> mr

Version:
Date:
Reference:
Pages:

Prepared by:

Tel:
E-Mail:

9.13

19 June 2003
DAZ/USR505
51

R.D. Arthan
+44 118 958 4409

rda@lemma-one.com

©Lemma 1 Ltd.

ClawZ
UserEuide

Lemma 1 Ltd.
c¢/o Interglossa
2nd Floor

31A Chain St.
Reading

Berks

RG1 2HX

> mr

Lemma 1 Ltd.

0 DOCUMENT CONTROL

0.1 Contents

0

DOCUMENT CONTROL

0.1 Contents e e e
0.2 List of Figures
0.3 Document Cross References
0.4 Changes History,
0.5 Changes Forecast
0.6 Trademarks e e

GENERAL

1.1 Scopeo
1.2 Introduction

OVERVIEW OF ClawZ

2.1 A Simple Simulink Model L.
22 TheModelinZ
2.3 Overview of the ClawZ Library

USING THE MODEL TRANSLATOR

3.1 Files Used by the Model Translator
3.2 Running the ClawZ Model Translator
3.2.1 Patterns
3.2.2 Output Filter Specifications
3.2.3 Block Modifier Specifications
3.2.4 Artificial Subsystem Specifications
3.2.5 The ClawZ Run Parameters
3.3 ClawZ Diagnostic Output
3.4 Translator Steering File
3.4.1 Name Mapping Information
3.4.2 Port Type Information
3.4.3 Matlab Variable Types.
3.5 Generating Metadata o oL L
3.6 Block Synthesis and Virtualization
3.7 Action Subsystems

USING THE .m FILE TRANSLATOR

4.1 Files Used by the .m File Translator
4.2 Running The ClawZ .m File Translator
4.3 .m File Translator Diagnostic Output

PROCESSING THE TRANSLATED MODEL

5.1 Document Preparation
5.2 Type Checking Lo
5.3 Interfacing with a Compliance Argument

A PROOFS OF THE VCS

DAZ/USR505: ClawZ User Guide

10
10
11
11
12
12
13
15
16
17
18
19
20
20
21
22

23
23
23
24

26
26
26
27

29

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide

QO H & g

EXTENDING THE LIBRARY

B.1 A Simple Example

B.2 Representing Simulink Blocks inZ o
B.2.1 Useof Schemas
B.2.2 Port Naming Conventions
B.2.3 Ovwerloading
B.2.4 Parameterisation Lo Lo L
B.2.5 Discrete Operations
B.2.6 Inmitial State
B.2.7 Library Block State inside Action Subsystems

B.3 Preparing Extensions to the Library Metadata
B.3.1 Translatable Matlab Expression Syntax
B.3.2 Translatable Fen Expression Syntax
B.3.3 Dependence of Expression Translation on the ClawZ Library

B.4 Work-arounds for Translator Limitations

CONTROLLING THE MAPPING OF SIMULINK NAMES

C.1 Translating Local Names
C.2 Translating Global Names
C.3 Name Mapping Controls
C.4 Setting the Translation Table
C.5 The NameMapping table
C.6 Action Subsystem Schema Names

CLAWZ RUN PARAMETER TYPE DECLARATIONS
OUTPUT FILE ENCODING
LENGTH OF LINES IN THE Z OUTPUT FILES

SUMMARY OF FLAGS AND CONTROLS

0.2 List of Figures

ClawZ Model Translation Processes.
A Simple Simulink Model
The Simple Model in Z
The Unit Delay Library BlockinZ
The Unit Delay Library Block Instantiated
Digital Clock Example o o e
Digital Clock Example in Z

N O U W N

0.3 Document Cross References

[1] LEMMA1/DAZ/ZED503. ClawZ - The Semantics of Simulink Diagrams. R.B.

Ltd., rbjones@rbjones. com.

44
44
45
45
47
47
48

49

50

50

51

Jones, Lemma 1

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 4

[2] LEMMA1/DAZ/ZED504. ClawZ - Model Translator Specification. R.B. Jones, Lemma 1 Ltd.,

rbjones@rbjones.com.

[3] LEMMA1/DAZ/ZED505. ClawZ - Z Library Specification. R.B. Jones, Lemma 1 Ltd.,
rbjones@rbjones.com.

0.4 Changes History

Previous released version: issue 9.11: accompanied ClawZ version 1.1.4.

Issue 9.13: accompanies ClawZ version 1.1.5; documents the new facilities that support references
to blocks in artificial subsystems of a library.

0.5 Changes Forecast

As determined by review.

0.6 Trademarks

Simulink and MatLab are trademarks of The MathWorks Inc.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 5

1 GENERAL

1.1 Scope

This document comprises part of the deliverables from the Real ClawZ project, placed by QinetiQ
Malvern with Lemma 1 Ltd. It gives instructions for using the ClawZ tool developed by that project.

1.2 Introduction

ClawZ is a tool whose objective is to link the Simulink system with the ProofPower dialect of Z and,
in particular, to provide a bridge between the use of Simulink to define control law diagrams and the
use of the Compliance Tool component of ProofPower to specify and verify Ada code using Z.

ClawZ operates by translating a Simulink model into a Z specification. This Z specification may then
be used in conjunction with a library of supporting definitions to construct a Compliance Argument
which may then be formally verified using ProofPower. Figure 1 illustrates the main inputs and
outputs of this process. In addition to translating Simulink models into Z, ClawZ also provides a
facility to translate Matlab .m files containing definitions of variables into Z. Figure 1 illustrates the
main inputs and outputs of the translation processes.

This document is the user manual for version 0.8.1 of ClawZ. The rest of this document is structured
as follows:

Section 2 gives a more detailed technical overview of what ClawZ does based on a
simple example model.

Section 3 describes the use of the ClawZ model translator to translate a Simulink
model file into Z.

Section 4 describes the use of the ClawZ .m file translator to translate a Matlab .m
files into Z.

Section 5 describes how the Z document produced by the model and .m file transla-

tors can be processed with ProofPower. It includes a complete compliance
argument based on the example presented in section 2.
Appendix A gives the proof scripts for the compliance argument given in section 5.
Appendix B describes how the ClawZ library can be extended.
Appendix C describes how the mapping from simulink to Z names can be controlled.
Appendix D gives the SML type declaration for the run parameters to ClawZ.
Appendix E describes a flag which controls the output encoding.

Some familiarity with Simulink, ProofPower and Standard ML is assumed in this document.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide

...... o= e
Matlab M File 746]

Simulink Model

Library Metadata File

.M File Translator

Trangdlator Steering File

ClawZ Library

—

package .. / [Verificaiion Conditi ons]

procedure ...
A X, Y[..]

.

Z Specifications \

Compliance Argument

Figure 1: ClawZ Model Translation Processes

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 7

2 OVERVIEW OF ClawZ

2.1 A Simple Simulink Model

To give an overview of the operation of ClawZ, it is helpful to give a simple example of a Simulink
model. Figure 2 shows a model comprising an input port, Inl and an output port Outl connected by
a unit delay block, DelayBuffer. This models a system which derives an output signal from an input
signal. The input signal, I say, is sampled at regular time intervals' to give a sequence of discrete
inputs Iy, I, Is,.... The output signal, O say, will then comprise the sequence 0, Iy, I, I2,.... Le.,
O is defined by Op =0 and O; = I;_1 (i > 0).

:
In1 z outl

DelayBuffer

Figure 2: A Simple Simulink Model

In the parlance of z-transforms, this unit delay operator corresponds to multiplication by %, SO
Simulink labels the unit delay block in figure 2 with % In a software implementation of the model,
the unit delay corresponds to a buffer, so we have chosen to name the block DelayBuffer.

2.2 The Model in Z

The purpose of ClawZ is to translate a Simulink model into a Z specification. The Z translation of
the model of figure 2 is shown in figure 3. The model has resulted in two Z schemas:

The first schema corresponds to the library block, DelayBuffer. The name, unitdelay, of the model
has been used as a prefix for the schema name to reflect the position of the block in the hierarchic
structure of the model. The schema unitdelay_DelayBuf fer is defined in terms of a library function
UnitDelay_g which we will discuss in more detail in section 2.3 below.

The second schema unitdelay represents the wiring of the diagram in figure 2. Its declaration part
declares the three blocks which appear in the diagram (input port, unit delay block, and output
port). The predicate part of the schema gives equations indicating that the output and input of the
unit delay block are wired to the output port and input port respectively.

2.3 Overview of the ClawZ Library

As the simple example has shown, the semantics of Simulink library blocks like the unit delay block
is carried into Z by a library of Z definitions. These definitions are typically generic functions, which

!This is a discrete model. Simulink also supports continuous models and hybrids. Currently, ClawZ is mainly
applicable to discrete models.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 8

unitdelay-DelayBuf fer = UnitDelay-g (X0 = 0 e 0)

Z
__unitdelay

In1? : U;
DelayBuffer : unitdelay_ DelayBuffer;
Out1! : U

Outl! = DelayBuffer.Outl!;
DelayBuffer.In1? = In1?

Figure 3: The Simple Model in Z

when applied to appropriate arguments result in operation schemas following the usual Z conventions
augmented with a special convention for handling initial values.

Figure 4 shows the definition of the library function UnitDelay_g that is used in the translation of
our simple example. The function is generic with respect to the type, X, of the inputs and outputs
of the unit delay block. In our example, X = R. The function is parameterised by a binding giving
the initial value of the state; applying the function to a particular binding, say (X0 = 0 e 0), as
was done in figure 3, results in a schema equivalent to the one shown in figure 5.

Informal Z
—X]
UnitDelay_g: [X0: X| — P [In1?, initial_state, state, state’, Outl!: X]

V pars: [X0: X] e
UnitDelay-g pars = [In1?, initial_state, state, state’, Outl!: X |
initial_state=pars. X0
A Outl! = state
N state’ = In1?]

