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0.3 Changes History

Version 1.5 First issue to DERA.

The following notes relate to changes in this document to specifications previously located in
the ClawZ library [5].

• Correction to definition of : m to cover negative ranges.

• Improved definition of dot product.

• Widened domain of Matrix to permit unconditional rewrite.

• Definitions of sum and product revised to improve both readability and tractability.
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• Definition of bin2dec amended for a reasonably compromise between readability and
tractability.

Version 1.7 FEBRUARY 2002.

All arithmetic operators declared as left associative.

Version 1.9 JULY 2002.

Added section on Rounding Operators, and identified the matlab and fcn floor and ceil functions
with floor and ceil defined here.

Version 10.1 AUGUST 2002.

Add subscript R to names of rounding operators.

Version 10.2 APRIL 2003.

Version 10.3 JANUARY 2004. Updates for changes in ProofPower version 2.7.3 (Z universal set
is now called U; “|” is now treated as a punctuation symbol).

Issue 10.4 JANUARY 2004. Incorporating new information about the syntax of exponentiation in
Fcn expressions.

• Correction to definition of : m.

0.4 Changes Forecast

None.
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1 GENERAL

1.1 Scope

This document provides definitions of functions required either by the output from the ClawZ tool
or in writing specifications of Simulink library blocks (which may be referred to in the output of
ClawZ), together with the detailed design of support for reasoning about these functions, in the form
of theorems, conversions, tactics and proof contexts.

1.2 Introduction

1.2.1 Purpose and Background

This document is one of the deliverables for the Toolset Automation project. For the relevant
proposal see [3].

This document provides Z toolkit extensions required for ClawZ. The toolkit extensions are imple-
mented as a ProofPower-Z specification.

Its purpose is to provide functions in terms of which the Simulink library blocks can be specified.
The library blocks themselves are specified elsewhere, see [5].

It also specifies the basic proof support tools for the toolkit extensions. These tools comprise theo-
rems, conversions and proof contexts and are defined here in the same style as is used for ProofPower

proof facilities.

The theory CLT common specified by this document was previously provided as a part of the ClawZ
library in [4] and [5]. The revised and enhanced material is now described as the ClawZ Z toolkit to
distinguish it from the ClawZ Z library remaining in [4] and [5] which makes use of this theory in
providing formal specifications for Simulink library blocks.

In more detail, the structure of this document is as follows:

Section 2 discusses design issues and decisions which have been taken here;

Section 3 gives the Z specification aspects of the ClawZ toolkit;

Section 4 defines the ML structure which gives the interface for the facilities provided, defining the
theorems and conversions implemented.

1.2.2 Dependencies

The theory defined in this document is a child of the theory z library defined in ProofPower and
of z reals and cn, though dependency on ”cn” is to be minimised. The module is expected to be
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loaded into a ProofPower Compliance Tool database in typical use.

1.2.3 Possible Enhancements

Some aspects of the clawz library, for example the discrete components, are not yet supported by
the ClawZ toolkit. There are opportunities for improving the performance of the facilities provided,
if any of them should prove performance critical.

2 DESIGN ISSUES

2.1 Theory Hierarchy

The theory created by this document is called “CLT common”. Its parents are the theory “z library”
which gives access to the Z toolkit as provided in ProofPower, “cn” giving access to facilities related
to the Compliance Tool, and “z reals”.

2.2 Proof Facilities

The proof facilities follow a pattern which is common in ProofPower.

First of all, in section 4.2, theorems are presented which allow basic semi-automatic reasoning about
the objects defined in a theory.

Secondly, in section 4.4, proof procedures which cannot be captured as theorems are given as derived
inference rules, typically conversions (i.e. proof rules which support equational reasoning by taking
a term tm as argument and proving a theorem of the form ⊢ tm = tm′).

Finally, in section 4.5 the more generally applicable theorems and proof procedures are packaged
together in proof contexts which make it convenient for a user to access a general purpose collection
of simplifications customised for the theory. These proof contexts typically come in two flavours:
component proof contexts containing only the simplifications for this theory for use in combination
with other proof contexts; and complete proof contexts which contain a comprehensive collection
of simplifications suitable for use when reasoning primarily about the constants introduced in the
theory.
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3 CLAWZ TOOLKIT

Specifications are in general preceded by some comments on their role and followed by remarks on
methods of reasoning relevant to the particular global variables introduced. It should be understood
that unless stated otherwise proof support mentioned will be available only in the CLT common
proof context.

3.1 Preamble

The following preamble creates the theory “CLT common” as a child of “z library” and makes the
theories “z reals” and “cn” parents.

SML

force delete theory "CLT common" handle Fail => ();

open theory "z library";

push pc "z library";

val = set flag ("z type check only", false);

val = set flag ("z use axioms", true);

new theory "CLT common";

new parent"z reals";

new parent"cn";

3.2 Conditionals and Coercions

Note that though the following definition of the conditional is not in standard Z, the conditional it
defines is in the Z standard. The conditional should be a part of the Z language, not of the Z toolkit,
and would require special action from the parser to ensure correct treatment of logical operators in
the condition. Since this feature has not been implemented the condition will sometimes have to be
enclosed in a “Π” to prevent logical operators being construed as schema operations.

Z

fun if then else

Z

[X]

if then else : (BOOL × X × X ) → X

∀ b:BOOL; x ,y :X •

(b ⇒ (if b then x else y) = x )

∧ (¬ b ⇒ (if b then x else y) = y)
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Conditional clauses will be eliminated by rewriting or stripping if the condition evaluates to true oe
false. One way of forcing this to happen is to do a case split on the value of the conditional.

The following coercion is defined primarily for use in selecting elements from sequences using signal
values.

Z

r2z : R 7→ Z

∀ i : Z • (real i 7→ i) ∈ r2z

r2z will be eliminated by rewriting if it is applied to an expression of the form (real exp).

3.3 Slicing Vectors

The following function is used to select a slice from a vector in the synthesis of Demux and BuseSe-

lector blocks. It is an integer variant of the similarly named matlab operator (defined below).

Z

fun 2 leftassoc :z

Z

:z : (Z × Z) → seq Z

∀x , y : Z•

x :z y =

{i ,z :Z

| i = z − x + 1

∧ x ≤ z ≤ y}

3.4 Bounds

The following definitions of bounds are required for defining the various simulink MinMax blocks.

Z

rel lbR

Z

lbR : R ↔ P R

∀ r : R; sr : P R•

r lbR sr ⇔ (∀ x :sr• r ≤R x )



Lemma 1 Ltd. LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit 9

Z

glbR: P R 7→ R

∀ sr : P R; glb: R•

(sr 7→ glb) ∈ glbR ⇔

glb lbR sr ∧ (∀lb: R | lb lbR sr• lb ≤R glb)

Z

rel ubR

Z

ubR : R ↔ P R

∀ r : R; sr : P R•

r ubR sr ⇔ (∀ x :sr• r ≥R x )

Z

lubR: P R 7→ R

∀ sr : P R; lub: R•

(sr 7→ lub) ∈ lubR ⇔

lub ubR sr ∧ (∀ub: R | ub ubR sr• ub ≥R lub)

A variety of theorems are available for general reasoning about bounds. For the special case of
equalities or inequalities involving bounds of set displays (including least upper and greatest lower) a
package of theorems is available in the component proof context ′CLT Bounds which reduces these
to inequalities suitable for solution by linear arithmetic. This proof context contains an automatic
prover which applies the rewrites and then calls the linear arithmetic prover.

3.5 Relational Operators

These relational operations are used in defining the Simulink relational operator blocks.

