_SUBSYS x (PVALUE + F PATH)
— (F PATH) x A_SUBSYS

V path: PATH; mv_ctzt: F PVALUE; eass, ass: A_SUBSYS;
rmap: PVALUE +— F PATHe

ssmap_blocksyn (path, mv_ctxt, eass) (ass, rmap) = (U (ran rmap), ass)

We then map this function over the A_BLOCK.

The result is an updated A BLOCK and a set of paths of untranslated blocks.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

200

Note that the top-level subsystem is passed itself as its enclosing subsystem, perhaps a dummy would
be better. It is not intended that this value be used, it is only required when processing library blocks.

Z

synthesize_blocks: MVARTYPES — A_BLOCK — (F PATH) x A_BLOCK

YV mvartypes: MVARTYPES; ab: A_BLOCK; ass: A_SUBSYS

| ab = ASubsys ass

e synthesize_blocks muvartypes ab = a_block_map_cr
(libmap_blocksyn muartypes, ssmap_blocksyn, newc_blocksyn)
((param_value ass.subsys_info.syspars Name),
ass.subsys_info.muv_ctxt,

ass)
ab

6.9 Translating Subsystems

The specifications in this section describe generation of the specification and invocation of the sub-
systems of the model and the top level system.

6.9.1 General Description

In order to support action subsystems it is necessary not only to have specifications of how a subsys-
tem behaves in normal operation, but also to have specifications for the behaviour when an action
subsystem is not active. This requires similar specifications for the subsystems or library blocks
which occur at any depth inside an action subsystem, and also, when compiling library blocks, for
all blocks irrespective of whether they occur in an action subsystem in the library (in case they end
up being referred to from an action subsystem in a model using the library).

Two distinct effects may be required. The first is to hold the state of a subsystem or library block,
the second is to reset it. Which is required depends upon a parameter on the action block in the
smallest enclosing action subsystem (if there is one, otherwise neither are needed in a model but
both are needed in a library).

The following description is adapted from that in the proposal for support of action subsystems [3].

Subsystems containing action subsystems differ from other subsystems only in having additional
equations passing action port values to Merge blocks. The additional schemas are used directly or
indirectly in the definition of action subsystems, and may also be used in defining corresponding
schemas at higher levels in the subsystem hierarchy.

The schemas generated for a block depend upon the context in which the block occurs. For this
purpose the type HOLD_CONTEXT has been defined.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

201

Names are to be given to the new schemas using suffixing conventions which are specified using the
functions ig, ip, iy, We, wy and w, (applying the required suffixes for active, held and reset schemas
to identifiers and words respectively).

The following is an informal sketch of the Z which is generated.

1. For each block which has some internal state and whose held context is held or unknown:

an extra schema, the block state held schema. This schema equates the before and after values
for every component of the state of the block. It is named using suffix .

2. For each block which has some internal state and whose held context is reset or unknown:

an extra schema, the block state reset schema. This schema equates the after values for each
component of the state of the block with the initial value of that state component (if specified)
and otherwise with real zero. It is named using suffix ,.

3. Block state held and block state reset schemas for manually specified library blocks are expected
to be in the Z library with additional metadata giving the names of these schemas. Where a
library block is parameterized the state held and reset schemas are expected to be identically
parameterised.

4. Block state held schemas for subsystems consist of signature only. The components are all
those of the corresponding subsystem. The type in the signature is the name of block state
held or reset schema for the relevant block. If only one of these is available then that one is
used, if both are available the held schema is used. If no held or reset schema is available then
the type is set to U.

e.g. [b1: Blp;b2: B2y...]

5. Block state reset schemas for subsystems consist of signature only. The components are all
those of the corresponding subsystem. The type in the signature is the name of block state
held or reset schema for the relevant block. If only one of these is available then that one is
used, if both are available the reset schema is used. If no held or reset schema is available then
the type is set to U.

e.g. [b1: B1,;b2: B2,..]

6. Block state held and block state reset schemas for synthesized blocks with internal state must
be generated by the synthesis code.

7. Schemas for normal subsystems which contain action subsystems are augmented by the addition
of further line equations which connect the action signals controlling action subsystems to
extra ports supplied for this purpose on the merge blocks to which the action subsystems are
connected.

8. Multiple schemas will be generated to define each action subsystem as follows:

(a) block state held and/or block state reset schemas are generated as specified above (de-
pending on the held context).

(b) a block active schema is generated which is the similar to the schema for an ordinary (not
action) subsystem except that:

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

202

— the Action Port block is given special treatment analogous to that of other ports and
results in a single item “Action?:U” in the signature.
The block active schema is named with suffix 4.
(c¢) an overall block schema (with standard subsystem name as at present) is generated with
the following form (as a pidgin Z schema expression):
(i) if the action subsystem has no state:
B = Active A\ B, V Inactive
(ii) if the action block specifies that the state should be held:
B = Active A B, V Inactive N\ By,
(iii) if the action block specifies that the state should be reset:
B = Active A B, V Inactive A\ B,

Where B is the full Z name for the subsystem.

6.9.2 Data Types

In order to support action subsystems it has been convenient to make many of the specifications
sensitive to the kind of Z paragraph which is being produced. The “declaration types” are:

DTActive for the active schema for an action subsystem
DTHeld for a state held schema
DTReset for a state reset schema

DTPlain for a normal subsystem schema

DTY PFE ::=
DT Active
| DTHeld
| DT Reset
| DTPlain

6.9.3 The Declaration Part

This specification determines the declaration part or signature of the schemas generated for a sub-
system, and covers not only the schema for an ordinary subsystem but also the active schema for an
action subsystem and held and reset schemas as required. For this purpose it is passed a DTYPE
which indicates what kind of schema is required. The signature entry for any block is selected ac-
cording to the value of the DTYPFE parameter, taking into account the availability of held and reset
schemas. A check is made on whether any held or reset schemas are referred to, and the result of
this check is returned as a boolean which allows generation of trivial held and reset schemas to be
inhibited.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 203

Lemma 1 Ltd.

The declaration part of the box contains one variable declaration for each block in the system diagram
except for blocks which have been virtualized.

For each input or output port a simple declaration assigning an unknown type U will be included.
This will be resolved by type inference in the ProofPower-Z type checker. Action, trigger and enable
blocks are included in the declarations.

The schema declaration list is formed by sorting all the invocations, and then extracting and con-
catenating the declarations from them.

This function is now parameterized by a DTYPFE which is used to select the invocation to be used
in the declaration, permitting the function to be used for held and reset schemas. The method used
here is to select an appropriate declaration from the invocation (which contains three declarations
for use in different contexts) and then sort and concatenate the declarations. Where no declaration
is available U is used, but it is presumed that this will only happen for declations whose key is
OtherInv, i.e. subsystems or library blocks.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 204

Lemma 1 Ltd.

schemadecs: DTYPE — (PVALUE + A_BLOCK) — (Z_DECL x BOOL)

YV dtype: DTYPE; blocks: PVALUE + A_BLOCK; empty: BOOL,;
mv_map, oi_map: PVALUE + INVOCATION;
oi_map2, i_map: PVALUE + INVKEY x Z_DECL
| inv_map = blocks g get_invocation
A oi-map = inv_map > {i: IDENT; is: U e (OtherInv i, is)}
A ot_map?2 = oi-map §
{i: INVKEY; 1isl, is2, is3, is1’: U

| is1’ = if dtype = DTHeld
then if is2 = ()

then 1s3

else is2

else if dtype = DTReset
then if is3 = ()
then is2
else is3
else is1
A isl! # ()
o (i, (is1, is2, is3)) — (i, is1’)}
A empty = (oi—map2 = {})
A i-map = (oi-map g
{i: IDENT; is: U;isl: Z_DEC
| is1 = DecDec (names = (i), type = Ident Ui)
e (OtherInv i, is) — (Otherlnv i, (isl))
1)
® oi_map?2
U ((inv_map \ oi-map)
¢ {i: INVKEY; is: U
e (i, i8) — (i, main_inv is)})
e schemadecs dtype blocks =

(7/ (sort_by_invkey (ran i_map) § second), empty)

6.9.4 The Specification

The following functions creates the Z specifications for subsystems.

There are two versions, the first is used for all those specifications which are given as schemas (includ-
ing abbreviation definitions with abstractions on the right containing horizontal schema expressions).
This is used for non-action subsystems, for state held and reset schemas, and for the active schema

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

205

for an action subsystem. The second is for the top level specification of an action subsystem, which
is always an abbreviation definition on the right of which is a schema expression, possible embedded
in an abstraction. In both cases an abstraction is used if the set of variables supplied (which should
be the union of the set of maskvariables on this subsystem and the set of mask variables from higher
level subsystems which are used in this subsystem) is non-empty.

For the first case if there are no mask variables on the subsystem and no local variables used in it,
then the specification will be a schema box. Otherwise an abbreviation definition is used with the
corresponding horizontal schema enclosed in an abstraction.
Z
make_ss_spec: WORD — Z_DECL — Z_PRED
— F PVALUE — seq Z_PARA

YV name: WORD; decl: Z_DECL; pred: Z_PRED; vars: F PVALUE e
make_ss_spec name decl pred vars

if vars = {}
then (SchemaBoz (0Z_SCHEMABOX))
else (uZ_-ABBREVDEF
| ident = word2ident name
A value = ZLambdaEzxp (
decl = (DecSchema(vars2uhschem wvars)),
exp = ZHSchema (0Z_HSCHEMA))
o (AbbrevDef (0Z_ABBREVDEF)))

The translation of the definition for an action subsystem is done using a schema expression involving
an active schema and possible a held or reset schema (as well as the schemas Active and Inactive
which test the value on the Action? port). The expression used to invoke these schema is derived
from the invocation field for the relevant schema, taking the declaration part of that schema.