Figure 4: The Unit Delay Library Block in Z

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 9

As can be seen in figure 5, the ClawZ library functions adopt the convention of including the initial
value of the state of a schema as a component in the schema. In our example, the initial value of
0 has been picked up from the “initial condition” parameter of the Simulink unit delay block in
figure 2.

Informal Z

__unitdelay_DelayBuf fer
In1?, initial_state, state, state’, Outl!: R

itial_state=0 e 0;
Outl! = state
state’ = In1?

Figure 5: The Unit Delay Library Block Instantiated

Lemma 1 Ltd.

DAZ/USR505: ClawZ User Guide

3 USING THE MODEL TRANSLATOR

3.1 Files Used by the Model Translator

10

As suggested in figure 1, the ClawZ model translation process involves several different kinds of file.
The input files are described in the following table:

| File

Description

Model
file

This is the file produced when you save a Simulink model or library and
is your main input to the model translation process. The suffix “‘.mdl”
is normally used for this file, e.g., “unitdelay.mdl”.

Library
metadata
file

This file contains a description of the library blocks supported by ClawZ
in a format that allows the model translator to select the most appropri-
ate Z translation for a library block. The library metadata file supplied
with ClawZ is called “zed505.Imf”. The content of this file is described
in appendix B of this document and in the document ZED505[3].

If your model uses blocks that are not supported by the supplied library,
you can extend the library yourself. See appendix B for more information
on this.

Translator
steering
file

This file allows you to control the way the translator maps Simulink
names to Z identifiers. It is optional: if you do not provide a translator
steering file, then the translator will use a default algorithm for the
mapping. More information on this file is given in section 3.4 below.

The output files are described in the following table:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 11

| File
Z Output These are where the translator writes the Z translation of your model.
files You can arrange to write all the Z into a single file or to direct the Z for
different parts of your model into different files.

A recommended form for the name of these files is, for example, “unit-
delay.zed.doc”. The “.doc” extension makes it easier to run some of the
ProofPower programs on the file while the “.zed” part reminds you that
it isn’t a complete ProofPower document, since it contains no IKXTEX
document-making commands.

The output files are written by default in ProofPower ASCII format to
make them easy to transport between systems. They may alternatively
be written in the ProofPower extended character set, by setting a flag,
see Appendix E.

Description ‘

Library When translating the .mdl file for a Simulink library, ClawZ can produce
metadata metadata suitable for use in a subsequent run of ClawZ. The metadata
output file permits block references referring to subsystems of the Simulink library
from which it is derived.

Other output | Some important information is written to the standard output, which the
user may redirect to a file of his choice. This includes warning and error
messages, and information about the mapping from Simulink blockname
paths to Z identifiers. Diagnostic information about inferred port types
may be dumped to a nominated file, as described in section 3.3.

3.2 Running the ClawZ Model Translator

The ClawZ model translator is run by calling the Standard ML function clawz_run. The function
requires as a parameter a Standard ML record of type RUN_PARAMS with four components to
identify the various files used by ClawZ, and a fifth component to specify parts of the Simulink
model that are to be treated as artificial subsytems. The ML declaration of this ML type may be
consulted in Appendix D.

Before describing the record type we present details of some of its components.

3.2.1 Patterns

For various purposes it is necessary to refer to one or more of the Simulink blocks in a model. This
is done using an ML value of type string as a pattern.

A pattern must conform to the following grammar:

pattern ::= <pat_el> ("/" <pat_el>)x*
pat_el ::= "?" | "x" | <subsys-name>

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 12

Inside the < subsys — name > parts of a pattern, you may use a backslash character as an escape
character, if the subsystem name includes question marks, asterisks, slashes or backslashes. Question
marks in a pattern act as wild-cards for a single subsystem name. Asterisks act as wild-cards for a
sequence of subsystem names.

3.2.2 Output Filter Specifications

An output filter specification is an ML record of type OUTPUT_FILTER_SPEC which is used to
specify which parts of a translated model are to be written to some specific file.

The components of the record are shown in the following table:

‘ Name ‘ Description
incl a list of patterns for specifications to be written to the file
excl a list of patterns for specifications NOT to be written to the file

file_name | an optional filename in the form Value < filename >, in which case the
selected output is written to that file, or Nil, in which case the output
is written to the standard output.

“patterns” are described in section 3.2.1.

The specifications arising from translating a block in the Simulink model will be output to the
designated destination if the hierachic name of the block is covered by one of the patterns in the
“incl” list and not covered by any pattern in the “excl” list.

3.2.3 Block Modifier Specifications

When working with “artificial subsystems”, “block modifier specifications” are used to specify the
blocks that make up the artificial subsystem and to define which artificial subsystem of a library is
to be used when translating a reference to a block in the library. This is done using an ML record
of type BLOCK_MODIFIER_SPEC.

The fields in this record are as follows:

‘ Name ‘ Description ‘

path | a pattern that uniquely identifies a block in the model

filter | If “path” identifies a subsystem, this gives a specification of which blocks
are to be retained or excluded from the subsystem; if “path” identifies
a library block, that library block must be a block reference and then
“filter” gives the name of an artificial subsystem of the library to be used
in the translation.

“patterns” are described in section 3.2.1.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 13

The filter must be one of:

e the constructor “Include” followed by an ML list of strings which are the names of Simulink
blocks;

e the constructor “Exclude” followed by an ML list of strings which are the names of Simulink
blocks;

e the constructor “ASname” followed by a string giving the name of an artificial subystem of a
library.

If the filter is constructed with “Include” or “Exclude”, the block identified by the path must be a
subsystem. If it is constructed with “ASname”, then the block must be a block reference to a block
in the indicated artificial subsystem of a library.

3.2.4 Artificial Subsystem Specifications

As well as providing a translation of a complete Simulink model, ClawZ can translate specified parts
of a model, called “artifical subsystems”, independently of the other parts of the model. Breaking
down a model into artificial subsystems can help to make large models more manageable, e.g., by
letting you view the model in a way which corresponds to the way in which a software implementation
is organised. To describe an artificial subsystem an ML record of type ART_SUBSYS_SPFEC is used.

The fields in this record type are as described in the following table:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 14

Name | Description ‘

name The name to be given to the artificial subsystem, this will be used like a
Simulink blockname for the top level of the artificial subsystem.

top This is a block modifier specification (see section 3.2.3) for the top level
subsystem of this artificial subsystem.

rest A list of block modifier specifications. Each block modifier specification in

this list identifies using a path relative to the top level subsystem either (a) a
subsystem for filtering, together with a list of blocknames for inclusion, or a
list for exclusion or (b) a library block that is a block reference to a block in
a library, together with the name of an artificial subsystem of the library to
be used when translating the block reference. Block modifier specifications
are described in section 3.2.3.

output_spec | This specifies, in the format described in section 3.2.2, which files to use as
the output files. It controls only the output of material specific to this ar-
tificial subsystem. Where the artificial subsystem contains blocks which are
unchanged from the original model the original specification will be referred
to. The pathnames used must correspond to paths in the artificial subsys-
tem, i.e. the subsystem named as the top-level will have the name given
to the artificial subsystem, and all contained subsystems will have paths
constructed in the usual manner from that base-point.

All paths are specified in the same manner as described in section 3.2.1, i.e. as patterns, except that
when described as “paths” they must uniquely identify a single Simulink block.

Lemma 1 Ltd.

DAZ/USR505: ClawZ User Guide

3.2.5 The ClawZ Run Parameters

Name

Description

model_file

The Simulink model file.

output_spec

This specifies which files to use as the output files. It must be a list of
OUTPUT_FILTER_SPECs as described in section 3.2.2.

meta_file

The name library metadata file. Use “zed505.lmf” unless you have extended
the library yourself.

steer_file

The name of the translator steering file. The use of this file is optional: you
may specify Value < filename >, in which case < filename > is used for
the translator steering file, or you may specify Nil, in which case the default
name mapping algorithm is used unmodified (Nil is recommended for initial
experimentation). See also appendix C.

art_subsys

A list of specifications of artificial subsystems of the model to be constructed
by ClawZ and translated into Z. Artificial subsystem specifications are de-
scribed in section 3.2.4.

meta_output

an optional filename in the form Value < filename >, in which case the
model is treated as a Simulink library and ClawZ outputs metadata for the
blocks in the library to the named file, or Nil, in which case no metadata is
generated.

If a block appears inside an action system, ClawZ needs to generate addi-
tional Z paragraphs to give the semantics of the block when it is disabled
and reenabled. If the metadata output filename is specified, ClawZ gen-
erates the additional Z paragraphs for all blocks processed, otherwise, the
additional Z paragraphs are generated only for blocks which appear within
action systems.

15

The most convenient way of working is to create a Standard ML source file containing one or more
calls to this function. The following shows a simple source file to run ClawZ.

clawz_run {

model_file = "unitdelay.mdl",
output_spec = [{incl=["*"], excl=[], file_name=Value"unitdelay.zed.doc"}],
meta_file = "zed505.1mf",
steer_file = Nil};

Note that ClawZ will overwrite the output file (unitdelay.zed.doc in the above example) so make

sure that the file does not contain any information you wish to keep before you run ClawZ.

If the above commands were stored in the file test.ML, you would run ClawZ from the UNIX
command line as follows.

For an SMLNJ build of clawz:

sml @SMLload=clawz <test.ML

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 16

For a Poly/ML build of clawz:
poly -r clawz.polydb <test.ML

The output_spec component lets you distribute the Z translation of a model over several output files.
As shown in the above example, the simplest output specification is to ask for all subsystems to
be translated into a single output file using the wildcard “*” as the single member of the list of
subsystems to be included.