Z

rel is trueR
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Z

trueR, falseR: R;

is trueR : P R;

BooleanR: BOOL → R

trueR = real 1 ;

falseR = real 0 ;

(∀x :U• is trueR x ⇔ ¬ x = falseR);

∀x :U• BooleanR x = if x then trueR else falseR

Z

[X,Y ]

liftrelR: P (X × Y ) → (X × Y → R)

∀ r : P (X × Y ); x : X ; y : Y •

liftrelR r (x ,y) = BooleanR ((x ,y) ∈ r)

Z

fun 200 leftassoc eqR , noteqR , lessR , less eqR

Z

fun 210 leftassoc greaterR , greater eqR

Z

eqR : R × R → R;

noteqR : R × R → R;

lessR : R × R → R;

less eqR : R × R → R;

greaterR : R × R → R;

greater eqR : R × R → R

( eqR ) = liftrelR {x ,y :R | x = y};

( noteqR ) = liftrelR {x ,y :R | x 6= y};

( lessR ) = liftrelR ( <R );

( less eqR ) = liftrelR ( ≤R );

( greaterR ) = liftrelR ( >R );

( greater eqR ) = liftrelR ( ≥R )

These operators are automatically elimated by rewriting or stripping leaving the corresponding re-
lation over Z reals together with a coercion back to the appropriate real representative.
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3.6 Rounding Functions

Z

floorR : R → real (| Z |)

∀ x : R • real 0 ≤R x −R floorR x <R real 1

Z

ceilR : R → real (| Z |)

∀ x : R • real 0 ≤R ceilR x −R x <R real 1

Z

roundR : R → real (| Z |)

∀ x : R • roundR x = if real 0 ≤R x then floorR (x +R 5 e ∼1 ) else ceilR (x −R 5 e ∼1 )

Z

fixR : R → real (| Z |)

∀ x : R • fixR x = if real 0 ≤R x then floorR x else ceilR x

3.7 Logical Operators

The following definitions support the specification of the Simulink Logical Operator blocks.

Z

fun 10 leftassoc equivR

Z

fun 20 leftassoc xorR

Z

fun 30 leftassoc orR

Z

fun 40 leftassoc andR

Z

fun 50 notR

Logical operators always return trueR for true, but will accept as true any non-zero real. Conse-
quently, in the following specification and in some later theorems, when the value of an operator is
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known to be the same truth value as one of its operands the operand is twice negated before being
returned, to ensure that non standard truths are not propagated.

Z

notR : R → R;

andR : R × R → R;

orR : R × R → R;

equivR : R × R → R;

xorR : R × R → R

∀ l : R • notR l = if is trueR l then falseR else trueR;

∀ l , r : R • l andR r = if is trueR l then notR (notR r) else falseR;

∀ l , r : R • l orR r = if is trueR l then trueR else notR (notR r);

∀ l , r : R • l equivR r = if is trueR l then notR (notR r) else notR r ;

∀ l , r : R • l xorR r = notR (l equivR r)

The supplied rewrites effect the translation of logical and relational expressions into Z formulae.

3.8 Matlab Operators

These function definitions are those of the Z names into which operators in Matlab expressions are
translated.

The standard operations might have been OK, but we redefine them anyway, so that if there are any
errors in the precedence they can be fixed in the library without having to change ClawZ.

Z

fun 3 leftassoc .+m , .−m

Z

fun 4 leftassoc .∗m , ./m , .\m

Z

.+m , .−m , .∗m , ./m , .\m : (R × R) → R

( .+m ) = ( +R )

∧ ( .−m ) = ( −R )

∧ ( .∗m ) = ( ∗R )

∧ ( ./m ) = ( /R )

∧ (∀x ,y : R• x .\m y = y /R x )

The following relations over reals (returning reals) are used as target for the corresponding operators
in both matlab and fcn expressions:
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Z

fun 2 leftassoc <m , >m , >=m , <=m , ==m , ∼=m

Z

<m , >m , >=m , <=m , ==m , ∼=m : (R × R) → R

( <m ) = ( lessR )

∧ ( >m ) = ( greaterR )

∧ ( >=m ) = ( greater eqR )

∧ ( <=m ) = ( less eqR )

∧ ( ==m ) = ( eqR )

∧ ( ∼=m ) = ( noteqR )

The following logical operators are used for the corresponding operators in matlab expressions:

Z

fun 1 leftassoc andm , orm

Z

andm , orm : (R × R) → R

( andm ) = ( andR )

∧ ( orm ) = ( orR )

Z

fun 5 leftassoc .̂m

Z

.̂m : (R × R) 7→ R

dom ( .̂m ) = R × (dom r2z );

∀x :R; y : dom r2z• x .̂m y = x ̂Z (r2z y)

The following are unary operators occurring in matlab expressions:

Z

fun 5 mpm , mmm

Z

fun 6 ∼m
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Z

mpm , mmm , ∼m : R → R

∀x : R• mpm x = x

∧ mmm x = (real 0 ) −R x

∧ (∼m ) = (notR )

Z

fun 2 leftassoc :m

Z

:m : (R × R) → seq R

∀x , y : R•

x :m y =

{z :R; i :Z

| z = x +R (real i)

∧ (x ≤R z ≤R y)

•(i + 1 , z )}

The matlab operators are eliminated in favour of the underlying operations over reals when an
expression is rewritten in the proof context CLT common.

3.9 Fcn Operators

These function definitions are those of the Z names into which operators in Fcn expressions are
translated.

The standard operations over reals do not have high enough precedence for use in Fcn expressions.

Z

fun 5 leftassoc +f , −f

Z

fun 6 leftassoc ∗f , /f

Z

+f , −f , ∗f , /f : (R × R) → R

( +f ) = ( +R )

∧ ( −f ) = ( −R )

∧ ( ∗f ) = ( ∗R )

∧ ( /f ) = ( /R )
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The following relations and operations over reals are provided to give a distinct priority to occurrences
of these operations in Fcn expressions:

Z

fun 4 leftassoc <f , >f , >=f , <=f

Z

<f , >f , >=f , <=f : (R × R) → R

( <f ) = ( lessR )

∧ ( >f ) = ( greaterR )

∧ ( >=f ) = ( greater eqR )

∧ ( <=f ) = ( less eqR )

Z

fun 3 leftassoc =f , 6=f

Z

=f , 6=f : (R × R) → R

( =f ) = ( eqR )

∧ ( 6=f ) = ( noteqR )

Z

fun 2 leftassoc andf

Z

fun 1 leftassoc orf

Z

andf , orf : (R × R) → R

( and f ) = ( andR )

∧ ( or f ) = ( orR )

Z

fun 9 leftassoc ̂f

Z

̂f : (R × R) 7→ R

dom ( ̂f ) = R × (dom r2z );

∀x :R; y : dom r2z• x ̂f y = x ̂Z (r2z y)
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The following are unary operators occurring in Fcn expressions:

Z

fun 8 mpf , mmf

Z

fun 7 notf

Z

mpf , mmf , notf : R → R

∀x : R• mpf x = x

∧ mm f x = (real 0 ) −R x

∧ (not f ) = (notR )

The matlab operators are eliminated in favour of the underlying operations over reals when an
expression is rewritten in the proof context CLT common.

3.10 Matlab Functions

The following specifications are place holders for the various functions used in translation of Matlab
expressions. They permit type checking but not reasoning which depends upon these functions.

Z

fun 10 absm , acosm , asinm , atanm , ceilm

Z

fun 10 cosm , coshm , expm , fabsm , floorm

Z

fun 10 hypotm , logm , log10m , sinm , sinhm

Z

fun 10 sqrtm , tanm , tanhm

Z

absm , acosm , asinm , atanm , ceilm : R 7→ R;

cosm , coshm , expm , fabsm , floorm : R 7→ R;

hypotm , logm , log10m , sinm , sinhm : R 7→ R;

sqrtm , tanm , tanhm : R 7→ R

(ceilm ) = ceilR;

(floorm ) = floorR
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Z

fun 10 atan2m , powerm , remm

Z

atan2m , powerm , remm : R × R 7→ R

true

No proof support is available for the matlab functions.

3.11 Fcn Functions

The following specifications are place holders for the various functions used in translation of Fcn
expressions. They permit type checking but not reasoning which depends upon these functions.
Z

fun 10 abs f , acos f , asin f , atan f , ceil f

Z

fun 10 cos f , coshf , expf , fabs f , floor f

Z

fun 10 hypot f , log f , log10 f , sin f , sinhf

Z

fun 10 sqrt f , tan f , tanh f , ln f , sgn f

Z

absf , acosf , asinf , atanf , ceilf : R 7→ R;

cosf , coshf , expf , fabsf , floorf : R 7→ R;

hypotf , logf , log10f , sinf , sinhf : R 7→ R;

sqrtf , tanf , tanhf , lnf , sgnf : R 7→ R

(ceil f ) = ceilR;

(floor f ) = floorR

Z

fun 10 atan2 f , power f , rem f

Z

atan2f , powerf , remf : R × R 7→ R

true

No proof support is available for the fcn functions.
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3.12 Math

3.12.1 Combinatorial Logic

bin2dec is required for the Combinatorial Logic block. The following definition is a reasonable
compromise between simplicity and convenience for reasoning, and makes if feasible for bin2dec to
be evaluated by rewriting.