Z

type_from_decl: Z_DECL +~ Z_FEXPR

V decl: Z_DECL; ze: Z_EXPRe
decl — ze € type_from_decl

=

(3 names: seq IDENT e

decl = (DecDec (names = names, type = ze)))

Now we specify how to make the specification for an action subsystem.

make_ass_spec expects to be passed:

name the z name of the specification to be produced

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

206

adecl the declaration from the invocation for the active schema
sdecl the declaration from the invocation for the state held or reset schema (as appropriate)

vars a (possibly empty) set over variables over which (if non-empty) abstraction will take place

The declarations are used as sources for appropriately instantiated schema references and must be of
the form “localname: schemaref” not of the form “localname: U”. If the schema requires parameters
they must of course be present.

make_ass_spec is formally a total function even though for some values in the domain type_ from_decl
will fail. However, it should never be called with such values and if it is this may be treated as a
fatal internal error in ClawZ. As far as the Z is concerned the value returned in these circumstances
is arbitrary and irrelevant.

VA
make_ass_spec: (WORD x Z_DECL x Z_DECL x F PVALUE)
— seq Z_PARA

YV name: WORD; adecl, sdecl: Z_DECL; vars: ¥ PVALUFE; szp: seq Z_PARAe
(name, adecl, sdecl, vars) — szp € make_ass_spec
54
(3 as, rhd, body: Z_EXPR
e type_from_decl adecl = as
A rhd = if sdecl = ()
then SchemaRef Inactive
else ZSConj (SchemaRef Inactive, type_from_decl sdecl)
A body = ZSDisj (ZSConj (SchemaRef Active, as), rhd)
N 8zp =
((uZ_ABBREVDEF
| ident = word2ident name
A value = if vars = {}
then body
else ZLambdaFEzxp (
decl = (DecSchema(vars2uhschem wvars)),
exp = body)
o AbbrevDef (0Z_ABBREVDEF))
)

6.9.5 The Invocation

The actual parameters to a masked subsystem are supplied at the point of invocation. This differs
from the parameterisation of library blocks. The reason for this difference is that the block name

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

207

derived from the path, which is the name used for the definition which invokes a library block will
already have been used to define the schema block. If the parameters are supplied outside the
enclosing schema then another name will be needed, and its not obvious how to chose a new unique
name.

We now specify the binding which is passed as a parameter to a subsystem. This depends upon
the parameters of the subsystem (of which the various mask parameters are the ones consulted) and
the set of variables which have already been masked in this context (i.e. the mu_ctzt). In addition
to the information defining the relevant binding two sets of variable names are returned, the set of
variables masked by this subsystem, and the set of masked variables (of subsystems higher up) used
in the mask parameters.

Z
make_maskbinding: (F PARAM) x (F PVALUE)
— (F (IDENT x Z_EXPR)) x (F PVALUE) x (F PVALUE)

make_maskbinding = (((F PARAM) x F PVALUE) x {{}L.{},{)}) @
{pars: F PARAM; binding: F (IDENT x Z_EXPR); pmvarp: MASK_VAR_PAR,;
pmstyp: MASK _STYLE_PAR; pmvalp: MASK_VALUE_PAR,;
muarp, mstyp, mvalp: PVALUE;
mu_ctxt, new_maskvars, used_maskvars: F PVALUE;
binding_info: PVALUE + Z_EXPR x (F PVALUE)
| {sc2pn "MaskVariables" — muvarp, sc2pn " MaskStyleString" — mstyp,
sc2pn " Mask ValueString" — mualp} C (param_value pars)
A muarp — pmuarp € parse_maskvar_param
A mstyp — pmstyp € parse_maskstyle_param
A mualp — pmualp € parse_maskvalue_param
A dom pmwvarp = dom pmstyp = dom pmuvalp
A binding_info =
{n: dom pmuvarp; name: PVALUE; style: MASK _STYLE;
value: Z_EXPR; umvs: F PVALUFE
| name = pmvarp n
A style = pmstyp n
A (TMatch value, umvs) = maskparam_trans (style, pmovalp n, mv_ctxt)
e name — (value, umuvs)
}
A new_maskvars = dom binding_info
A used_maskvars = | (ran (binding_info § second))
A binding = {pv: PVALUE; ze: Z_EXPR; mvs: F PVALUE
| pv — (ze, mus) € binding_info
e pualueZident pv — ze}

e (pars, mv_ctxt) — (binding, new_maskvars, used_maskvars)}

Though different methods are used in the construction of the specification of action subsystems,

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

208

the construction of the invariant requires no special treatment. The following specification therefore
covers all the invocations needed while translating subsystems.

Z
make_ss_inv: IDENT — WORD — F PVALUE
— F (IDENT x Z_EXPR) — Z_DECL

YV name: IDENT; ssname: WORD; vars: F PVALUFE,
binding, binding’: F (IDENT x Z_EXPR)
| binding’ = {v:vars e pvalueZident v — Ident (pvalueZident v)} @ binding
e make_ss_inv name ssname vars binding
= (DecDec(
names = (name),
type = if binding' = {}
then SchemaRef ssname
else Application (
SchemaRef ssname,
BindingDisplay binding'))

6.9.6 The Subsystem

In the following the treatment of mask variables is important.

Mask variables are in scope in subsystems of a masked subsystem. To achieve this effect we keep
track of which variables are in scope, and we keep track of which of these variables are actually
used. A subsystem is parameterised either if it is a masked subsystem with a non-empty set of mask
variables, or if it makes any use of variables masked by subsystems which enclose the subsystem.
The parameters to the subsystem definition will be the union of the variables it masks and those
which are masked at higher levels and used in it.

The two fields of a subsystem, subsys_info.muv_ctxt and subsys_info.used_maskvars are used in this
process. The former contains the set of variables masked at higher levels, and is given a value during
the library look-up traversal which has already been completed. The latter contains the subset of
those which are used in the subsystem or in the actual expressions supplied for the variables masked
by this subsystem. This field is given its value during the subsystem translation traversal.

The used_maskvars value is obtained in the following way. First the union is formed of the used
maskvars for each of the blocks in the subsystem. Then the variables masked by this subsystem are
removed from this list, and the variables which occur in the mask variable context and are used in
the actual parameters to the subsystem are added.

The additional schemas which arise from the presence of action subsystems (or in libraries, just in
case the application involves action subsystems) are always parameterized in exactly the same way

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

209

as if there were no action subsystems. This is not optimal, but saves the complication of keeping
track of several more different sets of mask variables. This applies also to the top level definition for
an action subsystem (which is always a schema expression).

The following specification is used for generating all the schemas involved, specification and invoca-
tion. A flag is also returned which is relevant only for held and reset schemas and indicates in effect
whether there is any state in the subsystem. If set the schema definition may be suppressed (and
the invocation field should be left empty).

Z

translate_schema: (DTYPE x A_SUBSYS x
(PATH x (F (IDENT x Z_EXPR)) x (F PVALUE) x
(F PVALUE) x (F PVALUE)))
— (Z_SPEC x Z_DECL x BOOL)

Y dtype: DTYPE; as: A_SUBSYS; path: PATH; maskbinding: F (IDENT x Z_EXPR);
new_maskvars, pused_maskvars, bused_maskvars: F PVALUE;
z_spec: Z_SPEC; inv: Z_DECL; empty: BOOL,;
pack: PATH x (F (IDENT x Z_EXPR)) x (F PVALUE) x
(F PVALUFE) x (F PVALUE)
| pack = (path, maskbinding, new_maskvars, pused_maskvars, bused_maskvars)
e (dtype, as, pack) — (z_spec, inv, empty) € translate_schema
< (3 ssi: SUBSYS_INFO; pi: PORT_INFO;
blks: PVALUE + A_BLOCK; srefs: Z_DECL; eqns: Z_PRED;
word: WORD:; localname: IDENT
e as = (subsys_info = ssi, port_info = pi, blocks = blks)
A word =
if dtype = DTActive then w4 (path2globw path)
else if dtype = DTHeld then wy(path2globw path)
else if dtype = DTReset then w,(path2globw path)
else path2globw path
A localname = path2loci path
A (srefs, empty) = schemadecs dtype blks
A eqns = if dtype € {DTActive, DTPlain}
then lines_equations path blks ssi.lines (ssi.action_info.complexes)
else PredConj {}
A z_spec = make_ss_spec word srefs eqns (new_maskvars U bused_maskvars)

A inv = make_ss_inv localname word bused_maskvars maskbinding)

Note that in the following specification

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 210

translate_action_subsys:
(Z_DECL x Z_DECL
x (PATH x (F (IDENT x Z_EXPR)) x (F PVALUE) x
(F PVALUFE) x (F PVALUE)))
— (Z_SPEC x Z_DECL)

V adecl, sdecl: Z_DECL; path: PATH; maskbinding: F (IDENT x Z_EXPR);
new_maskvars, pused_maskvars, bused_maskvars: F PVALUFE,
z_spec: Z_SPEC; inv: Z_DECLe
(adecl, sdecl, (path, maskbinding, new_maskvars, pused_maskvars, bused_maskvars))
— (z_spec, inv) € translate_action_subsys
=4
(3 word: WORD:; localname: IDENT
o word = path2globw path
A localname = path2loci path
A z_spec = make_ass_spec (word, adecl, sdecl, (new_maskvars U bused_maskvars))
A inv = make_ss_inv localname word bused_maskvars maskbinding)

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 211

Lemma 1 Ltd.

subsys_spec_and_inv: A_SUBSYS x (PATH x (F (IDENT x Z_EXPR))
x (F PVALUE) x (F PVALUE) x (F PVALUE))
— Z_SPEC x INVOCATION