If you have a system called “mysys” with top-level subsystems “subsysl”, “subsys2” and “subsys3”,
you could separate the Z into three separate output files, one for each subsystem using the following
output specification:

‘output_spec =

‘ [{incl=["mysys/subsys1 /"], excl=]], file_name= Value"myfilel.zed.doc"},
‘ {incl=["mysys/subsys2 /*"], excl=][], file_name= Value"myfile2.zed.doc" },
‘ {incl=["mysys/subsys3 /*"], excl=[], file_name= Value" myfile3.zed.doc" }]

As another example, if you wanted to create two output files, one to contain the system and its
immediate subsystems, and another with all the subsystems further down in the hierarchy, then you
could use the following output specification:

‘output_spec =
‘ [{incl=["«"], excl=["7/?/x"], file_name= Value"toplevel.zed.doc" },
‘ {incl=["?/7/x"], excl=][], file_name=Value"lowlevel.zed.doc" }]

3.3 ClawZ Diagnostic Output

ClawZ writes diagnostic output to the standard output channel. To capture this output in a file,
you can use the output redirection facility of the UNIX shell.

For an SMLNJ build of clawz:

sml @SMLload=clawz <test.ML >test.log
For a Poly/ML build of clawz:

poly -r clawz.polydb <test.ML >test.log

In addition to the diagnostic output, the Standard ML compiler may write garbage collection diag-
nostics and other information to the standard error channel.

The model translation process has two main phases: a parsing phase when the model and other
input files are read and checked and a semantic phase in which the model is analysed and translated.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 17

At the end of the semantic phase, the Z translation is written to the output files and if requested
metadata is generated and output.

Errors during the parsing phase are generally fatal, although some warning messages may be gen-
erated. Typically a parsing error might indicate that the model had come from an incompatible
version of Simulink or might arise from an error in your translator steering file or in your library
metadata file.

The translator attempts to recover from certain error conditions during the semantic phase. One
of the most common problems in this phase is when the translator encounters a use of a library
block that it cannot translate. In this circumstance, it generates a warning message and continues,
effectively ignoring the problematic block. Uses of the block will result in Z output that will not
type-check because the Z translation of the block name will be used but not declared. This error
recovery enables you to assess the completeness of coverage of the supplied library for your model
and so decide whether it will be feasible for you either to extend the library to cater for your model
or to select artificial subsystems in the model which do not give rise to problems and can usefully be
analysed.

Note that the line number in the error message for an unsupported block refers to the subsystem
containing the block, not the block itself, so you will generally have to use a text editor to search for
the block. The block name and type is included in the error message.

There are error conditions during the semantic phase which should not be considered as recoverable
without careful inspection of the problem. An example is when an If block is used without its “Show
Else” condition being turned on. These conditions are reported as errors rather than warnings and,
by default, no Z output is produced for a model or artificial subsystem giving rise to such an error.
This behaviour is controlled by a flag “inhibit_output_on_error” . To force the production of Z even
when errors are detected, use the following command:

set_flag(" inhibit_output_on_error", false);

Additional diagnostic information, which may help in understanding the operation of the block
synthesis capabilities, may be requested by setting the string control “porttype_dumpfile” to the
name of a file. ClawZ will the write information inferred about the signals on the ports in the model
into that file. To set the value of this control you use the command set_string_control, prior to
calling clawz_run. For example, to dump this information to the file portinfo.txt:

set_string_ control (" porttype_ dumpfile", " portinfo.txt");

3.4 Translator Steering File

The user may supply a steering file which contains various information influencing the translation of
the model.

The kinds of information which may be supplied in the steering file are as follows:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 18

Name Mapping Information This allows the user to override the translation of specific Simulink
blocknames into Z.

Port Type Information This allows the user to supply information about the types of signals in
the model which ClawZ is not able to deduce itself. This information is needed for ClawZ to
undertake block synthesis.

Matlab Variable Types This allows the types of matlab variables defined in .m files to be supplied
to ClawZ. The information is generated by the .m file translator for inclusion in the steering
file.

The syntactic structure of the steeing file is similar at the top level to that of a Simulink model,
i.e. it consists of a sequence of named structures where the structure is contained in curly brackets.
In all cases the structure consists of a sequence of name/value pairs (also as in a Simulink model,
except that in some cases the “name” may be a complete Simulink path.

It is always permitted to split information of a single kind across multiple structures with the same
name in a steering file, so that a steering file formed by concatenating several files of relevant
information will be accepted. This is relevant, for example, when type information obtained by
translating several .m files is required for the translation of a model.

3.4.1 Name Mapping Information

The translator steering file allows you to override the model translator’s algorithm for mapping
Simulink names into Z (see also appendix C). The format of this file is as shown in the following
example

NameMapping {

UnitDelay "int517a/Unit Delay"
DiscreteTransferFcn "int517a/Discrete\nTransfer Fcn"
ZeroOrderHold "int517a/Zero-0rder\nHold"

Each line in the body of the file contains a Z name followed by the full Simulink path of a block
in the Simulink model, with subsystem names separated by “/” characters, enclosed in quotation
marks. The idea is that if you specify an association between a Z name and a Simulink name in
this file, the translator will use the association you have specified instead of its default algorithm
for that Simulink name. The name used will be used as the local name for the block in question in
the subsystem schema for the substem in which that block occurs. Global names for schemas are
compounded systematically from the local names of the blocks in the full Simulink path of the block
using separators which may be specified by the user. ClawZ imposes some constraints on the form
of local Z names in order to ensure that the method of compounding local names translating the
Simulink names in a path yields a unique Z name for each path. These contraints are applied to
names supplied by the user in a NameMapping table and names not conforming to the constraints
will be rejected. Fuller details may be found in appendix C.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 19

Right at the end of the translation process, the model translator outputs a list of the Simulink names
that it could not use directly as Z names. This list is in the same format as the translator steering
file, so you can copy that portion of the output into a file and use it as the basis for a translator
steering file giving your preferred translation for these names (or any other names in the model).

3.4.2 Port Type Information

ClawZ can generate the Z specifications for some Simulink block types automatically. This is referred
to as “block synthesis”.

In order to undertake synthesis ClawZ may need information about the structure of the signals
carried on lines connected to the block to be synthesized, but it may not be able to determine the
required information by analysis of the Simulink model. One case in which ClawZ is unable to make
a determination is on lines which are inputs to the system as a whole.

To enable synthesis to function where ClawZ would otherwise be incapable of inferring sufficient
information about signal structures, a facility for the user to supply this information is provided. The
information supplied is similar to that provided in the library metadata using port type parameters
(see appendix B section B.3), but instead of being associated with a kind of library block, it is
associated with a specific block in a Simulink Model.

Two structures in the steering file are supported for this purpose, InPortTypes and OutPortTypes,
which are used for supplying port type information for input and output ports respectively. They
have the same internal syntactic structure, which consists of a list of path/type-info pairs. The path
should be presented in the same format as for the metadata BlockPath parameter, except that it must
not be quoted and may be terminated either by unescaped white space or by an unescaped double
quote character. If the path does not begin with an alphabetic character then the first character
should be preceded by backslash. Whitespace characters or the double quote symbol occurring in
the path must be escaped with a backslash. Wildcards are not supported in these paths. The
type information should be in the same format as for the metadata InputPortTypes parameter (see
section B.3).

An example of the required format is as follows:

InPortTypes {
int517a/ Muz "V2V8SSV
int517a/ BusConstructor "B6["
"firstsignal: V2"
"secondsignal:S,"
"thirdsignal: B3["
"one:S,two: S, three:S"

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 20

3.4.3 Matlab Variable Types

Matlab variable type information may be included in the steering file in one or more structures
named Variable Types. The required information is output by the .m file translator and need not
therefore be understood by the user.

It consists of a sequence of name/value pairs. The name is the Z translation of the name of the
matlab variable (differing from the original in possibly having prefix or suffix added as described in
Appendix C). The value is a vector giving the dimensions of the variable, consisting of a comma
separated list of non-negative integers enclosed in square brackets. For a scalar variable the empty
list should be supplied (“[]”), and it is permitted to supply a zero for a dimension if its size is
unknown (the .m file translator is not always capable of determining the dimensions, in which case
the user might edit the .m file translator output to supply the information). Neither the name nor
the type information should be enclosed in quotations.

3.5 Generating Metadata

When Simulink users create libraries and use these libraries in their models, they can translate the
libraries into Z using ClawZ and generate metadata suitable for accessing these libraries at the same
time.

Translating a library into Z is done in exactly the same way as translating a model, by passing the
library .mdl file to ClawZ. Metadata will automatically be generated if the user gives a filename for
the metadata using the meta-output field of the ClawZ RUN_PARAMS (see section 3.2.5). When
translating a model which makes use of the library by block reference, the generated metadata should
be supplied to ClawZ (in a single file together with any other metadata needed for the translation).
Metadata is generated only for subsystems in the library (not for any other kind of block), and
the metadata file will therefore suffice only for block references to subsystems in the library. If
artificial subsystems of the library have been specified, then the generated metadata will include
block specifications allowing subsystems of the artificial subsystems to be referenced from other
models (see section 3.2.3).

Special considerations apply where a Simulink library contains an internal block reference, i.e. a
block reference to a block in the same library. In this case metadata will be needed to resolve the
block reference, but will not be available until after the translation. The translation should therefore
be done twice, discarding the Z from the first attempt but using the generated metadata on the next
translation. In exceptional circumstances this process may have to be repeated, since the metadata
generated for a subsystem when a block reference inside that subsystem cannot be resolved may itself
be incomplete. If the metadata is incomplete in this way then this will result in a free variable in
the resulting Z and will be detected when the specification is type-checked. The translation should
be iterated until no spurious free variables occur.

Where it is required to use by block reference blocks in a library other than subsystems, it may be
possible to manually write appropriate metadata to acheive the desired effect.

It should be noted that when using block references to translated libraries the blocks referred to

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 21

should not be altered by any other means than changes to the actual values of the mask variables of
the blocks referred to.