Z

bin2dec : (seq R) → Z

bin2dec 〈〉 = 0 ;

∀ f : R; l : seq R•

bin2dec(〈f 〉 a l) = (bin2dec l) + (if f = real 0 then 0 else 1 ) ∗ (2 ∗∗ #l)

When applied to a sequence display bin2dec is eliminated by rewriting in favour of an expression
involving ∗∗.

The following definition is used in expressing constraints on the input to DiscreteStateSpace and
CombinatorialLogic blocks.

Z

rel Matrix

Z

Matrix : (Z ↔ (Z ↔ R)) ↔ Z × Z

∀ s : (Z ↔ (Z ↔ R)); m, n : Z •

s Matrix (m, n) ⇔

s ∈ (seq ) ∧ #s = m

∧ (∀ ss : ran s • ss ∈ (seq ) ∧ #ss = n)

When applied to a pair of numeric literals and a sequence display of sequence displays and which is
of the specified dimensions Matrix will be eliminated by rewriting.

3.12.2 Dot Product

dotproduct is required for several of the Simulink Disrete blocks.
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Z

dot product : (seq R) × (seq R) 7→ R

dom dot product = {In1?, In2? : seq R | #In1? = #In2?};

dot product (〈〉, 〈〉) = real 0 ;

∀ h1 ,h2 : R; t1 ,t2 : seq R | #t1 = #t2 •

dot product(〈h1 〉 a t1 , 〈h2 〉 a t2 ) = h1 ∗R h2

+R dot product(t1 , t2 )

The CLT common proof context will evaluate dot products of pairs of sequence displays. If all the
elements are literals the result will be a literal, otherwise an expression involving real addition and
multiplication.

3.12.3 Product

Vectorised product blocks are defined using the following function:
Z

product : (seq R) → R

product 〈〉 = real 1 ;

∀ h: R; t : seq R•

product(〈h〉 a t) = h ∗R product t

Products of sequence displays will be expanded out by the proof context and will be fully evaluated
if the elements are literals.

3.12.4 Sum

Vectorised sum blocks are defined using the following function:
Z

sum : (seq R) → R

sum 〈〉 = real 0 ;

∀ h:R; t :seq R•

sum (〈h〉 a t) = h +R (sum t)

Sums of sequence displays will be expanded out by the proof context and will be fully evaluated if
the elements are literals.
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4 THE STRUCTURE

4.1 Preamble

SML

signature CLT common = sig

Description This is the signature for the toolkit extensions required to support the theory
CLT common.

Theory Design

req name "CLT common" (Value "z library");

req language "Z";

req parent "cn";

req parent "z reals";

req parent "cache ′clawzlib";

set flag("tc thms only", true);

Description The theory CLT common defines functions required by the specifications of
Simulink library blocks, or by the Z specifications output by ClawZ. It is created in structure
CLT common. The specification of the theory name, and the language of the theory is de-
fined using req name and req language. This conforms to the technique used in the rest of the
ProofPower design documentation for specifying the requirement for theories.

4.2 Theorems

Theorems are provided which allow systematic expansion of the objects in the theory in terms of the
Z toolkit operations. These theorems serve to support the proof procedures defined in section 4.4
below and may also be directly applied by the user.

In following, some theorems, which are intended primarily for insertion in proof contexts rather than
for direct use, are expressed in mixed language. In many cases unconditional rewriting over sequence
or set displays is possible by this means but cannot be expressed in pure Z (and is not valid over
sequences or sets in general). In this we exploit the fact that Z sequence and set displays are both
represented in the underlying ProofPower HOL by the application of a semantic constant (Z ′〈〉 and
Z ′Setd respectively) to an expression denoting a ProofPower HOL list (often formed using Cons,
which adds an element to the head of a list).
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4.2.1 Conditionals and Coercions

Theory Design

req thm("cz if thm", ([], pZ

∀x , y :U• if true then x else y = x

∧ if false then x else y = yq));

req thm("cz r2z thm", ([], pZ∀i :U• r2z (real i) = i ∧ r2z (∼R (real i)) = ∼ iq));

Description These theorems, permit conditional expressions and the partial inverse of real ,to
be eliminated.

4.2.2 Bounds

Theory Design

req thm("cz ub thm", ([], pZ∀r :U; sr :U• r ubR sr ⇔ (∀ x :sr• r ≥R x )q));

req thm("cz lb thm", ([], pZ∀r :U; sr :U• r lbR sr ⇔ (∀ x :sr• r ≤R x )q));

req thm("cz ge ub trans thm", ([], pZ∀x , y :U; z :U• y ≤R x ∧ y ubR z ⇒ x ubR zq));

req thm("cz le lb trans thm", ([], pZ∀x , y :U; z :U• x ≤R y ∧ y lbR z ⇒ x lbR zq));

req thm("cz lb ub thm", ([], pZ∀ s : U; lb : U • lb lbR s

⇔ ∼R lb ubR {x : s | true • ∼R x}q));

req thm("cz ub lb thm", ([], pZ∀ s : U; ub : U • ub ubR s

⇔ ∼R ub lbR {x : s | true • ∼R x}q));

req thm("cz lub thm", ([], pZ∀lub:U; sr :U• (sr 7→ lub) ∈ lubR ⇔

lub ubR sr ∧ (∀ub: U | ub ubR sr• ub ≥R lub)q));

req thm("cz glb thm", ([], pZ∀glb:U; sr :U• (sr 7→ glb) ∈ glbR

⇔ glb lbR sr ∧ (∀lb: U | lb lbR sr• lb ≤R glb)q));

req thm("cz lub sup thm", ([], p∀s l• pZs 7→ l ∈ lubRq ⇒ l = Sup sq));

req thm("cz dom lub thm", ([], pZ∀s:U• (∃lub:U• (s 7→ lub) ∈ lubR)

⇔ ¬ s = {} ∧ (∃ub:U• ub ubR s)q));

req thm("cz dom glb thm", ([], pZ∀s:U• (∃glb:U• (s 7→ glb) ∈ glbR)

⇔ ¬ s = {} ∧ (∃lb:U• lb lbR s)q));

req thm("cz lub setd thm", ([], pZ∀ lub, x : U; s : U • lub = lubR pZ ′Setd (Cons x s)q

⇔ lub ubR pZ ′Setd (Cons x s)q

∧ (∀ ub : U | ub ubR pZ ′Setd (Cons x s)q • ub ≥R lub)q));

req thm("cz glb setd thm", ([], pZ∀ glb, x : U; s : U • glb = glbR pZ ′Setd (Cons x s)q

⇔ glb lbR pZ ′Setd (Cons x s)q

∧ (∀ lb : U | lb lbR pZ ′Setd (Cons x s)q • lb ≤R glb)q));

Description A collection of results about upper, lower, greatest lower and lowest upper bounds
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Theory Design

req thm("cz ub empty thm", ([], pZ∀ub:U• ub ubR {}q));

req thm("cz lb empty thm", ([], pZ∀lb:U• lb lbR {}q));

req thm("cz lub unit thm", ([], pZ∀x :U• lubR {x} = xq));

req thm("cz glb unit thm", ([], pZ∀x :U• glbR {x} = xq));

req thm("cz ub setd thm", ([], pZ∀x ,y :U; t :U• x ubR pZ ′Setd (Cons y t)q

⇔ y ≤R x ∧ x ubR pZ ′Setd tqq));

req thm("cz lb setd thm", ([], pZ∀lb,x :U; s:U• lb lbR pZ ′Setd (Cons x s)q

⇔ lb ≤R x ∧ lb lbR pZ ′Setd sqq));

req thm("cz lub setd le thm", ([], pZ∀x ,z :U; t :U• lubR pZ ′Setd (Cons z t)q ≤R x