V path: PATH; maskbinding: F (IDENT x Z_EXPR);
new_maskvars, pused_maskvars, bused_maskvars: F PVALUE;
as: A_SUBSYS); ssi, ssi': SUBSYS_INFO; pi: PORT_INFO;
blks: PVALUE + A_BLOCK; srefs: Z_DECL; eqns: Z_PRED; word: WORD;
maskbinding: F (IDENT x Z_EXPR); hc: HOLD_CONTEXT; localname: IDENT,
new_maskvars, pused_maskvars, bused_maskvars: F PVALUE;
Z_SPECh, Z_SPECy, Z_SpPeCq, Z_Specs, z_spec: 4 _SPEC;
nvy,, NV, MU, NV, asinv: Z_DECL; inv: INVOCATION;
emptyn, empty,, empty,, empty: BOOL;
pack: PATH x (F (IDENT x Z_EXPR)) x (F PVALUE)
x (F PVALUE) x (F PVALUE)
| pack = (path, maskbinding, new_maskvars, pused_maskvars, bused_maskvars)
A hc = as.subsys_info.action_info.held_ context
A localname = path2loci path
A (z_specy, invy, emptyy) =
if he € {HCHeld, HCUnknown}
then translate_schema (DTHeld, as, pack)
else ({), (), true)
A (z_specy, inv,, empty,) =
if he € {HCReset, HCUnknown}
then translate_schema (DTReset, as, pack)
else ({), (), true)
A (z_specq, inv,, emply,) = translate_schema (
if ssi.action_info.action_subsys then DTActive else DTPlain, as, pack)
A asinv = if hc = HCHeld
then if emptyy, then () else invy,
else if empty, then () else inv,
A (z_specs, invg) =
if ssi.action_info.action_subsys
then translate_action_subsys (inv,, asinv, pack)
else (), inv,)
A z_spec = 7/ (if emptyy then () else z_specy,
if empty, then () else z_spec,, z_spec,, z_specs)
A inv = (OtherInv localname, (invs, if emptyy then () else invy,
if empty, then () else inv,))
o subsys_spec_and_inv (as, pack) = (z_spec, inv)

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

212

In translate_ subsystem variables concerned with masked variables are used as follows:

maskbinding this is the information necessary to construct a binding of actual parameters to the
subsystem (as a map from identifiers to Z expressions)

new_maskvars if this subsystem is masked then new_maskvars is the set of the names of variables
masked by it, otherwise it is empty

pused_maskvars this is the set of names of variables which are masked in higher level subsystems
and used in the actual parameters to this subsystem

bused_maskvars this is the set of names of variables which are masked in higher level subsystems
and used in the actual parameters to blocks within this subsystem (excepting usages which are
hidden by a nested mask)

translate_subsystem: PATH — A_BLOCK +~ A_BLOCK

Y path: PATH; ab, ab’: A_BLOCKe

(ab +— ab") € translate_ subsystem path

< (3 as: A_SUBSYS; ssi, ssi’: SUBSYS_INFO; pi: PORT_INFO;

blks: PVALUE + A_BLOCK; srefs: Z_DECL; eqns: Z_PRED;
word: WORD:; localname: IDENT;
maskbinding: F (IDENT x Z_EXPR); hc: HOLD_CONTEXT;
new_maskvars, pused_maskvars, bused_maskvars: F PVALUE;
Z_Specy, Z_Specy, zZ_Specqy, zZ_specs, z_spec: Z_SPEC,
MUy, MUy, NV, nvs: Z_DECL; inv: INVOCATION;
emptyn, empty,, empty,, empty: BOOL;
pack: PATH x (F (IDENT x Z_EXPR)) x (F PVALUE) x
(F PVALUFE) x (F PVALUE)
| pack = (path, maskbinding, new_maskvars, pused_maskvars, bused_maskvars)
° ab = ASubsys as

A as = (subsys_info = ssi, port_info = pi, blocks = blks)

A (maskbinding, new_maskvars, pused_maskvars)
= make_maskbinding (ssi.subpars, ssi.mv_ctzt)

A bused_maskvars = (|J {blk: ran blks e get_used_maskvars blk}) \ new_maskvars

A (z_spec, inv) = subsys_spec_and_inv (as, pack)

A ssi’ = (subpars = ssi.subpars, syspars = ssi.syspars, lines = ssi.lines,
specification = z_spec, invocation = inv, virtual = VInhibit,
used_maskvars = bused_maskvars U pused_maskvars,
mu_ctrt = ssi.mv_ctzt, action_info = ssi.action_info)

A ab’ = ASubsys (subsys_info = ssi’, port_info = pi, blocks = blks))

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

213

translate_system: A_BLOCK - A_BLOCK

YV ab, ab’: A_LBLOCKe

ab — ab’ € translate_system

=4

(3 pv: PVALUE; as: A_SUBSYS
e ab = ASubsys as

A (name = Name, value = pv) € as.subsys_info.syspars

A ab — ab’ € a_block_map translate_subsystem (pv))

6.10 Metadata Extraction

When translating a library it is necessary to produce a metadata file showing how the masked
subsystems in the library can be invoked. The meta-element for a masked subsystem will use the
SourceBlock parameter value to uniquely identify the library block referred to (which will therefore
be the sole SelectionParameter), and will provide for each block:

1. the Z specification name which must be used to invoke the block

2. aset of TransmittedParameters which includes each of the Mask Variables with translation code
SVM.

Whether the translation code SVM is the best one to use is moot, and the optimum may vary
according to the usage of the masked subsystem and its content. It is open to the user to edit the
metadata and substitute a translation code which works better for his application.

__[C,R]

libmap_null: R — C — A_LIB_BLOCK — R x A_LIB_BLOCK

Vr:R; c¢: C;alb: ALLIB_BLOCKe
libmap_null r ¢ alb = (r, alb)

path2pv converts a PATH (which is a sequence of PVALUES) to a single PVALUE, using “/” as
separator.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

214

path2pv: PATH — PVALUE

YV pvl,pv2: PVALUE; w: seq PVALUEe
path2pv () = sc2pv ""
A path2pv (pvl) = pvl
A path2pv ((pvl) — (pv2) ™ w)
= sc2pv (7)) (pv2sc pvl, " /", pv2sc (path2pv ((pv2) — w))))

get_maskstyles: F PARAM -+ (PVALUE + MASK_STYLFE)

V pars: F PARAMe
dom get_maskstyles =
{pars: F PARAM
| sc2pn ({" MaskVariables", " MaskStyleString"})
C dom (param_value pars)}
A get_maskstyles pars =
(1 mwvars: seq PVALUE; mstyles: seq MASK_STYLE
| mvars =
if sc2pn " MaskVariables" € dom (param_value pars)
then parse_maskvar_param (param_value pars (sc2pn " MaskVariables"))
else {}
A mstyles =
if sc2pn " MaskStyleString" € dom (param_value pars)
then parse_maskstyle_param (param_value pars (sc2pn " MaskStyleString"))

else {}

e {n: dom mvars e mvars n — mstyles n})

maskstyle2pv: MASK _STYLE — PVALUE

maskstyleZ2pv MSEdit = sc2pv "SVM™"
A maskstyle2pv MSCheckboxr = sc2pv " Checkbox"
A (Vspv: seq PVALUE e
maskstyle2pv (MSPopup spv) = (parse_popup_tc™) spv)

The following converts a PORT_DETAILS map to a sequence of PORT_TYPEs. If the domain is
not an initial segment of N then the empty sequence is returned.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

215

details2types: (PVALUE + PORT_DETAILS) — (seq PORT_TYPE)

V pds: PVALUE + PORT_DETAILS; pts : N +» PORT_TYPE
| pts = num2pvalue § pds § (Apd:PORT_DETAILSe pd.port_type)
o details2types pds = if pts € (seq PORT_TYPE) then pts else ()

In the following specification rootp is the path to the top level subsystem of an artificial subsystem,
and relp is the path to the subsystem under consideration from that point. If an artificial subsystem
is not being processed then as_name will be NullString and rootp will be a singleton list containing
the system name.

VA
masksubsys_metaelem: PVALUE x PATH — PATH — A_SUBSYS
— META_ELEMENT

V as_name: PVALUE; rootp, relp: PATH; ass: A_SUBSYS;
pars, mips: F PARAM; sb: PVALUE; mvs: F PVALUE;
META_ELEMENT; maskstyles: PVALUE + MASK_STYLE

| pars = ass.subsys_info.subpars

A sb = path2pv (rootp ~ relp)

A maskstyles = get_maskstyles pars

A mitps = {mv: dom maskstylese (

name = sc2pn (pv2sc mv),
value = maskstyle2pv (maskstyles mv))}
A z_name = path2globi

((if as_name = NullString then rootp else (as_name)) ~ relp)

N held_z_name = if (second g held_inv) ass.subsys_info.invocation = ()
then Nil
else Value (i, z_name)

A reset_z_name = if (second § reset_inv) ass.subsys_info.invocation = ()
then Nil

else Value (i, z_name)
block_path = (StarPat)
select_pars = {(name = sc2pn "SourceBlock", value = sb)}
transmit_pars = mitps
input_port_types = details2types ass.port_info.input_port_details
output_port_types = details2types ass.port_info.output_port_details

> > > > > >

used_maskvars = (J {blk: ran (ass.blocks)
e get_used_maskvars blk}) \ (dom maskstyles)
masksubsys_metaelem (as_name, rootp) relp ass = OMETA_ELEMENT

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

216

ssmap_metadata: PVALUE x PATH — PATH
— A_SUBSYS x (PVALUE +~ F META_ELEMENT)
— (F META_ELEMENT) x A_SUBSYS

YV as_name: PVALUE; rootp, relp: PATH; ass: A_SUBSYS,
mdmap: PVALUE +— F META_ELEMENT e
ssmap_metadata (as_name, rootp) relp (ass, mdmap) =
({masksubsys_metaelem (as_name, rootp) relp ass} U U(ran mdmap), ass)

extract_-metadata: PVALUE x PATH — A_BLOCK +~ META_FILE

YV as_name: PVALUE; rootp: PATH; ab: A_BLOCK; ass: A_SUBSYS;
mes: ¥ META_ELEMENT
| ASubsys ass = ab
A (mes, ab) = a_block_map_cr
(libmap_null {}, ssmap_metadata (as_name, rootp), newc_path)
() ab
e ran(extract_metadata (as_name, rootp) ab) = mes

6.11 Generating Artificial Subsystems

The A_-BLOCK produced from SYSTEM is now transformed to create various artificial subsystems
which are also A_ BLOCKSs.

Each artificial subsystem specification determines a subsystem of the main model which will yield a
“top level” subsystem for the artificial subsystem, and a set of modifications to subsystems or library
block references which are contained (at any depth) within that subsystem.