3.6 Block Synthesis and Virtualization

ClawZ can “synthesize” or “virtualize” some Simulink block types. Synthesis of a block means that
the ClawZ model translator generates the Z specification for the block automatically rather than
using a specification from the ClawZ Z library. Virtualization of a block means that the semantics
of the block are translated directly into Z predicates at the points of use. In both cases this means
that the semantics of the block is built into the ClawZ model translator rather than being described
in the ClawZ Z library.

If an instance of a block does not match a specification in the ClawZ Z library, and the “virtualize”
flag is set, ClawZ will attempt to secure the effect of the required block by including an appropriate
expression in the predicate of the subsystem in which the block occurs instead of including a reference
to a library block. If there is no library match and if the block has not been virtualized (either because
the virtualize flag is not set, or because for some reason virtualization was not possible) then ClawZ
will attempt to synthesize a Z specification for the block. A synthesized specification will be similar
in character to a library specification and will be referred to in a similar manner (so the schema
for the relevant subsystem will be similar to what it would have been had a library reference been
undertaken). Synthesis is in principle more broadly applicable than virtualization (which is only
applicable to blocks which are pure mathematical functions without any “state”). Virtualization
has the advantage that it decreases the number of components in the signature of the subsystem
schemas.

Virtualization and synthesis is applicable to certain block types as shown in the following table:

Block Type Virtualize | Synthesize
Bus Constructor Yes Yes
Bus Selector Yes Yes
Constant Yes Yes
Demux Yes Yes
Mux Yes Yes
Selector Yes Yes
Terminator Yes Yes
Merge No Yes

A match against the ClawZ Z library takes precedence over virtualization, if a match is found
virtualization will be inhibited. If virtualization is preferred the metadata permitting the match must
be removed. If virtualization is not desired then suitable metadata for a match must be supplied, or
else the “virtualize” flag should be set to “false”, in which case synthesis will be attempted.

Either a match against the ClawZ Z library or successful virtualization will take precedence over
synthesis, if either a library match or virtualization is sucessful synthesis will not be attempted. For
sucessful synthesis there must be no match in the metadata and the virtualize flag must be set to
“false” (unless the relevant block falls outside the virtualization capability).

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 22

To change the value of the virtualize flag the command set_flag should be executed prior to calling
clawz_run, e.g.:

set_flag("virtualize", true);

The flag defaults to ‘false”.

3.7 Action Subsystems

An action subsystem is a system whose execution is conditional on an If or Switch Case block. The
outputs of action subsystems are normally connected to merge blocks which pass on to their output
from whichever of their inputs comes from an enabled subsystem. ClawZ is able to translate systems
containing action subsystems subject to the following restrictions:

1. Each action subsystem must have only one output port.
2. The output of an action subsystem must go only to a Merge block.
3. All inputs to Merge blocks must come from action subsystems.

4. Action subsystems controlled by the same If or Switch Case block must feed the same Merge
block.

5. Action subsystems feeding the same Merge block must be controlled by the same If or Switch
Case block.

6. If an If block does not have its else condition turned on, the InitialOutputs parameter of the
corresponding Merge block must not be specified as an empty vector.

7. If a SwitchCase block does not have its show default condition turned on, the InitialOutputs
parameter of the corresponding Merge block must not be specified as an empty vector.

When checking restrictions 2, 3, 4 and 5 above, ClawZ does not look across subsystem boundaries.
ILe., the checks will fail if the relevant blocks and subsystems do not all appear at the same level in
the Simulink diagram. If any of the checks fail, Z output for the model or artificial subsystem will
normally be inhibited (see section 3.3 for information on how to control the behaviour when errors
are detected).

The Z translation of an action subsystem (or a subsystem contained in an action subsystem) involves
several schemas whose names are derived from the name of the subsystem using suffixes, which by
default are subscript lower-case letters. Section C.6 below describes how you can change these
suffixes.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 23

4 USING THE .m FILE TRANSLATOR

4.1 Files Used by the .m File Translator

The ClawZ .m file translation process involves three types of file. These are described in the following
table:

| File
.1 file This is Matlab .m file (created with the Matlab editor or any text editor)
containing the Matlab statements to be translated. The suffix ““.m” is
normally used for this file, e.g., “mfile_eg.m”. The purpose of the .m file
translator is to translate Matlab variable definitions of the form “name
= expression” into Z abbreviation definitions. Other types of Matlab
statement in the .m file are ignored. The expressions on the right-hand
side of the Matlab definitions must be either simple variables or numeric
literal constants or be vector or matrices whose constituent scalars are
simple numeric literal constants.

Output file This is the file where the .m file translator writes the 7 translation A
recommended form for the name of this file is, for example, “mfile_
eg.zed.doc”. The “.doc” extension makes it easier to run some of the
ProofPower programs on the file while the “.zed” part reminds you that
it isn’t a complete ProofPower document, since it contains no IXTEX
document making commands.

The output file is written in ProofPower ASCII format to make it easy
to transport between systems. To convert it to the ProofPower ex-
tended character set, use the program “conv_extended” supplied with
the ProofPower document preparation package.

Variable types file | Into this file the .m file translator writes information about the types
of the variables defined in the .m file. This is for use when translating
models which make use of the variables, and is then supplied to the
ClawZ model translator in the steering file.

Description ‘

4.2 Running The ClawZ .m File Translator

The ClawZ .m file translator is run by calling the Standard ML function m_file_run. The function
takes as its parameter a Standard ML record of type M_FILE_RUN_PARAMS (see appendix D).
These records have three components to identify the files and other information used by the .m File
Translator, as shown in the following table:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 24

Name | Description ‘
m_file The name of the .m file to be translated.
output_file The output file. This is optional: you either specify Value < filename >,

in which case < filename > is used for the output file, or your specify Nil,
in which case the standard output channel is used. The output file will be
overwritten by the Z specification so make sure the file you specify does not
contain any important information.

parameter_type | This parameter is a Standard ML string which selects one of several methods
for translating the expressions in the .m file into Z. The value to use depends
on the way the Z specifications for the ClawZ library represent the Matlab
type system. The value of this parameter should be "SVM" for the library as

currently provided.
The variable types file. This is optional: you either specify

Value < filename >, in which case < filename > is used for the output file,
types_£file or your specify Nil, in which case no type information is output. The file
will be overwritten so make sure the file you specify does not contain any
important information.

The most convenient way of working is to create a Standard ML source file containing one or more
calls to this function. The following shows a simple source file to run the .m file translator.

mfile_run {
parameter_type="SVM",
m_file="mfile_eg.m",
output_file=Value "mfile_eg.zed.doc",
types_file=Value "mfile_eg_types.txt"};

Note that the .m file translator will overwrite the output files (mfile_eg.zed.doc and
mfile_eg_types.txt in the above example) so make sure that the file does not contain any
information you wish to keep before you run the .m file translator.

If the above commands were stored in the file test_mf .ML, you would run the .m file translator from
the UNIX command line as follows:

For an SMLNJ build of clawz:
sml @SMLload=clawz <test_mf.ML
For a Poly/ML build of clawz:

poly -r clawz.polydb <test_mf.ML

4.3 .m File Translator Diagnostic Output

The .m file translator writes diagnostic output to the standard output channel. To capture this
output in a file, you can use the output redirection facility of the UNIX shell as described in section

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 25

3.3.

In addition to the diagnostic output, the Standard ML compiler may write garbage collection diag-
nostics and other information to the standard error channel.

If it encounters constructs in the .m file that it cannot translate, the .m file translator will output
a warning message to the standard output channel and skip past the unrecognised construct. The
diagnostics on the standard output channel includes a record of what parts of the input have had to
be skipped.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 26

5 PROCESSING THE TRANSLATED MODEL

5.1 Document Preparation

Once you have translated your model you can use the ProofPower tools to process the output file.
You can run doctex to generate a IIEX file which may be included in another document with the
\include KTEX command. For example, the contents of figure 3 were included in this document by
first executing the UNIX command:

doctex unitdelay.zed
The BTEX command used to generate the Z figure was:
\include{unitdelay.zed}

The conv_extended program lets you convert the Z document into the ProofPower extended char-
acter set. This enables you to view and edit the document on the screen in a more readable format
using the xpp editor.

5.2 Type Checking

The Z document can be loaded into ProofPower in the usual way (using docsml from a UNIX shell
to generate a .sml file and then using use_file in ProofPower to process the result). However,
the .doc file can in fact just be loaded directly with use_file (since it does not contain any KTEX
commands or other material that cannot be processed by ProofPower directly).

The Z document generated by ClawZ depends on the ClawZ library which contains the schema
definitions that give the semantics for Simulink library blocks and on the ClawZ toolkit which
supports the schemas in the ClawZ library. To satisfy these dependencies you will need to load three
files into a ProofPower-Compliance Tool database. The files needed are in the doc subdirectory of
the release directory and are called dtd528.sml, imp528.sml and zed506.sml. Assuming you are
working in the ClawZ installation directory, the following UNIX commands will create a ProofPower
database called clawzlib in which you can type-check and reason about a Z document generated
by ClawZ:

pp_make_database -f -p daz doc/clawzlib
pp —d clawzlib -f doc/dtd528.sml
pp -d clawzlib -f doc/imp528.sml
pp —d clawzlib -f doc/zed506.sml

The commands to create a Compliance Tool script to hold the translated model and the Compliance
Argument to be based on it might be as follows:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 27

SML
‘ new_script{name = "unitdelay", state = initial_cn_state};
‘ new_parent" CLT";

‘ use_file"unitdelay.zed.doc";

5.3 Interfacing with a Compliance Argument

In this section we give a Compliance Argument for an implementation of our simple example. Our
plan is to implement the unit delay model using the an Ada package along the following lines (in
which, for simplicity, we have made the state variable global).

package UnitDelay is

delay_buffer : float;

procedure step(sig_in : in float; sig_out : out float)
end UnitDelay;

To relate this to the Z specification, we need an interface schema to relate the variables in the
specification with the program variables. To construct the interface schema, we first of all define a
schema declaring the relevant program variables. Note that the Compliance Tool normalises Ada
names into upper case and uses a subscript 0 to distinguish the before-values of program variables.