⇔ x ubR pZ ′Setd (Cons z t)qq));

req thm("cz le glb setd thm", ([], pZ∀x ,z :U; t :U• x ≤R glbR pZ ′Setd (Cons z t)q

⇔ x lbR pZ ′Setd (Cons z t)qq));

req thm("cz eq lub setd thm", ([], pZ∀x ,y ,z :U; t :U•

x = lubR pZ ′Setd (Cons y (Cons z t))q

⇔ x = y ∧ x ubR pZ ′Setd (Cons z t)q

∨ y ≤R x ∧ x = lubR pZ ′Setd (Cons z t)qq));

req thm("cz lub setd eq thm", ([], pZ∀x ,y ,z :U; t :U•

lubR pZ ′Setd (Cons y (Cons z t))q = x

⇔ x = y ∧ x ubR pZ ′Setd (Cons z t)q

∨ y ≤R x ∧ x = lubR pZ ′Setd (Cons z t)qq));

req thm("cz le lub setd thm", ([], pZ∀x ,y ,z :U; t :U•

x ≤R lubR pZ ′Setd (Cons y (Cons z t))q

⇔ x ≤R y ∨ x ≤R lubR pZ ′Setd (Cons z t)qq));

req thm("cz eq glb setd thm", ([], pZ∀x ,y ,z :U; t :U•

x = glbR pZ ′Setd (Cons y (Cons z t))q

⇔ x = y ∧ x lbR pZ ′Setd (Cons z t)q

∨ x ≤R y ∧ x = glbR pZ ′Setd (Cons z t)qq));

req thm("cz glb setd eq thm", ([], pZ∀x ,y ,z :U; t :U•

glbR pZ ′Setd (Cons y (Cons z t))q = x

⇔ x = y ∧ x lbR pZ ′Setd (Cons z t)q

∨ x ≤R y ∧ x = glbR pZ ′Setd (Cons z t)qq));

req thm("cz glb setd le thm", ([], pZ∀x ,y ,z :U; t :U•

glbR pZ ′Setd (Cons y (Cons z t))q ≤R x

⇔ y ≤R x ∨ glbR pZ ′Setd (Cons z t)q ≤R xq));

Description These theorems give rules for eliminating talk about bounds of set displays in
favour if inequalities, which may then be solvable using linear arithmetic.
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The following illustrates the effects of rewriting with the above theorems.

Rewriting Example

x = glbR {a,lubR{b,c}}

1 ) ===> x = a ∧ x lbR {lubR {b, c}} ∨ x ≤R a ∧ x = glbR {lubR {b, c}}

2 ) ===> x = a ∧ x ≤R lubR {b, c} ∧ x lbR {} ∨ x ≤R a ∧ x = lubR {b, c}

3 ) ===> x = a ∧ (x ≤R b ∨ x ≤R lubR {c}) ∧ true

∨ x ≤R a ∧ (x = b ∧ x ubR {c} ∨ b ≤R x ∧ x = lubR {c})

4 ) ===> x = a ∧ (x ≤R b ∨ x ≤R c) ∧ true

∨ x ≤R a ∧ (x = b ∧ c ≤R x ∧ x ubR {} ∨ b ≤R x ∧ x = c)

5 ) ===> x = a ∧ (x ≤R b ∨ x ≤R c) ∧ true

∨ x ≤R a ∧ (x = b ∧ c ≤R x ∧ true ∨ b ≤R x ∧ x = c)

4.2.3 Relational Operators

Theory Design

req thm("liftrel thm", ([], pZ∀ r : U; x : U; y : U •

liftrelR r (x , y) = if (x , y) ∈ r then real 1 else real 0q));

Description This theorem permits lif trelR to be eliminated.

Theory Design

req thm("cz relational clauses", ([], pZ

∀x ,y :U• x eqR y = BooleanR (x = y)

∧ x noteqR y = BooleanR (Π (¬ x = y))

∧ x lessR y = BooleanR (x <R y)

∧ x less eqR y = BooleanR (x ≤R y)

∧ x greaterR y = BooleanR (x >R y)

∧ x greater eqR y = BooleanR (x ≥R y)

q));

Description The strategy for handling the relational operators is to convert them into expres-
sions of the form Boolean p, where p is an atomic Z predicate or the negation of one.

These theorems support this strategy. They use the universal set U to make them easier to
instantiate. The cast Π is a purely syntactic device used to allow a propositional connective in a
function argument (see [1]).
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4.2.4 Logical Operators

Theory Design

req thm("cz boolean clauses", ([], pZ

trueR = BooleanR true

∧ falseR = BooleanR false

∧ (∀p:U• notR (BooleanR p) = BooleanR (Π (¬ p)))

∧ (∀p,q :U• (BooleanR p) andR (BooleanR q) = BooleanR (Π (p ∧ q)))

∧ (∀p,q :U• (BooleanR p) orR (BooleanR q) = BooleanR (Π (p ∨ q)))

∧ (∀p,q :U• (BooleanR p) equivR (BooleanR q) = BooleanR (Π (p ⇔ q)))

∧ (∀p,q :U• (BooleanR p) xorR (BooleanR q) = BooleanR (Π (¬(p ⇔ q))))

∧ (∀p,q :U• (BooleanR p) = (BooleanR q) ⇔ (p ⇔ q))

q));

Description The strategy for handling the boolean operators is to convert an expression in
notR, andR, orR, equivR,and xorR, into an expression of the form BooleanR p, where p is con-
structed using the Z propositional operators. When such expressions appear as the operands of
an equality, the whole predicate can be converted to a Z predicate not involving Boolean.

These theorems support this strategy. They use the universal set U to make them easier to
instantiate. The cast Π is a purely syntactic device used to allow a propositional connective in a
function argument (see [1]).

See Also clawz boolean clauses1, clawz boolean clauses2.
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Theory Design

req thm("cz boolean real clauses", ([], pZnotR (real 0 ) = BooleanR true

∧ notR (real 1 ) = BooleanR false

∧ (∀p:U• (real 1 ) andR p = (BooleanR true) andR p)

∧ (∀p:U• p andR (real 1 ) = p andR (BooleanR true))

∧ (∀p:U• (real 0 ) andR p = BooleanR false)

∧ (∀p:U• p andR (real 0 ) = BooleanR false)

∧ (∀p:U• (real 1 ) orR p = BooleanR true)

∧ (∀p:U• p orR (real 1 ) = BooleanR true)

∧ (∀p:U• (real 0 ) orR p = (BooleanR false) orR p)

∧ (∀p:U• p orR (real 0 ) = p orR (BooleanR false))

∧ (∀p:U• (real 1 ) equivR p = (BooleanR true) equivR p)

∧ (∀p:U• p equivR (real 1 ) = p equivR (BooleanR true))

∧ (∀p:U• (real 0 ) equivR p = notR p)

∧ (∀p:U• p equivR (real 0 ) = notR p)

∧ (∀p:U• (real 1 ) xorR p = notR p)

∧ (∀p:U• p xorR (real 1 ) = notR p)

∧ (∀p:U• (real 0 ) xorR p = (BooleanR false) xorR p)

∧ (∀p:U• p xorR (real 0 ) = p xorR (BooleanR false))

q));

Description General replacement of real literals 0 and 1 by their boolean equivalents is not
desirable, but without this theorem their use in boolean expressions would inhibit translation into
Z predicates.

This theorem eliminates occurrences of real 0 or real 1 when they appear as operands of the
clawz boolean operations.

Theory Design

req thm("cz boolean clauses1", ([], pZ

(∀p:U• notR p = BooleanR (Π (p = falseR)))

∧ (∀p,q :U• p andR q = BooleanR (Π (¬ p = falseR ∧ ¬ q = falseR)))

∧ (∀p,q :U• p orR q = BooleanR (Π (¬ p = falseR ∨ ¬ q = falseR)))

∧ (∀p,q :U• p equivR q = BooleanR (Π (p = falseR ⇔ q = falseR)))

∧ (∀p,q :U• p xorR q = BooleanR (Π (p = falseR ⇔ ¬ q = falseR)))

q));

Description The strategy for handling the boolean operators is to convert an expression in not,
and, or, and xor, into an expression of the form Boolean p, where p is constructed using the Z
propositional operators. When such expressions appear as the operands of an equality, the whole
predicate can be converted to a Z predicate not involving Boolean (except applied to true).