There are two kinds of modification which are permitted in this process. Any subsystem, including
the top level subsystem may be subjected to a filter, which is a prescription, in effect, that some of the
blocks in the subsystem are to be discarded. Any block reference may be directed at some artificial
subsystem of the library in which the original reference was satisfied. There two kinds of modification
will be referred to as filters and qualifications respectively. The type BLOCK_MODIFIER (artificial
subsystem modification) supplies information about a single modification (which may either be a
filter or a qualification). When combined with a relative path which identifies a block within the
artificial subsystem an BLOCK_MODIFIER becomes an BLOCK_MODIFIER_SPEC and the com-
plete description of an artificial subsystem consists of the identification of the top level subsystem
and a filter on that top level subsystem, together with a sequence of BLOCK_MODIFIER_SPECs.

The following function derives from a sequence of BLOCK_MODIFIER_SPECs the relevant mod-
ification information for some path. The information returned will be the BLOCK_MODIFIER
associated with the path, if there is one.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

217

If a block is modified or contains a modified block then it must be transcribed for re-translation
(in the latter case only the full names of some subsystems will have changed, local names will be
unchanged) otherwise it can be referred to without change of name or substance.

The implementation may detect and report as “Error”s the presence of multiple modifications ap-
plicable to a single block.
VA

get_as_mod: se¢ BLOCK_MODIFIER_SPEC — PATH

+ BLOCK_MODIFIER

V sss: seq BLOCK_MODIFIER_SPEC; p:PATH; f:BLOCK _MODIFIERe
(p — f) € get_as_mod sss

=4
(3pat: PATTERN
° (path = pat, filter = f) € ran sss

A p +— pat € path_match)

The function is packaged separately for use specifically with respect to subsystems and block refer-
ences. The permitted modifications for subsystems and block references differ, and if the modification
requested (in the BLOCK_MODIFIER_SPECS) is inappropriate for the kind of block under consid-
eration this should be reported as an “Error”. i.e. raise “Error” if get_as_filter finds a qualification
or if get_as_qualification finds a filter.

Z

get_as_filter: se¢ BLOCK_MODIFIER_SPEC — PATH
+ BLOCK_MODIFIER

V sss: seq BLOCK_MODIFIER_SPEC; p:PATH; f:BLOCK_MODIFIERe
(p — f) € get_as_filter sss

=4

(p — f) € get_as_mod sss

A (3 spv: F PVALUFEe f = Include spv V f = Exclude spv)

get_as_qualification: se¢ BLOCK_MODIFIER_SPEC — PATH
+ PVALUE

V sss: seq BLOCK_MODIFIER_SPEC; p:PATH; as_name: PVALUFEe
(p — as_name) € get_as_qualification sss
g

(p — ASname as_name) € get_as_mod sss

The translation of an artificial subsystem involves copying part of the original system making the
following changes:

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

218

e if a block is to be referred to rather than retranslated it is replaced by a stub, the purpose
of which is to supply the declaration for invocation of the block. This applies also to library
blocks (except port blocks, see below).

e otherwise the block is transcribed, implementing any specified filter and removing the invoca-
tion and specification fields (which will be recomputed).

e port blocks which are not filtered out are left unchanged (i.e. they are not converted into a
stub).

The following specifies how a subsystem stub is created.

Z

create_ass_stub: A_SUBSYS — A_BLOCK

YV ass: A_SUBSYSe
create_ass_stub ass = ASubsys (

subsys_info = (subpars = {}, syspars = {},
lines = {}, specification = (),
invocation = ass.subsys_info.invocation,
virtual = ass.subsys_info.virtual,
used_maskvars = ass.subsys_info.used_maskvars, mv_ctxt = {},
action_info = initial_action_info HCUnknown),

port_info = ass.port_info,

blocks = {})

The following specifies how a library block stub is created.

Z

create_lib_stub: A_LIB_BLOCK — A_BLOCK

Y alb: A_LIB_BLOCKe
create_lib_stub alb = ALibBlock (
block_info = (pars = alb.block_info.pars,
specification = (),
invocation = alb.block _info.invocation,
virtual = alb.block_info.virtual,

~

used_maskvars = alb.block_info.used _maskvars,
input_port_types = {},
output_port_types = {}),

port_info = alb.port_info)

The following specifies how the blocks in a subsystem are filtered. It is a partially specified total
function which is not used outside the part of the domain which is specified (i.e. not used for

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 219

Lemma 1 Ltd.

block reference qualifications). A similar comment applies to some of the functions which directly or
indirectly call this function.

Z
filter_blocks: BLOCK _MODIFIER — (PVALUE + A_BLOCK)
— (PVALUE + A_BLOCK)

V f: BLOCK_MODIFIER; blocks, blocks': (PVALUE + A_BLOCK); pvs: F PVALUE
| f = Include pvs N blocks' = pvs <1 blocks
V. f = Exzclude pvs A blocks’ = pvs <9 blocks
e filter_blocks f blocks = blocks’

The following function is used to discard the blocks which are to be filtered out of a subsystem.

Z

filter_subsys: BLOCK_MODIFIER — A_SUBSYS — A_SUBSYS

V f: BLOCK_MODIFIER; ass: A_SUBSYSe
filter_subsys f ass =
(subsys_info = ass.subsys_info,

port_info = ass.port_info,
blocks = filter_blocks f ass.blocks)

The following functions transcribe and translate the subsystems which are changed in some artificial
subsystem. Note that these functions do nothing sensible if supplied with a path which is not in the
specified subsystem (the path_change function will not yield defined results in that case).

Z

‘CHANGE_INFO n= Unchanged
‘ | Changed

Given the results of filtering the blocks in a subsystem the following function specifies how the
filtered subsystem is to be constructed. This involves reconstructing the action complexes, repeating
the checks on the complexes which might raise new errors because of the filtering operation.

The port_info is recomputed discarding information about ports which have been deleted. The
following two functions determine which ports remain:

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 220

Lemma 1 Ltd.

inport_names_remaining: (PVALUE + A_BLOCK) — F PVALUE

V blocks: PVALUE + A_BLOCKe
nport_names_remaining blocks =
{pv : dom blocks; alb: A_LIB_BLOCK; pn: PVALUE
| ALibBlock alb = blocks pv
A (name = BlockType, value = InPort) € alb.block_info.pars

~

A (name = Port, value = pn) € alb.block_info.pars

° pn}

outport_names_remaining: (PVALUE + A_BLOCK) — F PVALUE

V blocks: PVALUE + A_BLOCKe
outport_names_remaining blocks =
{pv : dom blocks; alb: A_LIB_BLOCK; pn: PVALUE
| ALibBlock alb = blocks pv
A (name = BlockType, value = QOutPort) € alb.block_info.pars

~

A (name = Port, value = pn) € alb.block_info.pars

° pn}

This specification prescribes how to construct a filtered subsystem given the results of modifying as
necessary the blocks in the subsystem.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

221

make_filtered_subsys:

(PATH x (PVALUE + A_BLOCK x CHANGE_INFO)
x A_SUBSYS x CHANGE_INFO)

— (A_SUBSYS x CHANGE_INFO)

V path:PATH; ass, ass’: A_SUBSYS; ci, c¢i': CHANGE_INFO;
ssi, ssi’: SUBSYS_INFO;
pi, pi'’: PORT_INFO; blocks, blocks’: PVALUE + A_BLOCK;
blockcs: PVALUE + (A_BLOCK x CHANGE_INFO)
| ass = (subsys_info = ssi, port_info = pi, blocks = blocks)
A blocks' = blockes § first
A ci’ = if ran (blockes g second) = {Unchanged}
then ct
else Changed
A ssi’ =
if c¢i’ = Changed
then (subpars = ssi.subpars,
syspars = ssi.syspars,
lines = ssi.lines,
specification = (),
invocation = (Nolnv, ({), (), ())),
virtual = VUnknown,
used_maskvars = ssi.used_maskvars,
mu_ctzt = ssi.muv_ctxt,
action_info = (
action_subsys = ssi.action_info.action_subsys,
complexes = make_action_complezxes (ssi.lines, blocks', path),
held_context = ssi.action_info.held_context))
else ssi
A pi’ = (input_port_details = (inport_names_remaining blocks’) < pi.input_port_details,
output_port_details = (outport_names_remaining blocks’) <1 pi.output_port_details)
A ass’ = (subsys_info = ssi’, port_info = pi’, blocks = blocks’)
e make_filtered_subsys (path, blockcs, ass, ci) = (ass’, ci’)

The following specifications cover the modification of library blocks. In all cases except block refer-

ences a library stub is created which results in reference to the library invocation produced for the
main model.

The first part of the specificatiom covers how a qualified library block is processed. This involves first
checking that the qualified block is a block reference. If the block is indeed a block reference then
a library lookup is undertaken, qualified by the artificial subsystem name given in the qualification,
and a new library block obtained in this way is returned. If a library lookup is attempted and fails

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

222

an Error should be raised.

Z
qualify_blockref: META_FILE — ART_SUBSYS_SPEC — PATH — PATH
— HOLD_CONTEXT — (F PVALUE) — A_LIB_BLOCK - A_LIB_BLOCK

V mf: META_FILE; art: ART_SUBSYS_SPEC,; toppath, relpath: PATH;
alb, alb’: A_LIB_BLOCK; he¢: HOLD_CONTEXT;,
bi, bi': BLOCK_INFO; pi: PORT_INFO;
ci: CHANGE_INFO; maskvars: ¥ PVALUE; hc: HOLD_CONTEXT
| alb = (block_info = bi, port_info = pi)
A alb’ = (block_info = bi’, port_info = pi)
e alb — alb’ € qualify_blockref mf art toppath relpath hc maskvars
< (name = BlockType, value = Reference) € bi.pars
A (3 as-name: PVALUEe
relpath — as_name € get_as_qualification art.rest

A instantiate_last_match as_name mf hc ({art.name) — relpath) maskvars bi.pars
= IMatch by’

If qualification fails, a library stub is used.