Z
,_UnitDelayProgVars
‘ DELAY _BUFFERy, DELAY _BUFFER, SIG_IN, SIG_OUT : FLOAT
|

Now we define the interface schema:

Z

__UnitDelayInter face
unitdelay;
UnitDelayProgVars

In1? = SIG_IN;

Out1! = SIG_OUT;

DelayBuffer.state = DELAY _BUFFER;
DelayBuffer.state’ = DELAY _BUFFER

We can now give the formal specification of the package, in which we existentially quantify over the
schema, unitdelay so that only the program variables appear free in the post-condition.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 28

Compliance Notation
package UnitDelay is

delay_buffer : float;

procedure step(sig_in : in float; sig_out : out float)

A DELAY _BUFFER, SIG_OUT [3 unitdelaye UnitDelayInterface;
end UnitDelay;

Finally, we give the formal specification of the package body. The Compliance Notation requires us
to begin a new script for this.

SML

new_script{name = "unitdelay_body", state = get_cn_state()};

The package body can now be given:
Compliance Notation
package body UnitDelay is
procedure step(sig_in : in float; sig_out : out float)
A DELAY _BUFFER, SIG_OUT
[DELAY _BUFFER = SIG_IN N SIG-OUT = DELAY _BUFFER,)]
18
begin
sig_out = delay_buffer;
delay_buffer := sig_in;
end step;
begin
A DELAY _BUFFER | 3 unitdelaye DelayBuffer.initial_state = DELAY _BUFFER |
end UnitDelay;

To complete the package we have only to provide the package initialisation statements that refine
the last specification statement:

Compliance Notation

C delay_buffer := 0.0,

The compliance argument is now complete. It generates 4 VCs. For completeness, the script to prove
these VCs is given in appendix A below.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 29

A PROOFS OF THE VCS

We are still working in the theory containing the four VCs from the compliance argument of sec-
tion 5.3. We now prove these VCs. First we use the Compliance Notation proof support tools to set
up a proof context in which to work.

SML
‘ all_cn_make_script_support" unitdelay_pc",
‘push_pc "unitdelay_pc";

Now we begin the proofs.

SML

‘ set_goal([], get_conjecture" —""vcUNITDELAYbody_1");

ProofPower Output

Now 1 goal on the main goal stack

(¢ sk Goal "" sxx x)

(x 7) Gtrue = true’

This trivial VC arises from the empty pre-conditions and is solved just by stripping.
SML

‘a(REPEAT strip_tac);

‘val vcUNITDELAYbody_1 = save_pop_thm"vcUNITDELAYbody_1";

SML

‘ set_goal([], get_conjecture" —""vcUNITDELAYbody_2");

ProofPower Output

Now 1 goal on the main goal stack
(¢ sk Goal """ sxx x)

(x 7+ %) LV DELAY_BUFFER, DELAY _BUFFER, : FLOAT,
SIG_IN : FLOAT;
SIG_OUT : FLOAT
| true N DELAY _BUFFER = SIG_IN A SIG_.OUT = DELAY _BUFFER,
o 1 unitdelay e UnitDelayInterface™

This VC is ensuring that the program-oriented post-condition used for the procedure step in the
package body meets the post-condition derived from the Simulink model as used in the package spec-
ification. We apply the usual simplifications for Compliance Notation VCs (which include rewriting

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 30

with all applicable definitions in our present proof context) and then strip the goal. We then have
an existential goal with an obvious witness: the only possible binding that meets the constraints of
the interface schema. After supplying this witness, we have only to expand with the definition of
UnitDelay_g, which requires a little work because it is generic.
SML
a(en_ve_simp_tac]] THEN REPFEAT strip_tac);
a(z_3_tack(In1? = SIG_IN,
DelayBuffer = (
state = DELAY _BUFFER,,
state’ = DELAY _BUFFER,
In1? = SIG_IN,
Out1! = SIG_OUT,
initial_state = 0 e 0),
Out1! = SIG_-OUT)™);
a(cn_ve_simp_tac]] THEN asm_rewrite_tac[z_gen_pred_elim[; USPR Y en_ UnitDelay_ g_thm));
val veUNITDELAYbody_2 = save_pop_thm"vcUNITDELAYbody_2";

SML

‘ set_goal([], get_conjecture" —""vcUNITDELAYbody-3");

ProofPower Output

Now 1 goal on the main goal stack
(¢ sk Goal "" sk x)

(x 7+ %) LV DELAY_BUFFER : FLOAT; SIG_IN : FLOAT
e SIG_IN = SIG_IN N DELAY BUFFER = DELAY _BUFFER"

This third VC is the one that ensures the body of the procedure step satisfies the post-condition in
the procedure header. Stripping solves it immediately.

SML

‘ a(REPEAT strip_tac);
‘ val veUNITDELAYbody_3 = save_pop_thm"vcUNITDELAYbody_3";

SML

‘ set_goal([], get_conjecture"—""vc_1_1");

ProofPower Output

Now 1 goal on the main goal stack

(¢ sk Goal """ sxx x)

(x 7+) Ltrue = (3 unitdelay o DelayBuffer.initial_state = 0 e 0)7

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 31

This fourth and last VC is ensuring that the package initialisation code satisfies its post-condition.
The proof is very similar to that of the second VC.

SML
a(en_ve_simp_tacl]);
a(z-3_tach,(In1? = 0 e 0,
DelayBuffer = (
state = 0 e 0,
state’ = 0 e 0,
In1? = 0 e 0,
Outl! = 0 e 0,
initial_state = 0 e 0),
Outl! = 0 e 0)7);
a(rewrite_tac[z_gen_pred_elim[; USPR | cn_ UnitDelay_g_thm));
val ve_1_1 = save_pop_thm"wvec_1_1";

That completes the proofs for the unit delay example.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 32

B EXTENDING THE LIBRARY

To extend the ClawZ library, you provide additional block specifications to be fed into the model
translator as library metadata and write Z paragraphs to support the resulting translated models.
In this appendix, we give a simple example of this task and then provide more detailed information
about the design of the library and how and when to extend it.

If your model contains block references to blocks in a Simulink library then you must provide meta-
data describing those blocks. This can be obtained from ClawZ by specifying a file for metadata
output when running ClawZ to translate the library, or it may be compiled manually if for some
reason automatic production is not feasible.

Block references into a library which has been compiled by ClawZ are only supported when they refer
to subsystems in the library, and transmitted parameters are allowed only if the subsystem is a masked
subsystem and must then correspond to the mask variables. If the ClawZ capabilities for translating
and referring to libraries are insufficient for a particular model then a successful translation might
still be possible by selectively or completely breaking the library links before translation.

If multiple sources of metadata are to be used they should be concatenated into a single file for
ClawZ. If such a file contains multiple entries which match a single instance of a Simulink block
then the latest in the file will be used, priority is therefore given to the metadata in the last of a
concatenated set of metadata files. So if your metadata is intended to supply a customised treatment
of a kind of block that is already supported in the supplied library metadata file, you can simply
append your custom metadata to the suppled metadata file.

B.1 A Simple Example

Figure 6 shows a Simulink model that includes a Digital Clock block. If you process this model using
the library metadata file zed505.1mf that is supplied with ClawZ, ClawZ will report the following
error message because the library does not support this type of block:

Error near line 124: proc_lib_blocks/proc_lib_block: this use of this library
block is not supported (name: "Digital Clock"; type: "DigitalClock")

12:34 N []

Clock Output

Digital Clock Scope

Figure 6: Digital Clock Example

Extending the library to add support for the Digital Clock block involves two main steps: we must
design a Z specification to provide the semantics of the Digital Clock and prepare a library metadata
entry to define the interface of that schema to the model translator.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 33

The Digital Clock block has a parameter giving the sample time for the clock. If we make the design
decision to have the translator pass this parameter through to the Z specification, we will need a Z
paragraph along the following lines to implement the block:

Z

DigitalClock : [SampleTime:R] — P[initial_state, state, state’, Outl! : R]

V pars: [SampleTime:R]e

DigitalClock pars = |
initial_state, state, state’, Outl! : R

| initial_state = 0 e 0

A state! = state +p real 1

A (3t:N | real t xg pars.SampleTime <p state’ <pg real (t+1) *gr pars.SampleTime
e Outl! = real t xg pars.SampleTime)

Following the format described in section B.3, we describe this in the Library metadata file as follows:

Text dumped to file usr505.1lmf

BlockSpecification {

Zname DigitalClock
SelectionParameters {
BlockType DigitalClock

}

TransmittedParameters {

SampleTime Scalar

}

}

To use the library with the Digital Clock extension, you add the above text to a copy of zed505. 1mf
in the file mylib.1mf say and then run the model translator giving mylib.1lmf as the meta_file
component of the parameter. The resulting Z translation is shown in figure 7.

B.2 Representing Simulink Blocks in Z

B.2.1 Use of Schemas

The translator requires all specifications to be prepared as Z schemas, or, in the case of parameterised
specifications, as functions which yield Z schemas.

Where other considerations (such as the need for overloading) do not prevent it, the schema name
used in the Z specification should be the same as the Simulink blocktype.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 34

Z

‘ digclock_DigitalClock = DigitalClock
‘ (SampleTime = 1 e 0)

Z

‘ digclock_Scope = Scope

Z

__digclock
DigitalClock : digclock_DigitalClock;
Scope : digclock_Scope

Scope.In1? = DigitalClock.Outl!

Figure 7: Digital Clock Example in Z

B.2.2 Port Naming Conventions

The names for the input output components of the schema, which are to correspond with the ports on
the library block, must follow set conventions. These conventions are necessary to enable the names
to be deduced from the information provided in the Simulink models. The information provided in
the models is simply the port type (i.e. input or output) and the port number.