This theorem, with cn boolean clauses2, support this strategy when one or both of the arguments
of a boolean operator are not of the form Boolean x for some x.
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Theory Design

req thm("cz boolean clauses2", ([], pZ

(∀b:U; r :U• r andR (BooleanR b) = BooleanR (Π (¬ r = falseR ∧ b)))

∧ (∀b:U; r :U• (BooleanR b) andR r = BooleanR (Π (b ∧ ¬ r = falseR)))

∧ (∀b:U; r :U• r orR (BooleanR b) = BooleanR (Π (¬ r = falseR ∨ b)))

∧ (∀b:U; r :U• (BooleanR b) orR r = BooleanR (Π (b ∨ ¬ r = falseR)))

∧ (∀b:U; r :U• r equivR (BooleanR b) = BooleanR (Π (¬ r = falseR ⇔ b)))

∧ (∀b:U; r :U• (BooleanR b) equivR r = BooleanR (Π (b ⇔ ¬ r = falseR)))

∧ (∀b:U; r :U• r xorR (BooleanR b) = BooleanR (Π (r = falseR ⇔ b)))

∧ (∀b:U; r :U• (BooleanR b) xorR r = BooleanR (Π (b ⇔ r = falseR)))

q));

Description See cn boolean clauses1 for use.

The effect of rewriting with the theorems presented in this section and the previous section is shown
in the following example, in which we show how the expression:

N eqR (real 0 ) orR notR N lessR (real 4 ) = trueR

is rewritten as “N = (real 0 ) ∨ ¬ N < R (real 4 )”.

Rewriting Example

N eqR (real 0 ) orR notR N lessR (real 4 ) = trueR

1 ) ===> BooleanR (N = (real 0 )) orR notR BooleanR (N <R (real 4 )) = BooleanR true

2 ) ===> BooleanR (N = (real 0 )) orR BooleanR (¬ N <R (real 4 )) = BooleanR true

3 ) ===> BooleanR (N = (real 0 ) ∨ ¬ N <R (real 4 )) = BooleanR true

4 ) ===> N = (real 0 ) ∨ ¬ N <R (real 4 ) ⇔ true

5 ) ===> N = (real 0 ) ∨ ¬ N <R (real 4 )

Here in step 1 the theorem of this section starts thing off by turning the ClawZ atomic predicates
into Z expressions involving BooleanR. In steps 2 and 3, the theorems of the previous section
turn the vocabulary of the theory CLT common into the Z toolkit vocabulary using the argument
of BooleanR to accumulate the result. At step 4 BooleanR is eliminated. Finally a standard
ProofPower-Z simplification removes the unnecessary “ ⇔ true”.
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4.2.5 Matlab Operators

Theory Design

req thm("cz matlab clauses", ([], pZ

( .+m ) = ( +R )

∧ ( .−m ) = ( −R )

∧ ( .∗m ) = ( ∗R )

∧ ( ./m ) = ( /R )

∧ (∀x ,y : U• x .\m y = y /R x )

∧ ( <m ) = ( lessR )

∧ ( >m ) = ( greaterR )

∧ ( >=m ) = ( greater eqR )

∧ ( <=m ) = ( less eqR )

∧ ( ==m ) = ( eqR )

∧ ( ∼=m ) = ( noteqR )

∧ ( andm ) = ( andR )

∧ ( orm ) = ( orR )

∧ (∀r :U;z :U• r .̂m (real z ) = r ̂Z z )

∧ (∀x : U• mpm x = x )

∧ (∀x : U• mmm x = (real 0 ) −R x )

∧ (∼m ) = (notR )

q));

Description This theorem permits the elimination of Matlab operators.
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4.2.6 Fcn Operators

Theory Design

req thm("cz fcn clauses", ([], pZ

( +f ) = ( +R )

∧ ( −f ) = ( −R )

∧ ( ∗f ) = ( ∗R )

∧ ( /f ) = ( /R )

∧ ( <f ) = ( lessR )

∧ ( >f ) = ( greaterR )

∧ ( >=f ) = ( greater eqR )

∧ ( <=f ) = ( less eqR )

∧ ( =f ) = ( eqR )

∧ ( 6=f ) = ( noteqR )

∧ ( and f ) = ( andR )

∧ ( or f ) = ( orR )

∧ (∀r :U;z :U• r ̂f (real z ) = r ̂Z z )

∧ (∀x : U• mpf x = x )

∧ (∀x : U• mm f x = (real 0 ) −R x )

∧ (not f ) = (notR )

q));

Description This theorem permits the elimination of Fcn operators.

4.2.7 Product and Sum

Theory Design

req thm("cz bin2dec thm", ([], pZbin2dec 〈〉 = 0 ∧ (∀ f : U; l : U•

bin2dec(p$"Z ′〈〉" (Cons f l)q) = (bin2dec p$"Z ′〈〉" lq) +

(if f = real 0 then 0 else 1 ) ∗ (2 ∗∗ # p$"Z ′〈〉" lq))

q));

req thm("cz dot product empty thm", ([], pZdot product (〈〉,〈〉) = real 0q));

req thm("cz dot product thm", ([], pZ∀ h1 ,h2 :U; t1 ,t2 :U• pLength t1q = pLength t2q ⇒

dot product (p$"Z ′〈〉" (Cons h1 t1 )q, p$"Z ′〈〉" (Cons h2 t2 )q)

= h1 ∗R h2 +R (dot product (p$"Z ′〈〉" t1q, p$"Z ′〈〉" t2q))

q));

req thm("cz product thm", ([], pZproduct 〈〉 = real 1 ∧ (∀ h:U; t :U•

product p$"Z ′〈〉" (Cons h t)q = h ∗R (product p$"Z ′〈〉" tq))

q));

req thm("cz sum thm", ([], pZsum 〈〉 = real 0 ∧ (∀ h:U; t :U•

sum p$"Z ′〈〉" (Cons h t)q = h +R (sum p$"Z ′〈〉" tq))

q));

Description These theorems supports evaluation of ”sum” on sequence displays.
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4.3 ML Bindings for Theorems

SML

val cz ub thm : THM ;

val cz lb thm : THM ;

val cz ge ub trans thm : THM ;

val cz le lb trans thm : THM ;

val cz lb ub thm : THM ;

val cz ub lb thm : THM ;

val cz lub thm : THM ;

val cz glb thm : THM ;

val cz lub sup thm :THM ;

val cz dom lub thm : THM ;

val cz dom glb thm : THM ;

val cz lub setd thm : THM ;

val cz glb setd thm : THM ;

val cz ub empty thm : THM ;

val cz lb empty thm : THM ;

val cz lub unit thm : THM ;

val cz glb unit thm : THM ;

val cz ub setd thm : THM ;

val cz lb setd thm : THM ;

val cz lub setd le thm : THM ;

val cz le glb setd thm : THM ;

val cz eq lub setd thm : THM ;

val cz lub setd eq thm : THM ;

val cz le lub setd thm : THM ;

val cz eq glb setd thm : THM ;

val cz glb setd eq thm : THM ;

val cz glb setd le thm : THM ;

Description These are the ML names for the theorems in the theory “CLT common”, which
contains extensions to the Z toolkit required to support the ClawZ tool output. These theorems
concern upper and lower, least upper and greatest lower bounds.
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SML

val cz if thm : THM ;

val cz r2z thm : THM ;

val cz boolean clauses : THM ;

val cz boolean clauses1 : THM ;

val cz boolean clauses2 : THM ;

val cz boolean real clauses : THM ;

val cz relational clauses : THM ;

val cz matlab clauses : THM ;

val cz fcn clauses : THM ;

val cz bin2dec thm : THM ;

val cz dot product empty thm : THM ;

val cz dot product thm : THM ;

val cz product thm : THM ;

val cz sum thm : THM ;

Description These are the ML names for the theorems in the theory “CLT common”, which
contains extensions to the Z toolkit required to support the ClawZ tool output. These theorems
cover expansion of conditionals, boolean expressions, relations, matlab and fcn expressions, binary
to decimal, dot product, and sequence product and sum evaluation.