Z
make_modified_libblock: META_FILE — ART_SUBSYS_SPEC — PATH
— PATH — HOLD_CONTEXT — (F PVALUE) — A_LIB_BLOCK
— (A_LIB_BLOCK x CHANGE_INFO)

VY mf: META_FILE; art: ART_SUBSYS_SPEC,; toppath, relpath: PATH;
ci: CHANGE_INFO; hc: HOLD_CONTEXT; maskvars: ¥ PVALUF,
alb, alb’: A_LIB_BLOCK
| alb € dom (qualify_blockref mf art toppath relpath hc maskvars)
A alb’ = qualify_blockref mf art toppath relpath hc maskvars alb
A ci = Changed
V alb ¢ dom (qualify_blockref mf art toppath relpath hc maskvars)
A ALibBlock alb’ = create_lib_stub alb
A ci = Unchanged

e make_modified_libblock mf art toppath relpath hc maskvars alb = (alb’, ci)

We now specify the filtering operation by mutual recursion.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

223

Z
artificial_subsys_filter: META_FILE — ART_SUBSYS_SPEC — PATH
— PATH — A_SUBSYS — (A_SUBSYS x CHANGE_INFO);
artificial_subsys_mapfilter: META_FILE
— (ART_SUBSYS_SPEC x PATH x PATH x A_SUBSYS x CHANGE_INFO)
— (A_SUBSYS x CHANGE_INFO)

(Y mf: META_FILE; art: ART_SUBSYS_SPEC; ts: BLOCK_MODIFIER_SPEC,
sss: seq BLOCK_MODIFIER_SPEC; toppath, relpath, newpath: PATH,
ass, ass', ass”, ass"': A_SUBSYS; f:BLOCK _MODIFIER;
ci, ci': CHANGE_INFO

| ts = (path = (), filter = art.top.filter) A sss = (ts) — art.rest
A (relpath € dom (get_as_filter sss)
A ass’ = filter_subsys (get_as_filter sss relpath) ass
A ¢t = Changed
V relpath & dom (get_as_filter sss) A ass’ = ass) A ci = Unchanged

A (ass”, ci') = artificial_subsys_mapfilter mf (art, toppath, relpath, ass’, ci)

A newpath = (art.name) ~ relpath

A ASubsys ass” = if ci’ = Changed

then translate_subsystem newpath (ASubsys ass”)
else create_ass_stub ass

e artificial_subsys_filter mf art toppath relpath ass = (ass", ci’))

A (Y mf: META_FILE; art: ART_SUBSYS_SPEC; toppath, relpath:PATH ;
ci, ci': CHANGE_INFO; cis: F CHANGE_INFO; ssi: SUBSYS_INFO;
pi: PORT_INFO; blocks, blocks': PVALUE + A_BLOCK;
blockcs: PVALUE + (A_BLOCK x CHANGE_INFO);
he: HOLD_CONTEXT:; maskvars: F PVALUE; ass, ass': A_SUBSYS

| ass = (subsys_info = ssi, port_info = pi, blocks = blocks)
A hc = ssi.action_info.held_context N maskvars = ssi.muv_ctxt
A blockes = {pv: dom blocks; ab, ab:A_BLOCK; alb, alb’:A_LIB_BLOCK;
ass,ass’:A_SUBSYS; lci:CHANGE _INFO
| ab = blocks pv
A (ab = ALibBlock alb N ab’ = ALibBlock alb’
A (alb!, lei)
= make_modified_libblock mf art toppath (relpath — (pv)) hc maskvars alb
V ab = ASubsys ass N\ ab’ = ASubsys ass’
A (ass', lci) = artificial_subsys_filter mf art toppath (relpath — (pv)) ass)
e pu — (ab, lci)}

~

A (ass', ci’) = make_filtered_subsys ({(art.name) ™ relpath, blockcs, ass, ci)

e artificial_subsys_mapfilter mf (art, toppath, relpath, ass, ci) = (ass’, ci’))

©Lemma 1 Ltd. 26 January 2004
Lemma I Ltd. ZED504: ClawZ - Model Translator Specification 224

make_artificial_subsys_block: META_FILE — BOOL — ART _SUBSYS_SPEC
— A_BLOCK - A_BLOCK x META_FILE

YV lib: BOOL; art: ART_SUBSYS_SPEC; ab, ab’: A_BLOCK; imf, mf: META_FILEe

ab — (ab’, mf) € make_artificial_subsys_block imf lib art
~

(31 ass: A_SUBSYS; path: PATHe
(path, art.top.path) € path_match
A ASubsys ass = a_block_select (tail path) ab
A ab' = ASubsys ((artificial-subsys_filter imf art path () ass).1)
A mf = if lib then extract-metadata (art.name, path) ab’ else ())

7 TRANSCRIBING SPECIFICATIONS TO OUTPUT FILES

7.1 Extracting The Specifications

The transcription of output from an A_BLOCK to a SYS_SPEC is defined.

Z

a_block_to_sys_spec: A_.BLOCK — SYS_SPEC

YV ab: A_LBLOCK e
(3 alb: A_LLIB_BLOCKe ab = ALibBlock alb
= a_block_to_sys_spec ab = SysSpec (
block_specs = {},
z_spec = alb.block_info.specification))
A (3 ass: A_SUBSYS; bs: BLOCK_SPECSe ab = ASubsys ass
A bs ={pv:PVALUEFE; ss: SYS_SPEC; ab2: A_BLOCK
| (pv — ab2) € ass.blocks
A ss = a_block_to_sys_spec ab2
e pu — ss}
= a_block_to_sys_spec ab = SysSpec (
block_specs = bs,

z_spec = ass.subsys_info.specification))

7.2 Selecting Output

Note that in the following specification of output selection the number of passes over the SYS_SPEC
is high because of the requirement that the order of output is determined by the order of occurrence

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 225

Lemma 1 Ltd.

of the selection patterns in the output filter specifications. The means that each pattern causes a
new pass over the SYS_SPEC.

An extended path matching function is defined for selecting specifications for output. This function
takes account of what has previously been output, and declines to output any paragraphs which
match previous output paths.

Z

output_path_match: P (PATH x PATTERN x P PATTERN)

YV ¢: PATH; bp: PATTERN ; pps: P PATTERN e
(¢, bp, pps) € output_path_match

< (c,bp) € path_match

A (Vp:ppse (c,p) & path_match)

This function is used for checking whether a path falls in the scope of a previously processed output
filter specification. sppe and sppi are the excluded and included paths respectively, and the check is
satisfied if the path does not match against the filter.

Z

output_path_filter_check: P (PATH x (seq PATTERN) x (seq PATTERN))

YV ¢: PATH; sppe, sppi: seq PATTERN e
(¢, sppe, sppi) € output_path_filter_check

< (Vp: ran sppie (c, p, ran sppe) & output_path_match)

This function checks a path against a complete sequence of output filter specifications. It only
checks output for a particular output file so that duplication can be avoided in a single output file
but allowed in distinct files. True if no match.
VA
filter_specs_path_check:
P (PATH x STRING x seq OUTPUT_FILTER_SPEC)

V ¢: PATH; f: STRING,; sofs: seg OUTPUT_FILTER_SPEC'e
(¢, f, sofs) € filter_specs_path_check
& (Y ofs: ran sofs

| f = ofs.output_file

e (¢, ofs.excl, ofs.incl) € output_path_filter_check)

The following function filters the SYS_SPEC resulting from a model translation and extracts that
part of the Z specification which defines the blocks matching a path (but not matching any previously
output paths). This function takes one pass over the SYS_SPEC retrieving the specifications which
match a single pattern (and have not been previously selected for this file).

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004
ZED504: ClawZ - Model Translator Specification

select_z: (PATH x PATTERN x (P PATTERN)
X (seq OUTPUT_FILTER_SPEC) x STRING)
— SYS_SPEC — Z_SPEC

YV ¢: PATH; bp: PATTERN ; pps: P PATTERN;

sofs: seq OUTPUT _FILTER_SPEC,; f: STRING; sys_spec: SYS_SPEC;

block_specs: BLOCK _SPECS; z_spec, sub_z_specs: Z_SPEC
| sys_spec = SysSpec (block_specs = block_specs, z_spec = z_spec)
A sub_z_specs = 7/
(1 ssp:seq (seq Z_PARA)
| ran ssp = ran

(A pv:PVALUFEe (select_z (¢ ™ (pv), bp, pps, sofs, f) (block_specs pv)))

)
e select_z (¢, bp, pps, sofs,) sys_spec =
if (¢, bp, pps) € output_path_match
then if (c, f, sofs) € filter_specs_path_check
then sub_z_specs — z_spec
else sub_z_specs
else sub_z_specs

226

The list version takes a list of paths for selection, shifting each path into the inhibit set after it has
been used for selection.

Z

list_select_z: (PATH x (seqg PATTERN) x (P PATTERN)
x (seq OUTPUT.FILTER_SPEC) x STRING)
— SYS_SPEC — Z_SPEC

YV ¢: PATH; bp: PATTERN; sbp: seq PATTERN;
sofs: seq OUTPUT_FILTER_SPEC; f: STRING; pps: P PATTERN;
sys_spec: SYS_SPEC, block_specs: BLOCK_SPECS;,
z_spec, sub_z_specs: Z_SPECe

list_select_z (c, (), pps, sofs, f) sys_spec =)

list_select_z (c, (bp) 7 sbp, pps, sofs, [) sys_spec =

(select_z (c, bp, pps, sofs, f) sys_spec)

™ (list_select_z (c, sbp, pps U {bp}, sofs, f) sys_spec)

The filter version takes a filter as a parameter,

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 221

Lemma 1 Ltd.

filter_select_z: (PATH x OUTPUT_FILTER_SPEC
x (seq OUTPUT_FILTER_SPEC) x STRING)
— SYS_SPEC — Z_SPEC

YV ¢: PATH; ofs: OUTPUT_FILTER_SPEC; sofs: seq OUTPUT_FILTER_SPEC,
f: STRING; sys_spec: SYS_SPECe
filter_select_z (c, ofs, sofs, f) sys_spec =

if f = ofs.output_file

then (list_select_z (c, ofs.incl, ran ofs.excl, sofs, f) sys_spec)

else ()

Finally we specify how to compute all the output for a single output file from a sequence of output
filter specifications. Two lists of output filter specifications are required, the first is a list of already
processed specifications, the second a list of specifications not yet processed.