Input ports should be given the name “Inz?”, where z is the number of the input port in question.
Output ports should be named “Outz!”, similarly. Trigger and Enable ports should be named
“Trigger?” and “Enable?” respectively.

In the supplied library a special convention has been adopted for including components which specify
the initial values of components of the state of the system. This is to use the prefix initial_, as
described in section B.2.6. Initial state components have been included in all cases, irrespective of
whether anything is known about the initial state.

B.2.3 Overloading

Many of the Library blocks provided by Simulink cannot be specified using a single schema because of
the constraints imposed by the Z type system. For example, in very many cases the number of ports
on an instance of a library block varies according to selections made at the time of instantiation.

It therefore necessary to treat this as a kind of overloading. Since Z does not support overloading,
the translator supports the selection of one of a number of Z specifications using the parameters
of the instance of the library block used in the model to decide the appropriate definition. This

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 35

provision for overloading can also be used to restrict the application of a single definition, where that
specification covers only some of the possible uses of the relevant Simulink library block.

When undertaking the specification of a Simulink library block in Z it is necessary first to decide
whether the full range of uses of the block are to be encompassed in the specification, and then to
divide the range of intended applications into a number of cases each of which can be accomodated
by a single Z specification (possibly parameterised, see section B.2.4).

Each of these cases should be specified separately and given its own name, which we recommend
should begin with the name of the relevant Simulink blocktype and be differentiated by some suitable
suffix (if more than one is required).

The selection of the Z specification to be used for any particular instance of a Simulink library block
in a model is made on the basis of information supplied in a library metadata file which is prepared
at the same time as the Z specifications for the Simulink blocks. This metadata is matched against
relevant information in the model file.

B.2.4 Parameterisation

Parameterisation permits information entered by the Simulink model designer into the dialogue box
when instantiating a library block to be passed to the Z library specification invoked in the translation
of the model.

Parameters are passed by binding them together using an explicit Z binding display and passing this
value to one of the functions specified for this particular library block. The person writing the Z
specification of the library block must inspect the dialogue box and decide which of the values there
should be passed as parameters. Values on the dialogue box not passed as parameters can be used in
selection criteria to resolve overloading, e.g. the integration method in the discrete integrator could
be used to select an appropriate specification rather than being passed as a parameter to a single
specification.

If a specification is being written for a subsystem block in a library, which will be included in models
by block reference, then it must accept a parameter which has one component for each of the variables
masked on the target subsystem and one for each variable masked in some enclosing subsystem (in
the library) and used in the target subsystem (or one of its subsystems). However, in most cases
specifications for such library subsystems can be generated using ClawZ, in which case the correct
parameterisation will be done automatically.

B.2.5 Discrete Operations

The Z specifications which form the library typically follow the usual conventions for the represen-
tation of operations by Z schemas. In particular the following conventions for decorating the names
of schema components to indicate their role are used:

e Inputs are decorated with “7”.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 36

e Outputs are decorated with “!”.
e The name of the component representing the next value of a component of the state of the
operation is formed from the name of the state component by decoration with “’”.

B.2.6 Initial State

There is no standard convention for specifying the initial state of operations in a Z specification.
Often a schema is defined giving the initial state, the name of which is related to that of the schema
defining the state, e.g. a schema named INITIAL_STATE. This approach is not convenient for use
in the library, where no separate schema is defined for the state of the operations, and where it is
desirable to compose the complete definition of blocks into larger blocks.

For specifying initial state the supplied library uses a special convention in which the initial value of
each individual component of the state of an operation is included as a separate component of the
schema defining the operation. Thus, in the simplest case where there is a single component of a
discrete operation representing the state, called state, there are three variants of this in the schema:

state the current value of the state
state’ the next value of the state

initial_state the initial value of the state

This information about the initial state is propagated through diagram definitions generated by the
diagram translator. It is straightforward to separate this out from the final definition of the system,
or to hide these intial state components.

B.2.7 Library Block State inside Action Subsystems

If a library block has internal state and is to be used inside an action system, the Z schema that
defines its normal, enabled, behaviour, needs to be supplemented by two extra Z specifications to
define the behaviour when it is disabled, and thereby to determine the value of the state when the
block is next enabled. In the Simulink model the value of the state when execution resumes is defined
by the parameter of the relevant action port, which can be set to “held” (meaning that the state is
preserved during the disabled period) or “reset” (meaning that the state is reset to its initial value).
A supplementary Z specification is required for each of these two cases.

The “held” and “reset” schemas are expected by the translator to have the same signature and the

same parameters as the schema or schema-yielding function that defines the behaviour when enabled.

The names of these two schemas are given in the metadata for the library block. By convention, in
WM oW

the supplied library subscripts “;” “.” are used to form the names, which follows the default naming
convention used by ClawZ when generating similar Z specifications from model or library files.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 37

B.3 Preparing Extensions to the Library Metadata

From the analysis of the Simulink library blocks to be supported the library specifier should have
arrived at the following information which determines the mapping of instances of Simulink blocks
onto Z specifications.

The information should consist of a number of cases.

With each case some or all of the following information may be supplied:

artificial subsystem name the name of an artificial subsystem of a library whose Z translation
provides the Z specification to be used.

target specification name the name of the Z specification which should be used for instances of
Simulink library blocks falling under the present case (either when they are not in an action
system or to define the behaviour when inside an action system which is enabled).

held specification name the name of the Z specification which should be used for instances of
Simulink library blocks falling under the present case to define the behaviour while disabled
inside an action system whose action port parameter has the value “held”.

reset specification name the name of the Z specification which should be used for instances of
Simulink library blocks falling under the present case to define the behaviour while disabled
inside an action system whose action port parameter has the value “reset”.

block path pattern this is a pattern which will be matched against the full hierarchic name of the
block instance for which a target specification is sought, a block falls under the present case
only if the match is successful

port type parameters giving information about the types of signals expected on the ports of the
block

used local variables giving a list of local variable used in the block but not explicitly passed to it

selection parameters a number of simulink block parameter names and values whose presence is
an indicator that the case in question is applicable (this would normally include the Simulink
blocktype)

transmitted parameters a number of parameter names and translation codes which indicate pa-
rameters to be passed to the Z specification

The information for each case must include the target specification name and at least one selection
parameter.

An instance of a Simulink Library block falls under a case if the instance appears in the model file
with a path matching the block path pattern, all the selection parameters present and matching the
values specified for the case, and all the transmitted parameters present and satisfying any checks
which may be imposed by their translation mode.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 38

It is possible that a library block might fall under more than one case. The case selected will be
the last matching case in the metadata. The effect of this is that if two methods are provided of
translating a simulink block, one of which matches a subset of the instances of that block which are
mapped by the other, then the less general case should be specified last in the metafile if it is ever
to be invoked. This is relevant, for example, where a block may take either a Scalar or a Vector
parameter, but a different Z specification is required in each case. This selection algorithm makes it
possible for the user effectively to override a definition in the supplied library, either in special cases
or in general, by supplying alternative definitions selected by his own metadata, provided that his
metadata is appended to the metadata for the supplied library.

The information for a case in the library metadata file is referred to as a block specification and
takes the following format:

BlockSpecification {

ASname WORD
Zname WORD
HeldZname WORD
ResetZname WORD
BlockPath PATTERN

InputPortTypes PORTTYPES
OututPortTypes PORTTYPES
UsedLocalVariables NAMES
SelectionParameters {
required block parameters in same format as model file
¥
TransmittedParameters {
parameters to be passed with their translation codes

}

}

The ordering of the components of a block specification is not important.

The ASname parameter is optional. It is typically used in metadata that is automatically generated
when a library is processed (see section 3.5). When it is supplied, the Zname parameter must identify
the name of the Z translation of a block in the artificial subsystem given as the value of the ASname
parameter. A block specification with an ASname parameter will only be selected for the translation
of a block which has been given a block modifier specification (see section 3.2.3) identifying the same
artificial subsystem. A block specification with no ASname parameter will only be selected for the
translation of a block which has no block modifier specification.

When a block reference in a model refers to that blockblock modifier specification (see section 3.2.3)
has been given for the block reference. In those circumstances, a block specification with an ASname
parameter will only be selected if the value of the parameter is the same as the ASname value defined
in the block modifier specification.

The Zname parameter must be given. It identifies the target Z specification for this case. The Z
specification for the selected case will be invoked using the name given by this parameter, supplying

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 39

to it as an argument the transmitted parameters in a binding display using the parameter names as
component names (in the case that there are transmitted parameters).

The HeldZname and ResetZname parameters are optional. They should always be supplied if the
block in question has internal state. If they are supplied, then when the case is selected and an
instance of the block is encountered in an action system or a library, the values of these parame-
ters should identify the Z specifications for the “held” and “reset” behaviour for the block. These
specifications will be invoked in exactly the same way as the one identified by Zname.

The BlockPath parameter is optional. The PATTERN supplied for this parameter should be in the
same format as those used for output selection (see section 3.2).

The InputPortTypes and OutputPortTypes parameters are optional. They must consist of a se-
quence of characters with one entry for each input port, in ascending order with no gaps (i.e. no
omitted ports) and no spaces, the whole enclosed in double quote marks ("). Each entry must be “S”,
“V” optionally followed by a numeral, “B” followed by an optional numeral and a bus structure def-
inition, “G”, or “U” standing for port types ScalarPT, VectorPT, BusPT, GenericPT, UnknownPT
respectively. If the string is shorter than the number of input ports then the unspecified ports are
taken as of type UnknownPT. The numeral suppled for a vector or bus indicates the width of the
signal, its absence or the value “0” indicating that the width is unknown. A bus structure definition
consists of a comma separated list of signal types enclosed in square brackets. Each signal type is
a (possibly empty) signal name followed by a colon and then a type indication for that signal (as
described by this paragraph). Type indications used in bus structures may not be “U” or “G”, and
if “V” is used it must be followed by a non-zero numeral. The width of a bus need not be specified,
and will be computed from the bus structure. If it is specified it will be checked against a computed
value and the parameter will be rejected if the width specified does not match that derived from
the bus structure. The distinction between “S” and “V” should be based on the type of the port
in the Z specification, not on the width of the signal. The “G” case should only be used where the
corresponding 7 specification is generic in the type of the ports shown as G, when they all have the
same generic type (and therefore the same type when instantiated), and when, if this is a vector
type, they will also have the same width.