4.4 ML Bindings for Proof Procedures

SML

val cz matrix conv : CONV ;

Description Conversions for the clawz library. cz matrix conv applies to terms of the form
smatrix(n,m), where s is a sequence display of n sequence displays each of length m, and n and
m are numeric literals. In this case the result is pZs matrix (n,m) ⇔ trueq, any other case fails.

cz dot product conv

Description applies to terms of the form dot product(s1, s2), where s1 and s2 are non-empty
sequence displays of equal length. It does the first step in evaluation of such a product, but
pulling out the first element of each list and returning the sum of their product and a shorter dot
product. This conversion is not suitable for use by end users because it only solves part of the
problem (of evaluating dot products) and is therefore supplied only in proof contexts (in which
context the whole problem is solved). An improved version suitable for direct use by end users
may be made available in later releases.

Errors

528000 ?0 is not a rectangular matrix display of size ?1 by ?2

528001 ?0 is not of the form pZmd Matrix (r ,c)q where md is

a sequence display of r sequence displays each of length c.

528002 ?0 is not of the form pZdot product (d1 , d2 )q where d1 and d2

are sequence displays of equal length.
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4.5 PROOF CONTEXTS

NOTE: The proof contexts ′CLT common etc. are actually defined in [2]. They are also described
here for convenience of the user reading this document, and to make it unnecessary for users to
consult [2].
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SML

(∗ Proof Context : ′CLT common ∗)

Description Component proof contexts for the theory CLT common which supports reasoning
about specifications produced by ClawZ.

The main purpose of the ’CLT common proof context is to automate the elimination of the
vocabulary of the theory CLT common in favour of plain Z toolkit constructs wherever this is
possible without introducing excessive complexity.

The ’CLT bounds proof context provides extra facilities for reducing claims about bounds of set
displays to inequalities for solution using linear arithmetic.

Vocabulary concerning upper and lower bounds is left untouched.

Contents

Rewriting:

cz if thm

cz r2z thm

cz boolean clauses

cz boolean real clauses

cz relational clauses

cz matlab clauses

cz fcn clauses

cz product thm

cz sum thm

cz matrix conv

cz dot product empty thm

cz dot product conv

Stripping theorems:

cz if thm

cz r2z thm

cz boolean clauses

cz boolean real clauses

cz relational clauses

cz matlab clauses

cz fcn clauses

cz product thm

cz sum thm

cz matrix conv

cz dot product empty thm

cz dot product conv

See Also ’CLT bounds
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SML

(∗ Proof Context : ′CLT bounds ∗)

Description Component proof context for the theory CLT common which supports the ClawZ
library.

The purpose of the proof context is to automate the proof of claims about the bounds of set
displays.

This proof context will typically be used in conjunction with the Z real linear arithmetic proof
context ′z R lin arith.

set merge pcs["′CLT common", "′z reals", "z library"];

Contents

Rewriting and stripping:

cz ub empty thm,

cz lb empty thm,

cz lub unit thm,

cz glb unit thm,

cz ub setd thm,

cz lb setd thm,

cz lub setd le thm,

cz le glb setd thm,

cz eq lub setd thm,

cz lub setd eq thm,

cz le lub setd thm,

cz eq glb setd thm,

cz glb setd eq thm,

cz glb setd le thm

Automatic proof:

fn thms => rewrite tac[]

THEN PC T1 "′z R lin arith" asm proof tac thms

See Also ′CLT common, ′CLT seq
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SML

(∗ Proof Context : ′CLT seq ∗)

Description The purpose of the proof context is to automate the proof of claims about sequence
displays. This includes:

• evaluation of the length of sequence displays.

• evaluation of the domain and range of sequence displays.

• evaluation of selection from sequence displays by application to a numeric literal.

Contents

Rewriting:

z seqd ∈ seq thm,

z dom seqd thm,

z ran seqd thm,

z seqd a 〈〉 clauses,

z size seqd conv ,

z seqd app conv

Stripping:

z seqd ∈ seq thm,

z dom seqd thm,

z ran seqd thm,

z seqd a 〈〉 clauses,

z size seqd conv ,

z seqd app conv

See Also ′CLT common, ′CLT bounds

4.6 Epilogue

SML

end (∗ end of signature CLT common ∗);

SML

reset flag ("z type check only");

reset flag ("z use axioms");

reset flag ("standard z paras");

5 TEST POLICY

The tests include most of the endproof goals supplied by DERA.
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6 THE THEORY CLT common

7 THE Z THEORY CLT common

7.1 Parents

cache ′clawzlib z reals

cn z library

7.2 Global Variables

(if then else )[X]
BOOL × X × X ↔ X

r2z R ↔ Z

( :z ) Z × Z ↔ Z ↔ Z

( lbR ) R ↔ P R

glbR P R ↔ R

( ubR ) R ↔ P R

lubR P R ↔ R

BooleanR BOOL ↔ R

(is trueR )
P R

trueR R

falseR R

liftrelR[X, Y ]
(X ↔ Y ) ↔ X × Y ↔ R

( greater eqR )
R × R ↔ R

( greaterR )
R × R ↔ R

( less eqR )
R × R ↔ R

( lessR )
R × R ↔ R

( noteqR )
R × R ↔ R

( eqR ) R × R ↔ R

floorR R ↔ R

ceilR R ↔ R

roundR R ↔ R

fixR R ↔ R

( xorR )
R × R ↔ R

( equivR )
R × R ↔ R

( orR ) R × R ↔ R
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( andR )
R × R ↔ R

(notR ) R ↔ R

( .+m ) R × R ↔ R

( .−m ) R × R ↔ R

( .∗m ) R × R ↔ R

( ./m ) R × R ↔ R

( .\m ) R × R ↔ R

( <m ) R × R ↔ R

( >m ) R × R ↔ R

( >=m ) R × R ↔ R

( <=m ) R × R ↔ R

( ==m ) R × R ↔ R

( ∼=m ) R × R ↔ R

( andm )
R × R ↔ R

( orm ) R × R ↔ R

( .̂m ) R × R ↔ R

(mpm ) R ↔ R

(mmm ) R ↔ R

(∼m ) R ↔ R

( :m ) R × R ↔ Z ↔ R

( +f ) R × R ↔ R

( −f ) R × R ↔ R

( ∗f ) R × R ↔ R

( /f ) R × R ↔ R

( <f ) R × R ↔ R

( >f ) R × R ↔ R

( >=f ) R × R ↔ R

( <=f ) R × R ↔ R

( =f ) R × R ↔ R

( 6=f ) R × R ↔ R

( andf )
R × R ↔ R

( orf ) R × R ↔ R

( ̂f ) R × R ↔ R

(mpf ) R ↔ R

(mmf ) R ↔ R

(notf ) R ↔ R

(sqrtm ) R ↔ R

(tanm ) R ↔ R

(tanhm ) R ↔ R

(hypotm )
R ↔ R

(logm ) R ↔ R

(log10m )
R ↔ R

(sinm ) R ↔ R
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(sinhm ) R ↔ R

(cosm ) R ↔ R

(coshm ) R ↔ R

(expm ) R ↔ R

(fabsm ) R ↔ R

(floorm )
R ↔ R

(absm ) R ↔ R

(acosm ) R ↔ R

(asinm ) R ↔ R

(atanm ) R ↔ R

(ceilm ) R ↔ R

(atan2m )
R × R ↔ R

(powerm )
R × R ↔ R

(remm ) R × R ↔ R

(sqrtf ) R ↔ R

(tanf ) R ↔ R

(tanhf ) R ↔ R

(lnf ) R ↔ R

(sgnf ) R ↔ R

(hypotf )
R ↔ R

(logf ) R ↔ R

(log10f )
R ↔ R

(sinf ) R ↔ R

(sinhf ) R ↔ R

(cosf ) R ↔ R

(coshf ) R ↔ R

(expf ) R ↔ R

(fabsf ) R ↔ R

(floorf )
R ↔ R

(absf ) R ↔ R

(acosf ) R ↔ R

(asinf ) R ↔ R

(atanf ) R ↔ R

(ceilf ) R ↔ R

(atan2f )
R × R ↔ R

(powerf )
R × R ↔ R

(remf ) R × R ↔ R

bin2dec (Z ↔ R) ↔ Z

( Matrix )
(Z ↔ Z ↔ R) ↔ Z × Z
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dot product
(Z ↔ R) × (Z ↔ R) ↔ R