Z
list_filter_select_z: (PATH x (seq OUTPUT.FILTER_SPEC)
x (seq OUTPUT.FILTER_SPEC) x STRING)
— SYS_SPEC — Z_SPEC

YV ¢: PATH; sofsl, sofs2: seq OUTPUT_FILTER_SPEC;
ofs: OUTPUT_FILTER_SPEC; f: STRING; pps: P PATTERN,
sys_spec: SYS_SPEC

[]
list_filter_select_z (c, sofs1, (), f) sys_spec = ()
A list_filter_select_z (c, sofsl, (ofs) ™ sofs2, f) sys_spec =
(filter_select_z (c, ofs, sofsl, f) sys_spec) —
(list_filter_select_z (c, sofsl ™ (ofs), sofs2, f) sys-spec)

7.3 Creating Output Files

The ClawZ translator will write selected parts of the resulting specification to one or more output
files, provided that there have been no error reports or the flag inhibit_ outpui_on_error is false.
Note that these conditions for the output of the specifications are specified only informally, by this
paragraph.

For each output file the following information is supplied as parameters to the ClawZ run:

1. The file name.

2. A list of paths for material whose output is to be inhibited.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

228

3. A list of paths for material to be output.

The output phase of the ClawZ translator can be specified as follows:
VA

create_output: SYS_SPEC — PVALUE —
seq OUTPUT_FILTER_SPEC — (STRING + Z_SPEC)

YV sys_spec: SYS_SPEC; name: PVALUE;

sos: seq OUTPUT_FILTER_SPEC'e

create_output sys_spec name $08 =

{output_file: STRING; ezcl, incl: seq PATTERN; spec:Z_SPEC

| (output_file = output_file, excl = excl, incl = incl) € ran sos
A spec = list_filter_select_z ({name), (), sos, output_file) sys_spec
e output_file — spec}

The result is a mapping from filenames to Z_SPECs.

8 RUNNING CLAWZ

First a procedure for processing artificial subsystems:
Z

proc_art_subsys: META_FILE — BOOL
— (A_BLOCK x ART_SUBSYS_SPEC)
+ (STRING + Z_SPEC) x META_FILE

YV ab, ab’: A_BLOCK; ass: ART_SUBSYS_SPEC; ss: SYS_SPEC,
lib: BOOL; output: STRING + Z_SPEC; imf, mf: META_FILE

| ab — (ab’, mf) € (make_artificial - subsys_block imf lib ass)

A ss = a_block_to_sys_spec ab’

N output = create_output ss ass.name ass.output_spec

e proc_art_subsys imf lib (ab, ass) = (output, mf)

We now tie the whole thing together with a top level specification showing how a collection of files
are created from the SYSTFEM derived from the Simulink model as indicated in the RUN_PARAMS.
The following specification gives a sequence of maps from filenames to specifications. It is to be
understood that if the same filename occurs in the domain at more than one place in this sequence
then the relevant specifications will be written to that file in the order in which they occur in the
sequence.

The synthesize_blocks function returns the set of paths for blocks which have not been translated.
This set should be printed in a single warning, in which the paths are ordered and printed in an
indented column one to a line.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification 229

A META_FILE, is also to be output if a filename has been supplied for it. Note that this metadata
is generated too late to be used for block references internal to a library, and should be supplied to
clawz in a subsequent run of clawz if such references are present.

Z

clawz_run: (SYSTEM x META_FILE x STRUCTURE x RUN_PARAMS)
— (seq (STRING + Z_SPEC)) x (OPT|[STRING] x META_FILE)

v lib: BOOL; sys: SYSTEM;

sys_c:[pars: T PARAM; blocks: F; BLOCK; lines: F; LINE];
mf, mflib: META_FILE; clawz_params: RUN_PARAMS;
abl, ab2, ab3, ab4, abs, ab6, vs: A_BLOCK; ss: SYS_SPEC,
f1: STRING + Z_SPEC; system_name: PVALUEFE; failpaths: F PATH;
ssfs: seq((STRING + Z_SPEC) x META_FILE);
steerfile: STRUCTURE; mvartypes: MVARTYPES
| lib = (clawz_params.meta_ output # Nil)
A System sys_c = sys
A muartypes = muts_of _structure steerfile
A (name = Name, value = system_name) € sys_c.pars
abl = system_to_a_block lib system_name sys
ab2 = library_lookup mf abl
ab3 = set_port_types ab2
ab4 = propagate_signal_details mvartypes ab3
vs = if wvirtualize then virtualize_system muvartypes ab4 else abj
(failpaths, ab5) = synthesize_blocks muvartypes vs
ab6 = translate_system abd
mflib = if lib then extract_metadata (NullString, (system_name)) ab6 else ()

> > > > > > > > >

ss = a_block_to_sys_spec abb
A fl1 = create_output ss system_name clawz_params.output_ spec
N ssfs = {n: N; asss: ART_SUBSYS_SPEC

f: STRING + Z_SPEC; mf: META_FILE

| n+— asss € clawz_params.art_subsys_specs;

(ab6, asss) — (f, mf) € proc_art_subsys mf lib

o n— (f, mf)}

[]

clawz _run (sys, mf, steerfile, clawz_params) =
((f1) ™ (ssfs g first), (clawz_params.meta_output, ~/((mflib) ~ (ssfs § second))))

9 ENHANCING CLAWZ

In this section are presented notes on how to go about enhancing this specification.

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

230

9.1 Adding A Parameter Translation Method

When new blocks are added to the library it often occurs that some new kind of parameter is required
by the block which cannot be translated into Z by any of the available methods. It then becomes
necessary to resort to specifying individually each instance of the block in the libarary, and selecting
the appropriate instance using the untranslatable parameter.

Here we note the aspects of the specification which must be upgrading to provide support for trans-
lating a new parameter into Z so that a single library specification can be used for a range of values
of the parameter. No account here is taken of the work necesary to synthesize or virtualize blocks
with the new kind of parameter.

The aspects of the specification which need to be adjusted are as follows.

2.6 Add additional clauses to the Parameter Translation Code Grammar as required.
2.7 Specify the concrete syntax of the new parameters.

3.4 Specify the datatype corresponding to the abstract syntax for each new parameter translation
type.

3.6 Add declarations for any new constants which will be used in the Z translation of the param-
eters. Extend the abstract syntax of Z if necessary for the translations.

3.7 Define a new PVALUE for the new translation code.

4 This is where complications are likely to arise.

The obvious points of change are mentioned below, but depending on exactly what the new
parameter type is more extensive changes might prove necessary.

4.2 Add a declaration for the function which parses according to the new grammar.

4.6 Upgrade this section to translate the parsed parameter into a Z expression.

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

10 INDEX

AbbrevDef 30
ActionInv ... 40
action_block_invocation 110
ACTION_COMPLEX ..., 42
action_complex_checks 82
ACTION_INFO 42
action_info 43
action_port_id, 110
action_port_invocation 110
action_port_invocations 111
action_subsys 42
action_subsys_errors........ 78
ActionPort 23
ActionQ ..o oo 23
Active ... 28
active_suffiz 45
A_BLOCK 43
a-block-map 89
a_block_map_cr..... i .. 88
a_block_name o .. 180
a_block_select 89
a_block_to_sys_spec 224
A_LIB_BLOCKo 43
A_SUBSY S . 43
ALibBlock 43
all_subsys_outports 140
AllowUnequalInputPortWidths 23
analyse_nonbus_demux 133
ANAF oo 27
ANy o e e e e 26
Application i i 29
artificial_subsys_filter 223
artificial_subsys-mapfilter 223
ART_SUBSYS_SPEC 38
art_subsys_specs o i . 39
AS_MATNEC .« oot e it 33
ASname 38
ASUBSYS oo 43
atexp_val 59
AT _EXP .. oo 26
atscalar2zexpr i 57
BindingDisplay 29
blocko 24
BLOCK ... 24
BLOCK _FUN ... 125
block_ident....... 93
BLOCK_INFO. ..., 41
block_info ... 43
BLOCK_MODIFIER ..., 38
BLOCK_MODIFIER_SPEC 38
block_path 33
block_specs i i, 31

231
BLOCK_SPECS 31
BLOCK_SYN_FUN 182
BLOCK_SYN_FUN2 i, 182
block_syn_table 197
block_type 78
BLOCK_VIRT_FUNT 170
BLOCK_VIRT_FUN2cc.oo ... 170
BLOCK_VIRT_FUN3 ..., 171
Dlocks ..o 24
Dlocks ..o 43
blocks_from_ports, 175
blocks_to_blockmap 86
BlockType 23
Brackets 26
BusCreatorc.uiiiiiiinnn.. 23
bus_bus_selection 158
bus_selector_outputs 161
bus_selector_outputw........................ 159
<bus_structure > 17
bus_switcho 153
BusPT ... 33
BusSelector 23
CaseShowDefault............ 23
Changed.c. i, 219
change_atexp-mlnames 54
CHANGE_INFO i, 219
change_mexp-mlnames 55
change_mlname 46
change_parameter_mlnames 56
change_sexp-mlnames 54
change_vexp-mlnames 55
Checkbox i 35
checkbox_par_trans 63
AAWz_run ... 229
CLOSE ... i 10
closed_merge_decl 193
closed_merge_invocations 193
closed_-merge_pred 194
COMMON_INFOcooiiiiiiiii.. 41
COMPLETES oot 42
COMPOSEL .« v vt 28
Constanto i, 23
create_ass_stub...... i 218
create_lib_stub o ... 218
create_output 228
DecDec ... 29
decl ..o 29
decl ..o 30
AECOT .« o v o 27
DECOR. ... 27
DecorEmply 27
DecSchema 29