The following is the more formal description of the grammar of the port type parameter taken from
the formal specification of ClawZ [2]:

<stgnal_name_a> == ([T ":" "\"] | "\" [])*
<stgnal_type> ::= <signal_name_a> ":" <port_type>
<bus_structure> ::= <signal_type> ("," <signal_type>)*

<port_type> == "S" | "V" (<numeral>|)
| "B" (<numeral>|) "["<bus_structure>"]"
| ||G|| | npn

<port_types> ::= <port_type>x*

The UsedLocalVariables parameter is optional. If present it should consist of a comma separated
list of local variables enclosed in double quote marks. The names are those of variables masked in
some enclosing masked subsystem whose values are to be passed from the calling context to the Z
specification (in the same binding as the transmitted parameters).

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 40

TransmittedParameters should be omitted if the specification is not parameterised.

The supported parameter translation codes are as follows:

Quoted Parameter passed enclosed in quotes, but otherwise unchanged and unchecked.
Unquoted Parameter passed without enclosing quotes, but otherwise unchanged and unchecked.

Scalar Parameter parsed as a scalar Matlab expression complying with a grammar supported by
ClawZ and translated into a Z expression.

Vector Parameter parsed as a vector Matlab expression complying with a grammar supported by
ClawZ and translated into a Z expression. A scalar expression is accepted and passed as a unit
vector.

Matrix Parameter parsed as a Matlab matrix expression complying with a grammar supported by
ClawZ and translated into a Z expression. A row vector is accepted. translated and enclose in
an extra pair of sequence brackets yielding a unit sequence of sequences. A scalar parameter
is accepted and passed as a one-by-one matrix.

Unified Parameter parsed as a Scalar, Vector or Matrix (in that order of preference), translated
into Z and converted into a unified Matlab value type using one of the functions “S2U”, “V2U”,
and “M2U".

Fcn Parameter parsed as a Scalar Fcn expression using the grammar described in the Simulink
manual entry for the Fen block, and then translated into Z and wrapped in an abstraction over
the variable u. The variable u must be used consistently in the expression either as a vector as
a scalar (i.e. either always with a subscript or never with a subscript).

Checkbox A parameter of this type must either have the value “off” or “on” and will be automat-
ically translated into Z as “real 0” or “real 1”7 respectively.

"Popup (popuplist)" A popup translation code consists of the word “Popup” followed by a list of
entries for a popup list, separated by “|” characters and enclosed in brackets, the whole trans-
lation code must also be enclosed in double quotes. The value supplied for such a parameter
must correspond exactly to one of the entries in the list and will be translated into a Z ex-
pression of the form “real n”, where “n” is the numeric position in the popup list of the entry
supplied.

Note that quotation marks must be present for the Popup parameter translation code and must not
be present for any other parameter translation code.

A parameter may be present both as a selection parameter and as a transmitted parameter.

B.3.1 Translatable Matlab Expression Syntax

When block parameters of type Scalar, Vector, Matriz or Unified are translated by ClawZ a subset of
the Matlab expression syntax is accepted. This same language subset is accepted in the right hand
side of equations in .m files submitted to ClawZ for translation into Z.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 41

We provide here an informal account of the language subset supported by ClawZ. A fuller and more
formal specification of this language may be found in [2].

The language supported may be thought of as scalar expressions with some vector and matrix facilities
(for use only in parameters of type Vector, Matrix and Unified). The constraints imposed on scalar
expressions are similar to those imposed by Simulink on the expressions allowed as parameters to
Fen blocks.

First we describe the scalar expression language, then the ways in which vectors and matrices can be
constructed from scalars. The vector and matrix facilities supported can only be used in constructing
vectors and matrices as parameter values, not for vector and matrix values which are used inside a
scalar expression.

Scalar expressions are formed from literal scalar values (i.e. integer or floating point constants),
or from scalar variables which have been defined in .m files or from vector or matrix variables
subscripted by one or two scalar expressions respectively. Vector and matrix variables can only
be used when subscripted to yield scalar values. No array operations other than subscripting are
supported on such variables in scalar expressions. These values may be combined by the usual range
of scalar arithmetic operations, and by the relational operators (yielding reals as truth values) and
by the boolean operators. In addition, some functions built into Matlab, e.g., the trigonometric
functions, are supported. The supported functions are those in the Matlab function library which
are documented as acceptable in Fen expressions.

A vector expression may be formed in the following ways:

e as the name of a variable defined in a .m file

e as a vector display consisting of a sequence of scalars enclosed in square brackets and separated
by spaces or commas. The form of the scalars allowable in such a display is restricted. Scalar
literals are supported, scalar expressions are also supported (as defined above) but these must
not contain any infix operators unless these are in a subexpression (or the whole expression)
enclosed in brackets.

99,99

e one case of the ”:” notation may be used as a vector (but not inside a vector display). This
is the case with just two operands in which the operands are either scalar literals or scalar
expressions (as defined above).

e the name of a vector valued variable defined in a .m file subscripted by a vector expression (as
here defined).

A matrix expression may be formed only as a matrix display in which the separator ”;” occurs at

least once to create more than one row. The elements allowed as scalars in the display are the same
as those allowed in vector displays.

B.3.2 Translatable Fcn Expression Syntax

When parameters of type Fcn are translated expression syntax supported is as described in the
Simulink documentation for the Fcn block except that the use of the ”u” variable for referring to

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 42

inputs must be consistent in the expression, i.e. it must always or never be used with a subscript.
Violation of this requirement will not be detected by ClawZ but will result in an error when the
output specification is type-checked. To get type correct Z it is also necessary that the usage of ”u”
match the type of the signal input to the Fcn block.

B.3.3 Dependence of Expression Translation on the ClawZ Library

It should be noted here that the translation of expressions undertaken by ClawZ is a simplistic
syntactic transformation, and will only give correct Z if that Z is interpreted in the context of a
correctly constructed Z library. In particular, ClawZ assumes that the precedence relations between
the various operators in the expression languages is preserved in the corresponding operators in the
Z library, and takes care to preserve the relevant bracketing structure in the expression.

The library supplied with ClawZ is written to correspond with the documented precedence of the
various Matlab and Fcn operators. Matlab and Fen functions are specified by fixity and type only.
The full extent of the correpondence or divergence between operators and functions in Matlab and
Fen expressions is not clear from the documentation. The ClawZ translator therefore uses distinct
names for Matlab and Fcn operators and functions, even where these appear to be the same. In
some cases this is necessary because of differences in precedence, in others the distinction is made
so that any semantic divergence which might later become clear can be corrected by amendment to
the library without requiring changes to the translator.

B.4 Work-arounds for Translator Limitations

It may be noted that the library facilities may be used to overcome limitations in the translator in
a systematic and traceable way. For this reason use of these facilities may be considered preferable
to manual editing of partial translations where a full translation is not possible.

A typical reason for the translator failing to provide a full translation might be the use of a block
which accepts parameters which cannot be translated (e.g. special character strings, or expressions
outside the supported language subset).

Because of the flexibility of the facilities it is difficult to anticipate the ways in which it might be used.
In extremis the facilities could be used to provide a hand translation of a block which is selected using
the blockname in the diagram, or using a pattern for matching against the full hierarchic pathname
of the block. More commonly, a block which is normally used with a Matlab expression parameter
can be provided with different specific translations for any values of the parameter which cannot be
automatically translated into Z by ClawZ.

It is recommended that where the metadata and/or library are extended for purposes specific to
a particular model this be done in a separate document which is clearly application specific and
where the justification for the various extensions can be given. If the metadata extracted from this
document is appended to the library metadata then it will take precedence during the translation,
and may be used (if necessary) to supersede definitions already in the library.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 43

This method of overcoming translator limitations will only work for translating blocks which are
transparent (see [1] for a description of this term). Where a block is opaque (e.g. trigger and enable
blocks) it is unlikely that any translation will be correctly composed by the diagram semantics
implemented in the ClawZ translator.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 44

C CONTROLLING THE MAPPING OF SIMULINK NAMES

The translation of names and paths from Simlink models into Z specifications is awkward, partly
because of the lexical rules for Z identifiers and also because of the need to avoid clashes with names
generated by the compliance tool.

ClawZ provides flexibility to the user in how this mapping is undertaken, but this results in some
complexity in the user controls. ClawZ takes some steps to ensure that the Z translation of Simulink
names results in a unique Z name for each Simulink name. However some of the user controls can
subvert the algorithms used and so care should be taken in setting these controls.

Simulink blocks have paths which are essentially a sequence of the block names of all the enclosing
subsystems ending with the name of the block itself. The name of the Z schema which translates the
block itself must be globally unique, and is therefore obtained by translating the complete path. For
some purposes a local name suffices, notably in the signature of the schema defining the subsytem
containing a block. These two kinds of name for a block are interlinked by forming the translation
of a path from the translation of the blocks in the path.

C.1 Translating Local Names

Because Simulink names may contain characters which are not permitted in Z identifiers a translation
which guarantees against introducing ambiguity (and possibly translating two different block names
to the same Z identifier) is liable to be either opaque or prolix or both. A mechanism is therefore
provided allowing information to be discarded, risking clashes, but using numeric suffixes where
necessary to resolve the clashes. Two basic translation methods are available, one using a translation
table giving a verbose translation of all characters not legal in Z (e.g. “slash” for “/”) the other
using a single nominated character or character sequence to replace all the characters not allowed
in Z. The user selects which of these methods is adopted by setting the replacement string in the
control z_name_filler. If it is set to a non-empty string then that string replaces all non alphnumeric
characters in the blockname. If the z_name_filler is empty a translation table will be used, either a
default table or one supplied by the user using the procedure set_translation_table.