product (Z ↔ R) ↔ R

sum (Z ↔ R) ↔ R

7.3 Fixity

fun 0 rightassoc
(if then else )

fun 1 leftassoc
( andm ) ( or f ) ( orm )

fun 2 leftassoc
( and f ) ( :z )( <m ) ( >=m ) ( ∼=m )
( :m ) ( <=m ) ( ==m ) ( >m )

fun 3 leftassoc
( .+m ) ( .−m ) ( =f ) ( 6=f )

fun 4 leftassoc
( .∗m ) ( .\m ) ( <f ) ( >f )
( ./m ) ( <=f ) ( >=f )

fun 5 leftassoc
( +f ) ( −f ) ( .̂m )

fun 5 rightassoc
(mmm ) (mpm )

fun 6 leftassoc
( ∗f ) ( /f )

fun 6 rightassoc
(∼m )

fun 7 rightassoc
(not f )

fun 8 rightassoc
(mm f ) (mpf )
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fun 9 leftassoc
( ̂f )

fun 10 leftassoc
( equivR )

fun 10 rightassoc
(abs f ) (atanm ) (fabs f ) (log f ) (sin f )
(absm ) (ceil f ) (fabsm ) (logm ) (sinm )
(acos f ) (ceilm ) (floor f ) (power f ) (sqrt f )
(acosm ) (coshf ) (floorm ) (powerm ) (sqrtm )
(asin f ) (coshm ) (hypot f ) (rem f ) (tanh f )
(asinm ) (cos f ) (hypotm ) (remm ) (tanhm )
(atan2 f ) (cosm ) (ln f ) (sgn f ) (tan f )
(atan2m ) (expf ) (log10 f ) (sinhf ) (tanm )
(atan f ) (expm ) (log10m ) (sinhm )

fun 20 leftassoc
( xorR )

fun 30 leftassoc
( orR )

fun 40 leftassoc
( andR )

fun 50 rightassoc
(notR )

fun 200 leftassoc
( eqR ) ( lessR )
( less eqR ) ( noteqR )

fun 210 leftassoc
( greater eqR ) ( greaterR )

rel (is trueR ) ( Matrix )
( lbR ) ( ubR )
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7.4 Axioms

if then else
⊢ [X ]((if then else )[X ] ∈ BOOL × X × X → X

∧ (∀ b : BOOL; x , y : X

• (b ⇒ (if then else )[X ] (b, x , y) = x )
∧ (¬

b

⇒ (if then else )[X ] (b, x , y) = y)))
r2z ⊢ r2z ∈ R 7→ Z ∧ (∀ i : Z • real i 7→ i ∈ r2z )

:z ⊢ ( :z ) ∈ Z × Z → seq Z

∧ (∀ x , y : Z

• x :z y

= {i , z : Z

| i = z − x + 1 ∧ x ≤ z ∧ z ≤ y})
lbR ⊢ ( lbR ) ∈ R ↔ P R

∧ (∀ r : R; sr : P R

• r lbR sr ⇔ (∀ x : sr • r ≤R x ))
glbR ⊢ glbR ∈ P R 7→ R

∧ (∀ sr : P R; glb : R

• sr 7→ glb ∈ glbR

⇔ glb lbR sr

∧ (∀ lb : R | lb lbR sr • lb ≤R glb))
ubR ⊢ ( ubR ) ∈ R ↔ P R

∧ (∀ r : R; sr : P R

• r ubR sr ⇔ (∀ x : sr • r ≥R x ))
lubR ⊢ lubR ∈ P R 7→ R

∧ (∀ sr : P R; lub : R

• sr 7→ lub ∈ lubR

⇔ lub ubR sr

∧ (∀ ub : R | ub ubR sr • ub ≥R lub))
BooleanR

is trueR

trueR

falseR ⊢ ({trueR, falseR} ⊆ R

∧ (is trueR ) ∈ P R

∧ BooleanR ∈ BOOL → R)
∧ trueR = real 1

∧ falseR = real 0

∧ (∀ x : U • is trueR x ⇔ ¬ x = falseR)
∧ (∀ x : U

• BooleanR x = if x then trueR else falseR)
liftrelR ⊢ [X ,

Y ](liftrelR [X , Y ] ∈ P (X × Y ) → X × Y → R

∧ (∀ r : P (X × Y ); x : X ; y : Y

• (liftrelR [X , Y ] r) (x , y)
= BooleanR ((x , y) ∈ r)))

greater eqR

greaterR
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less eqR

lessR

noteqR

eqR ⊢ (( eqR ) ∈ R × R → R

∧ ( noteqR ) ∈ R × R → R

∧ ( lessR ) ∈ R × R → R

∧ ( less eqR ) ∈ R × R → R

∧ ( greaterR ) ∈ R × R → R

∧ ( greater eqR ) ∈ R × R → R)
∧ ( eqR ) = liftrelR {x , y : R | x = y}
∧ ( noteqR ) = liftrelR {x , y : R | x 6= y}
∧ ( lessR ) = liftrelR ( <R )
∧ ( less eqR ) = liftrelR ( ≤R )
∧ ( greaterR ) = liftrelR ( >R )
∧ ( greater eqR ) = liftrelR ( ≥R )

floorR ⊢ floorR ∈ R → real (| Z |)
∧ (∀ x : R

• real 0 ≤R x −R floorR x

∧ x −R floorR x <R real 1 )
ceilR ⊢ ceilR ∈ R → real (| Z |)

∧ (∀ x : R

• real 0 ≤R ceilR x −R x

∧ ceilR x −R x <R real 1 )
roundR ⊢ roundR ∈ R → real (| Z |)

∧ (∀ x : R

• roundR x

= if

real 0 ≤R x then

floorR (x +R 5 e (∼ 1 )) else

ceilR (x −R 5 e (∼ 1 )))
fixR ⊢ fixR ∈ R → real (| Z |)

∧ (∀ x : R

• fixR x

= if real 0 ≤R x then floorR x else ceilR x )
xorR

equivR

orR

andR

notR ⊢ ((notR ) ∈ R → R

∧ ( andR ) ∈ R × R → R

∧ ( orR ) ∈ R × R → R

∧ ( equivR ) ∈ R × R → R

∧ ( xorR ) ∈ R × R → R)
∧ (∀ l : R

• notR l

= if is trueR l then falseR else trueR)
∧ (∀ l , r : R

• l andR r
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= if

is trueR l then

notR notR r else

falseR)
∧ (∀ l , r : R

• l orR r

= if

is trueR l then

trueR else

notR notR r)
∧ (∀ l , r : R

• l equivR r

= if

is trueR l then

notR notR r else

notR r)
∧ (∀ l , r : R • l xorR r = notR (l equivR r))

.+m

.−m

.∗m

./m

.\m ⊢ {( .+m ),
( .−m ),
( .∗m ),
( ./m ),
( .\m )}
⊆ R × R → R

∧ ( .+m ) = ( +R )
∧ ( .−m ) = ( −R )
∧ ( .∗m ) = ( ∗R )
∧ ( ./m ) = ( /R )
∧ (∀ x , y : R • x .\m y = y /R x )

<m

>m

>=m

<=m

==m

∼=m ⊢ {( <m ),
( >m ),
( >=m ),
( <=m ),
( ==m ),
( ∼=m )}
⊆ R × R → R

∧ ( <m ) = ( lessR )
∧ ( >m ) = ( greaterR )
∧ ( >=m ) = ( greater eqR )
∧ ( <=m ) = ( less eqR )
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∧ ( ==m ) = ( eqR )
∧ ( ∼=m ) = ( noteqR )

andm

orm ⊢ {( andm ), ( orm )} ⊆ R × R → R

∧ ( andm ) = ( andR )
∧ ( orm ) = ( orR )