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

DecSchemaRef 29
default_update_outputs 129
default_update_outputs_aux 128
AT e 26
Demux ... 23
demuT_exp-map, 164
demUT_eTP_Seqccvuiiinii .. 164
demuz_selection_pos 164
demux_selection_positions................... 190
destinations 24
details2types i 215
Kdigit > oo 14
display_from_inputs........... 154
display_switch 153
do_lib_block 112
double_separator, 45
DTActive. ..., 202
DTHeldcooo i, 202
DTPlain «...ooi e 202
DTReset 202
DTYPE ... 202
dummy_blocksyn 197
Ei o 28
ettherport_tdent, 94
Elements 23
ElementSrc. ... 23
€lSE o 7
emap_from_virtual_map 175
EmptyFilter ... 38
EMPLY_DU oo 76
enable 23
EnableInvc. 40
enable_block_invocation 111
EnablePort 23
EnableQ 23
CTCL o 37
Exclude 38
CTD « ottt 29
EXPRESSION ... i 11
Expression i 20
extract-metadata 216
extract_subsys_inputs 140
extract_subsys_outputs 139
fen2zexpr ..o 58
Fen oo 35
feninfiz2zexpr ... 52
fenunary2zexpr ... oo o 52
filter oo 38
filter_blocks 219
filter_select_z 227
filter_specs_path_check 225
filter_subsys..... 219
first_iterate_subsys 143
< foatiexp > oo 15
foexp > o 15

232
< fofname> ... 15
< founfiziop> oo 15
< foprefiz_op > ..o 15
<fname> ... 14
<fname2 > ... 14
force_signal_name 75
FullFilter i 38
Function2 26
Function 26
GenericPT 33
get_as_filter 217
Get_as_mod 217
get_as_qualification 217
get_invocation i 93
get_maskstyles 214
get_maskvars 85
get_parameter_details....................... 135
get_parameter_details_-nouv 136
get_port_info 96
get_used_maskvars 74
GEttYPEeS .. 117
HCHeld i 40
HCReset . ..o i 40
HCURknown oo 40
HCVoid ..o 40
held ... 23
held_context 42
held_inv 41
held_suffiz..... o o i 45
held_z_name 33
HOLD_CONTEXT ..o, 40
IDENT .. 27
Ident. 29
Tdent ... 30
identbefore 181
L 23
2 A 7
ifaction ... 23
TFail. ... 101
IMatch. i 101
Inactive 28
TNCL oo 37
Include....... 38
tncorrect_paths.......... o .. 120
INeEG . ..o 28
inhibit_output_on_error 45
InitializeStates 23
mitial_action_info 42
mitial_apds ... 76
mitial_opds L 76
MEtTal_pi ... 76
mitial_state. 23
InitialOutput 0 23
INoMatch 101
InPort 23

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

InportInu i 40
inport_block_invocation 110
nport_ident 94
IMPOTE_INVKEY « oot 109
INMPOTT_NAIMNE .« oot 91
INPOTT_NAMES_TEMAINING « . « oo veoeeee 220
INPOTT_TYPES « oo et 117
INPortTypes 36
input_details_ from_type 113
input_port_details 40
INPUL_POTT_NAMESo 96
INPUL_POTT_TYPES . . oo oo 33
INPUL_POTT_LYPES .« v v 41
INPUE_POTTS « oo v 77
Input PortTypes, 23
Inputs ... 23
InputType . ..o 23
instantiate_last_match 109
instantiate_lib_block, 108
INSTANTIATION_RESULT 101
Internal 23
INVEKEY . i 40
TNVOCATION o oottt 41
INVOCATION ... i 41
ipds_from_ipts 113
ipset_ from_ports_param 150
B e e e e e 49
7 P 49
P 49
iterate_subsys 143
keybefore. 181
ofloanhibit ... 149
uflosource ..., 149
Wof2inhibit o 149
buvf2_source ... i i 149
Wuf2.triv ..o 149
<letter > ..o 14
LibBlockoii i 24
libblock_to_a_block 7
LIB.BLOCK_FUN ..., 126
LIB.BLOCK_FUN2 ..., 127
LIB_.BLOCK_VIRT_FUN1 147
LIB_BLOCK _VIRT_FUN2 148
libmap_blocksyn 199
libmap_-maskvars 115
libmap-null 213
libmap-pti 119
library_lookup.......... 116
Liftbsf oo 183
Liftdbf . o 127
lift_subsys_outputs 142
LINE .. 24
line_equations.oouu i 98
LINE_FUN ... i 124
LINE MAP, 121

233
[IME_NAME oot 113
[INE_NAME oo 40
2 24
2 43
lines_equations.o, 99
lINesS_to_Mmap ovi it 122
list_filter_select_z.............c.ccivuiuin... 227
list_select_z. ... 226
<lscalar > 14
Lscalar..... ... 26
Iscalar2zexpr i 51
LOATTQY . oo 26
LoDisplay 26
LuSlice.o 26
MUG « oo 28
TATN_TNU © v ot et e et e e e 41
make_abbr_def 71
make_action_complex 80
make_action_complexes 83
make_arti ficial_subsys_block 224
MAKE_ASS_SPEC . o\ v ittt e 206
make_block_info o . 107
make_ filtered_subsys 221
make_hschema_abstraction 103
make_invocation 105
make_lib_spec 104
make_ltb_specs i . 106
make_maskbinding 207
make_modi fied_libblock 222
Make_SS_Inv 208
MAKE_SS_SPEC . vt v ettt 205
map-along_lines........... 122
<mask_style > i 16
MASK _STYLE 35
< mask_style_par > 16
MASK_STYLE_PAR, 35
<mask_value > 16
<mask_value_par > 16
MASK VALUE_PAR...... 35
<mask_var > ... 16
<mask_var_-par >. 16
MASK VAR_PAR..... 35
maskparam_trans o . 64
maskstyle2pv 214
masksubsys_metaelem 215
Match 100
2 27
I e 26
Matinfix2zexpr o 52
MATTIT > oo e 16
MATTTT2ZETPT o oo et 58
Matrix 35
MatTiT_par_transc...oeeiiiieaio.. 62
MATUNATY2ZETPT « oottt 52
MUAT_ UM oo e e et et e e e e e e e e e 23

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

MAT_OUL . ..o 23
Merge ... 23
merge_action_port_ident 96
merge_action_port_name 96
merge_dests 98
TNETGE_TIAD « « o v v et e e et e et 42
META_ELEMENT ... 0 ... 33
META_FILE 34
meta_file.... ... 39
meta_output 39
MEXP .o 26
mexp_length 60
METP_Irans2 71
METP-Iransdo 72
TMETP_ITANS . . oo 70
MFEEQ e 25
KMo TP > oo 16
M_FILE i 25
mofile ..o 39
M_FILE_PROC 70
mofilesproc. ... 72
M_FILE_RUN_PARAMS 39
<MoANfir_op > oo 16
KM_PrefiT_op > ..o 16
CMMSETD > o vttt e e e e 16
<mlname > ... 14
Mlname 26
TIIIUF oottt e e 27
T U, v v e e e e e e e e e 27
model_file 39
more_specific_details, 121
more_specific_type 121
TIUDF o et e 27
TIUDIN + o e v e e e e e e e 27
MSCheckbox 35
MSEit ... 35
MSEPOPUD . oo 35
Mux ..o 23
mux_selection.......... 160
MVARTYPE ... i 37
MVARTYPES ... i 37
TU_CETE ..o 43
mut_length 61
muts_of _structure. i 73
NAME ... 11
CMAME > it 18
TUATIVC « v e v et e e e e e e e e e 20
TUATIVC « v v v e e e e e e e e e e 23
Name ... 23
TUATIVE . o oottt e e e e e e 24
TUATIVC « v e v e e e e e e e e e e 25
TUATIVC « v e v et e e e e e e e e e 30
TUATIVC « v e v et e e e e e e e e e 38
NameMapping, 36
TUATIVES o o oo v ot e e ettt 29

234
NAT_SEQ_SUTIY o oottt et et 127
NeGative 25
newc_blocksyn 198
NEWC_MASKVATS ... 114
newc_path 119
new-held_context 85
nochange_ bufl 174
NoOINU ..o 40
nonbus_bus_selection........................ 157
nonmux_selection 159
=R P 27
MOLf oot 27
NullString ... 23
num2pvalue. 20
NUMBER ... 11
Number 20
<numeral > 14
NUMETTC_POTE_SEQUENCEo 160
Of f e 23
OTL ot e e e e e e 23
ONe . oo 23
opds_from_opts i 114
OPEN .. 10
10777 2 42
OPETL_MMETGE oo v oo et 195
open_merge_decl 193
OPEN_METPE_TNVOCALIONS . . . o oo oo 193
OPEN_METGE_Dred .. .o vvi .. 194
OPT o 7
OF f e e e 27
OF i o e e e e e e e e 26
OtherInv ... i 40
OUtPOTt .« oo 23
OutportInu i 40
outport_block_invocation 110
OULPOTT_EXTPTreSSTON .« o oo v vt 95
outport_ident. 94
outport_invkey o .. 109
outport_mame i 91
outpPort_names_remaining 220
outport_tYpes 117
OutPortTypesc.ociiiiiiiniininnon.. 36
output_details_from_type 114
output_file 37
output_file 39
OUTPUT_FILTER_SPEC 37
output_path_ filter_check 225
output_path_match 225
output_port_details 40
output_port_names 97
output_port_types 33
output_port_types 41
OULPUL_SPEC « oo oottt 38
OULPUL_SPEC . . oo 39
output_width o 132

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

Output PortTypes, 23
OutputSignals o ... 23
< outputsignals_param > 17
OUTPUTSIGNALS_PARAM 24
< outputs_param > 17
OUTPUTS_PARAM i, 24
PARAM ... 23
<parameter > ... 16
PARAMETER ... i 35
PArameter_pds 134
parameter_pds_-MmoUvc.ouuiennon . 135
parameter_type i 39
parameter_type i 61
PATAIM_ST vt e 151
PATAM_VAIUE « . o oo 74
PDATAMU_ZEID o« oo ve e vt et e e 151
PAT_EransS2 65
<parlist > ... 12
ParMatrix0 35
ParName i 35
DATS o e et e e e 24
DATS ¢ o e e e e e e e e e e 41
ParScalar 35
PATSE_fCN_DATAM . oo 50
parse_file ... 72
parse_maskstyle_param 50
parse_maskvalue_param 50
parse_maskvar_param 50
parse_outputsignals_param 50
PArse_outputs_paramiiia. 50
PATSE_DATATIY « oo v vve vt et et 49
PArse_pathm. 51
Parse_popup-tc i 50
Parse_port_types 51
PATSE_POTES_PATANY o v vv e it e e e e 50
PATSE_VAT_EYPE . o oo 51
ParVector 35
Path2globi 47
PAth2globw 47
PAth2LOCT ..o 47
path2locw 47
PAth2PU. ..o 214
PAth . oo 38
PATH .. 47
path-match 101
<pat_el > . 18
PAT_EL ... o 33
LPpattern > ... 18
PATTERN ... 33
pd_width 128
PlainPat i 33
PLV 25
Plu_power. 58
plo_val ... o 58