After a local name is translated using the filler string or the translation table on a character by
character basis, the following further transformations are undertaken.

1. Depending upon the selected method of composing local names into global path names some
or all instances of a separator character will be removed (see below).

2. Leading and trailing underbar characters are discarded.
3. If the name then begins with a decimal digit, or is empty, a “Z” character is added at the front.

4. If the name clashes with the translation of some local name already translated in the same
context (i.e. in the same subsystem of the Simulink model) then a numeric suffix is added,
which is the smallest positive integer which yields a translation which has not already been
used in this context.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 45

The translation is then remembered in the specific context so that no other names will be given the
same translation.

C.2 Translating Global Names

Global names are the translations of complete Simulink paths. The global names are compounded
from the local names which translate the names in the path in the specific context of those names.
There are two methods of doing this from which the user may select using the double_separator flag,
and the z_path_separator string control. The z_path_separator string control should be set to a single
character by the user (or left at its default setting of “_).

If the double_separator control is set to true, then the translation of the local names will collapse all
sequences of the separator character which occur in the translation to one occurrence of the character
and will then use two occurrences between each local name in the translation of a path for use as a
global name.

If the double_separator control is set to false, then the translation of the local names will remove
all occurrences of the separator character which occur in the translation and will then use a single
instance of the separator character between each local name in the translation of a path for use as a
global name.

In compounding the local names to yield a global names any “Z” characters which were added to the
local names so that they did not begin with decimal digits are removed, and those used to replace
the empty name, except for a Z added to the very first name in the path.

C.3 Name Mapping Controls

In addition to the translator steering file described in section 3.4, there are four string controls and
a flag which may be used to alter the mapping of Simulink names into Z (see also section C.6). To
change the value of a string control you use the command set_string_control, prior to calling
clawz_run or mfile_run. For example, to cause Matlab variable names to be prefixed with an ‘X’,
you would use the command:

set_string_control(" z_name_prefiz", "X");

To change the value of a flag you use the command set_flag, prior to calling clawz_run or
mfile_run. For example, to set double_separator mode:

set_flag(" double_separator", true);

The purpose of the four string controls are described in the following table:

Lemma 1 Ltd.

DAZ/USR505: ClawZ User Guide

46

‘ Control Name

‘ Description

z_name_filler

By default, punctuation marks and other non-alphanumeric characters in
Simulink names are translated into Z using a table of mnemonic names.
E.g., ‘) is translated into ‘Comma’. If you set the string control z_name_
filler to a non-empty alphanumeric string, then that string will be used
in place of the mnemonics as the translation of all non-alphanumeric
characters.

This string control applies to all Simulink names (block names, subsys-
tem names and Matlab variable names).

z_path_separator

This string control should be set to a single character string and defaults
to “_”. Either one or two instances of this character (according to the
setting of the control double_separator) are used to separate the local
names in the translation of a complete Simulink path into a global Z

identifier.

double_separator

This flag determines how many instances of the z_path_separator char-
acter are used to separate the local names in forming a global name. If
it is set two are used, otherwise one. It also controls whether instances
of the z_path_separator are permitted in the translation of the local
names. If the control is set to “true” single occurrences are permitted,
and multiple occurrences are replaced by a single occurrence. If the
control is set to “false” all occurrences of the z_path_separator are
removed from the translation of a local name.

z_name_prefix

This string control gives a prefix which is inserted at the beginning of
any Matlab variable name when it is translated into Z (by the .m file
translator or by the Model translator when a Matlab or Fcn expression
is translated into Z). This does not apply to block names and subsystem
names.

z_name_suffix

This string control gives a suffix which is appended to any Matlab vari-
able name when it is translated into Z (by the .m file translator or by
the Model translator when a Matlab or Fcn expression is translated into
Z). This does not apply to block names and subsystem names.

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 47

C.4 Setting the Translation Table

To set the translation table you use the command set_translation_table, prior to calling
clawz_run or mfile_run. A single parameter is required which must be a list of pairs of strings of
which the first string must always be a single character. Characters not mentioned in the mapping
will be left unchanged.

E.g.:

‘ set_translation_table [
‘ (u/n’ "81&8]1"),

‘ (n?u’ nqu)

I;

The above simple example would not be suitable if there were spaces or newlines or control characters
or punctuation characters other than ‘/” and ‘?” in the names in the model. To give a more typical
example, suppose that inspection of a model showed that with one or two exceptions names were
all formed from alphanumeric characters using spaces, newlines and hyphens to separate elements
of the names. The following code for setting the translation table would map the names into Z in a
natural way, using a single underscore to represent spaces, newlines and hyphens, the string “XXX”
to highlight any exceptional characters.

fun my_trans ch = (
if "a" <= ch andalso ch <= "z"
orelse "A" <= ch andalso ch <= "Z"
orelse "0" <= ch andalso ch <= "9"

then ch

else if ch ="="
orelse ch =" "
orelse ch = "\n"

then ~ "_"

else "XXX"

)i

set_translation_table
(map (fn i => (chr i, my_trans (chr i)))
(interval 0 255));

C.5 The NameMapping table

In addition to all the above controls the user may chose local names on a block-by-block basis by
using the NameMapping structure in the ClawZ steering file (see section 3.4.1). The Z names supplied
by the user in the NameMapping structure must comply with the following constraints:

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 48

They must be lexically valid ProofPower-Z words.

They may not begin or end with the z_path_separator character or the underbar character.

They may not contain more than one consecutive z_path_separator character.

If the double_separator flag is false they may not contain any occurrences of the z_path_
separator character.

If it is required to set the ports types for a subsystem the path of the subsystem itself should be used
rather than the path of the port blocks within the subsystem, provided that all the input or all the
output port types are to be set. Types for individual input or output ports can be set by setting the
the output port on the input port block within the subsystem, or the input port of the output port
block within the subsystem respectively.

C.6 Action Subsystem Schema Names

The suffixes used in forming the names of the active, held and reset schemas when an action subsystem
is translated are, by default, “,”, “;,” and “,.” respectively. You may change these using string controls
called active_suffiz, held_suffix and reset_suffix respectively. For example, if you used the commands

‘ set_string_ control (" active_suffiz", "_active");
‘set_stm'ng_ control("reset_suffiz", "_reset");

the Z translation for an action subsystem would take the form:

‘ subsys__name = Active A\ subsys__name_active V Inactive N subsys__name_reset

rather than the default of:

‘ subsys__name = Active N\ subsys__name, V Inactive N\ subsys__name,

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 49

D CLAWZ RUN PARAMETER TYPE DECLARATIONS

We provide here the ML source of the declarations for the parameter type required for initiating a
run of clawz.

signature ClawZControl = sig
type OUTPUT_FILTER SPEC = {

excl : string list,
el : string list,
file_name : string OPTY;

datatype BLOCK_MODIFIER =
Include of string list
| Exclude of string list

| ASname of string;

type BLOCK_MODIFIER SPEC = {
path : string,
filter : BLOCK_MODIFIER};

type ART _SUBSY S_SPEC = {

name : string,

top : BLOCK_MODIFIER_SPEC,
rest : BLOCK_MODIFIER_SPEC list,
output_spec : OUTPUT_FILTER_SPEC list};

type RUN_PARAMS = {

meta_file . string,
model_file : string,
steer_file : string OPT,

meta_output : string OPT,
output_spec . OUTPUT_FILTER_SPEC list,
art_subsys_specs : ART_SUBSYS_SPEC list};

val clawz_run : RUN_PARAMS —> unit;

type M_FILE_ RUN_PARAMS = {
parameter_type : string,
m_file : string,
output_file : string OPT,
types_file : string OPT};

val m_file_run : M_FILE_RUN_PARAMS —> unit;

Lemma 1 Ltd. DAZ/USR505: ClawZ User Guide 50

val diag_a_blocks : (string x ClawZTypes.A_BLOCK) list ref;
val set_translation_table : (string * string) list —> unit;

val default_translation_table : (string * string) list;

end (x of signature ClawZControl x);

E OUTPUT FILE ENCODING

The output from ClawZ may be written either in the ProofPower ASCII representation of Z, or
in the ProofPower extended character set. The flag “output_extended_characters” controls which
encoding is used, and should be set before calling clawz_run or mfile_run as follows:

‘ set_flag(" output_extended_ chars", bool);

where bool is either true for extended character set or false for pure ASCIL.

F LENGTH OF LINES IN THE Z OUTPUT FILES

ClawZ attempts to restrict the length of lines in the Z output files it produces to the number of
character given by the integer control z_line_length. This controls the insertion of line breaks in
constructs such as the binding displays that give the parameters to library blocks. The default value
of this control is 80 characters. To change it, use the command set_int_control as in the following
example:

set_int_control(" z_line_length", 120);

Lemma 1 Ltd.

DAZ/USR505: ClawZ User Guide

G SUMMARY OF FLAGS AND CONTROLS

o1

The following table shows each of the flags, integer control and string controls that affect the operation
of ClawZ. Each row in the table gives the name of the flag or control, its default setting and a reference
to the section and page of this document where a description may be found.

‘ Flags

‘ double_separator ‘ false ‘ C.3 page 46 ‘
inhibit_output_on_error | true | 3.3 page 17
output_extended_chars | false | E page 50
virtualize false | 3.6 page 21

‘ Integer Control ‘

| z_line_length |80 [F page 50 |

‘ String Controls ‘
active_suffix “. | C.6 page 48
held_suffix “7 | C.6 page 48
porttype_dumpfile “ 3.3 page 17
reset_suffix “.7 C.6 page 48
z_name_filler “ C.3 page 46
z_name_prefix «? C.3 page 46
z_name_suffix «? C.3 page 46

z_path_separator _

won

C.3 page 46