235
PNAME ... e 20
pnameident 46
< POPUP-MATNE > o vvi et 16
< POPUP-MATNES > v viv i 16
POPUP-PAT_ETANS « oo v et 63
Port ... 23
POTE et 24
PORT .. 24
POrt2signal 75
port_block_info......... 112
port_block_types 23
port_declarations 184
PORT_DETAILS 40
PORT_INFO i 40
Port_info 43
POTL_INVOCALIONS . . o oo ot 183
PORT_PARAM i 23
< POrt_type > ..o 17
PORT_TYPE ... i 33
POTE_TYPE . oo 40
K POTE_EYPES > oo 17
Ports ... 23
ports_only_blockmap 84
< POTES_PATAIIL > oo vi i 17
Positive ... 25
DT . oot 29
Pred. .o 30
PredBool i 29
PredCongcoo i 29
PredDisj ...coooon i 29
PredEqo 29
PrefizOp ... 26
proc_art_subsys e 228
propagate_signal_details 145
Prop_over_linesc.ieiiinni.. 124
P2 width 127
PTYPE .. 20
push_subsys_inputs 141
PULEC. oo 20
PVALUE i 20
pvalue2ident 46
PualueZexpr....... ..o 29
qualify_blockref 222
QueryPat 33
quoted2zexpr 51
Quoted 35
quote_pval 46
QVALUE i 11
Qualue ... 20
R2zi oo 28
Reference i 23
TESEL et 23
TESEE_UIMU v vttt e 41
reset_suffiz 45
TESEL_Z_MAME .« .o vttt 33

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

TESE oot 38
RNeg ... 28
TOOT « oo et e 42
CTOW > oottt e e 16
CTOWS > ottt e e 16
RUN_PARAMS ... i 39
S2UT o vt 28
D 27
0 27
o PP 27
D el 27
D P 27
o AR 27
A 27
Lol S R I I T 27
L 22 S 27
o g e et et e 26
U v e e e e e 26
o i t e 26
S T e e e 26
> i e e e e e e 26
T e e e e e e e 26
S e 26
K Tl e e e e e 26
o L e e 26
L e e e 8
SC2PTY o v oo 20
SC2DU ¢ oot 20
scalar2zexpr ... 57
Scalar. 35
scalar_par_trans 62
scalar_selection_exp 156
ScalarPT 33
SchemaBox 30
schemadecs 204
SchemaDef..... 30
SchemaRef 29
Selection 29
Selection_exp. ... 157
selection_position........o .. 155
select_from_bus 130
select_from_seq_by_param 166
select_from_seq_by_real 166
SEleCt_Pars. 33
SeleCt_z ..o vv 226
Selector ... 23
selector_expression ... 167
selector_expression_ from_display 167
selector_expression_from_other 167
set_port_types i i 120
set_translation_table 44
SEXP 26
SETP-VAL o v oot 59
SETPres ..o 26
ShowElse ... 23

236
SIGN .o 25
stgnal_kind_switch, 152
<signal-name > ... 17
< SIgnal-name_a > i 17
< signal_selection > 17
< signal_type > ... 17
Simple ... 20
N i e 26
L e e e e e 27
SUICET vt 28
SNaAMe . ..o 20
sort_by_invkey i 182
SOUTCE . o v vttt e e e 24
SPACE 10
SPeCial_par_trans........... . 69
SPECial_par_trans_wp ... 69
SPECIAL_RESULT i, 36
SPECTfICAtiON . oo oot 41
SPEtyped ... 67
sptountypedo 68
SREQIL 36
SRScalar 36
SRVeEctor. ..o 36
ssmap_blocksyn 199
ssmap_maskvars 115
ssmap_metadata. ... 216
SSMAP_PLL oo vt 119
StarPat 33
SEAte ..o 23
state_hold_schema 186
state_invocation i ... 184
state_reset_schema 186
state_wrap_predicate. 187
StateP 23
steering_file 43
steer_file ... 39
Srip-pval. 46
SUruUCt . oo 20
SUructureo 20
STRUCTUREcoiiiiiiii .. 20
SUDPATS . oo 43
subsys_info. ... o 43
SUBSYS_INFO ..., 43
SUDSYS_MAP « o v et 42
subsys_map_bvf3 176
subsys_spec_and_inv o 211
subsys_template 84
SubSystem 24
subsystem_to_a_block 86
SVM 35
SVM_par_trans............c.ciiiiiia.. 62
SwitchCase 23
synthesize_blocks 200
synthesize_bus_creator 188
synthesize_bus_selector 189

Lemma 1 Ltd.

©Lemma 1 Ltd. 26 January 2004

ZED504: ClawZ - Model Translator Specification

synthesize_closed_merge 195
synthesize_constant 191
synthesize_demux 190
synthesize_merge o, 196
SYNERESIZE_TNUT o oo oot 188
synthesize_open_merge 195
synthesize_selector 192
synthesize_terminator 196
SYS_SPEC 31
SYSPATS . oo vt it et 43
SYSSPEC ..o 31
SYSEEMY « o v et et 24
SYSTEML oo 24
SYSTEM ... 24
system_to_a_block, 87
Tail o 42
Terminatoroiiiiiiiiin.. 23
TEQL ..o 34
FREM o 7
then_block_fun........... 125
TMatcho 34
TNoMatch i, 34
TOD oo 38
translate_action_subsys 210
translate_schema 209
translate_subsystem, 212
translate_system 213
< translation_code > 16
TRANSLATION_RESULT 34
transmit_pars.o 33
Irigger ... 23
TriggerInv 40
trigger_block_invocation. 111
TriggerPort i 23
TriggerQ 23
TYUDE oo 29
TYUDE oo 42
type_from_decl............ 205
types_file ... 39
Ui oo 28
Unchanged 219
Unified 35
unified_par_trans i 63
UnitDelay ... i 23
UnknownPT i, 33
UNGUOLEA2ZETPT o v v et et et eee 51
Unquoted 35
update_block_input_ports 123
update_bus_creator_outputs 129
update_bus_selector_outputs 131
update_constant_outputs 136
update_demux_outputs 134
update_libblock_outputs 138
update_libblocks_outputs..................... 139
update_-merge_outputs. 137

237
update_mux_outputs 131
update_output_ports 126
update_outputs_table 138
update_port_details 118
update_port_info 118
update_selector_outputs 137
update_subsys_input_ports................... 124
update_subsystem_outputs 144
update_subsystems_outputs 145
update_unit_delay_outputs 136
<used_local_vars > 17
USed_Mmaskvars 33
USed_Mmaskvars 41
V2U G oo 28
valid_destination_ports 97
valid_source_ports, 97
<wvalue > o 12
VALUE . oo 20
VALUE i 20
VALUE . ..o 23
VALUE . ..o 25
VALUE oo 30
ValuePN i 23
VariableTypes 36
VATS2UACCS . o v oo et e 102
vars2uhschem 102
CVECEOT > o oot e e 16
VECLOT2ZEXPT « oo 57
Vector 35
vector_par_transo 62
vector_selection_exp 156
VectorPT 33
VEXP . 26
vexp_length 60
VETP_VAL . oot 59
VInhibit..... 41
virtual 173
VITTUQL « oo 41
Virtualo 41
VIRTUAL i, 41
VITEUGLTZE . o oo 45
virtualize_block 180
virtualize_block_in_subsys................... 179
virtualize_block_p 177
virtualize_bus_creator 165
virtualize_bus_selector 162
virtualize_constant 155
virtualize_demux i 165
virtualize_libblock 169
virtualize_libblock2, 174
VITTUQITZE_MUT . o oot 163
virtualize_selector 168
virtualize_subsys o 177
virtualize_system 180
virtualize_table o 169

©Lemma 1 Ltd. 26 January 2004

Lemma 1 Ltd. ZED504: ClawZ - Model Translator Specification

238

virtualize_terminator 168
virtual _block 95
virtual_line_equationsc.c.... 99
VITtUGl-map.o 94
VURKNOwn ..., 41
vupdate_ab 173
vupdate_ab_in_ass 173
vupdate_alb 172
VUPAALE_ASS . o oot 172
vupdate_bi 171
VUPAATE_ST oo oot 172
WOTA ot 27
WORD i 27
Word2ident 47
Wrap_predicate, 185
Wrap_predicate_muccovueunnnnenen .. 185
wrap_predicate_nomuv 184
wrap_predicate_wi 185
W o et e e e e e 49
T 49
W e e e e e e e e 49
X0 23
xinport_ident 92
zoutport_ident i . 93
ZBrackets 29
ZBus .. 29
zbus_from_inputs o o 154
zdecl_from_invs oo, 184
ZHSchema i, 29
ZInfixOps ... 29
Z_ABBREVDEF 30
Z_DEC ... 29
Z_DECL ..., 30
Z_EXPR....oo 29
Z_HSCHEMA 30
ZMVATC o oo e e e e e e et e e e 33
zemame_filler ... o o 44
ZNAME_PrefiT .o 44
zoname_SuffiT ... 44
Z_PARA 30
z_path_separator 44
Z_PRED 29
Z_SCHEMABOX 30
Z_SCHEMADEF i, 30
Z_SPEC ... 30
ZoSPEC o v e et 31
z_translation_table 44
ZLambdaExp 29
ZLambdauU 29
ZINGE oo 29
ZPair 29
ZSCONT oo 29
ZSDiUST oot 29
ZSeqUence ... 29

ZTREtA ... oo e 29