.̂m ⊢ ( .̂m ) ∈ R × R 7→ R

∧ dom ( .̂m ) = R × dom r2z

∧ (∀ x : R; y : dom r2z • x .̂m y = x ̂Z r2z y)
mpm

mmm

∼m ⊢ {(mpm ), (mmm ), (∼m )} ⊆ R → R

∧ (∀ x : R

• mpm x = x

∧ mmm x = real 0 −R x

∧ (∼m ) = (notR ))
:m ⊢ ( :m ) ∈ R × R → seq R

∧ (∀ x , y : R

• x :m y

= {z : R; i : Z

| z = x +R real i ∧ x ≤R z ∧ z ≤R y

• (i + 1 , z )})
+f

−f

∗f

/f ⊢ {( +f ), ( −f ), ( ∗f ), ( /f )}
⊆ R × R → R

∧ ( +f ) = ( +R )
∧ ( −f ) = ( −R )
∧ ( ∗f ) = ( ∗R )
∧ ( /f ) = ( /R )

<f

>f

>=f

<=f ⊢ {( <f ), ( >f ), ( >=f ), ( <=f )}
⊆ R × R → R

∧ ( <f ) = ( lessR )
∧ ( >f ) = ( greaterR )
∧ ( >=f ) = ( greater eqR )
∧ ( <=f ) = ( less eqR )

=f

6=f ⊢ {( =f ), ( 6=f )} ⊆ R × R → R

∧ ( =f ) = ( eqR )
∧ ( 6=f ) = ( noteqR )

andf

orf ⊢ {( and f ), ( or f )} ⊆ R × R → R

∧ ( and f ) = ( andR )
∧ ( or f ) = ( orR )
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̂f ⊢ ( ̂f ) ∈ R × R 7→ R

∧ dom ( ̂f ) = R × dom r2z

∧ (∀ x : R; y : dom r2z • x ̂f y = x ̂Z r2z y)
mpf

mmf

notf ⊢ {(mpf ), (mm f ), (not f )} ⊆ R → R

∧ (∀ x : R

• mpf x = x

∧ mm f x = real 0 −R x

∧ (not f ) = (notR ))
sqrtm

tanm

tanhm

hypotm

logm

log10m

sinm

sinhm

cosm

coshm

expm

fabsm

floorm

absm

acosm

asinm

atanm

ceilm ⊢ ({(absm ),
(acosm ),
(asinm ),
(atanm ),
(ceilm )}
⊆ R 7→ R

∧ {(cosm ),
(coshm ),
(expm ),
(fabsm ),
(floorm )}
⊆ R 7→ R

∧ {(hypotm ),
(logm ),
(log10m ),
(sinm ),
(sinhm )}
⊆ R 7→ R

∧ {(sqrtm ), (tanm ), (tanhm )} ⊆ R 7→ R)
∧ (ceilm ) = ceilR
∧ (floorm ) = floorR
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atan2m

powerm

remm ⊢ {(atan2m ), (powerm ), (remm )} ⊆ R × R 7→ R

∧ true

sqrtf

tanf

tanhf

lnf

sgnf

hypotf

logf

log10f

sinf

sinhf

cosf

coshf

expf

fabsf

floorf

absf

acosf

asinf

atanf

ceilf ⊢ ({(abs f ),
(acos f ),
(asin f ),
(atan f ),
(ceil f )}
⊆ R 7→ R

∧ {(cos f ),
(coshf ),
(expf ),
(fabs f ),
(floor f )}
⊆ R 7→ R

∧ {(hypot f ),
(log f ),
(log10 f ),
(sin f ),
(sinhf )}
⊆ R 7→ R

∧ {(sqrt f ),
(tan f ),
(tanh f ),
(ln f ),
(sgn f )}
⊆ R 7→ R)

∧ (ceil f ) = ceilR
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∧ (floor f ) = floorR

atan2f

powerf

remf ⊢ {(atan2 f ), (power f ), (rem f )} ⊆ R × R 7→ R

∧ true

bin2dec ⊢ bin2dec ∈ seq R → Z

∧ bin2dec 〈〉 = 0

∧ (∀ f : R; l : seq R

• bin2dec (〈f 〉 a l)
= bin2dec l

+ (if f = real 0 then 0 else 1 ) ∗ 2 ∗∗ # l)
Matrix ⊢ ( Matrix ) ∈ (Z ↔ Z ↔ R) ↔ Z × Z

∧ (∀ s : Z ↔ Z ↔ R; m, n : Z

• s Matrix (m, n)
⇔ s ∈ (seq )
∧ # s = m

∧ (∀ ss : ran s • ss ∈ (seq ) ∧ # ss = n))
dot product

⊢ dot product ∈ (seq R) × (seq R) 7→ R

∧ dom dot product

= {In1?, In2? : seq R

| # In1? = # In2?}
∧ dot product (〈〉, 〈〉) = real 0

∧ (∀ h1 , h2 : R; t1 , t2 : seq R

| # t1 = # t2

• dot product (〈h1 〉 a t1 , 〈h2 〉 a t2 )
= h1 ∗R h2 +R dot product (t1 , t2 ))

product ⊢ product ∈ seq R → R

∧ product 〈〉 = real 1

∧ (∀ h : R; t : seq R

• product (〈h〉 a t) = h ∗R product t)
sum ⊢ sum ∈ seq R → R

∧ sum 〈〉 = real 0

∧ (∀ h : R; t : seq R

• sum (〈h〉 a t) = h +R sum t)

7.5 Theorems

cz if thm ⊢ ∀ x , y : U

• if true then x else y = x

∧ if false then x else y = y

cz r2z thm ⊢ ∀ i : U • r2z (real i) = i ∧ r2z (∼R real i) = ∼ i

cz ub thm ⊢ ∀ r : U; sr : U • r ubR sr ⇔ (∀ x : sr • r ≥R x )
cz lb thm ⊢ ∀ r : U; sr : U • r lbR sr ⇔ (∀ x : sr • r ≤R x )
cz lub thm ⊢ ∀ lub : U; sr : U

• sr 7→ lub ∈ lubR

⇔ lub ubR sr
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∧ (∀ ub : U | ub ubR sr • ub ≥R lub)
cz glb thm ⊢ ∀ glb : U; sr : U

• sr 7→ glb ∈ glbR

⇔ glb lbR sr

∧ (∀ lb : U | lb lbR sr • lb ≤R glb)
cz lub sup thm

⊢ p∀ s l• pZs 7→ lq ∈ pZ lubRq ⇒ l = Sup sq

cz ub lb thm
⊢ ∀ s : U; ub : U

• ub ubR s ⇔ ∼R ub lbR {x : s | true • ∼R x}
cz lb ub thm

⊢ ∀ s : U; lb : U

• lb lbR s ⇔ ∼R lb ubR {x : s | true • ∼R x}
cz dom lub thm

⊢ ∀ s : U

• (∃ lub : U • s 7→ lub ∈ lubR)
⇔ ¬ s = {} ∧ (∃ ub : U • ub ubR s)

cz dom glb thm
⊢ ∀ s : U

• (∃ glb : U • s 7→ glb ∈ glbR)
⇔ ¬ s = {} ∧ (∃ lb : U • lb lbR s)

cz le lb trans thm
⊢ ∀ x , y : U; z : U • x ≤R y ∧ y lbR z ⇒ x lbR z

cz ge ub trans thm
⊢ ∀ x , y : U; z : U • y ≤R x ∧ y ubR z ⇒ x ubR z

cz lb empty thm
⊢ ∀ lb : U • lb lbR {}

cz ub empty thm
⊢ ∀ ub : U • ub ubR {}

cz lub unit thm
⊢ ∀ x : U • lubR {x} = x

cz glb unit thm
⊢ ∀ x : U • glbR {x} = x

cz lb setd thm
⊢ ∀ lb, x : U; s : U

• lb lbR pZ ′Setd (Cons x s)q
⇔ lb ≤R x ∧ lb lbR pZ ′Setd sq

cz ub setd thm
⊢ ∀ x , y : U; t : U

• x ubR pZ ′Setd (Cons y t)q
⇔ y ≤R x ∧ x ubR pZ ′Setd tq

cz glb setd thm
⊢ ∀ glb, x : U; s : U

• glb = glbR pZ ′Setd (Cons x s)q
⇔ glb lbR pZ ′Setd (Cons x s)q
∧ (∀ lb : U

| lb lbR pZ ′Setd (Cons x s)q
• lb ≤R glb)
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cz lub setd thm
⊢ ∀ lub, x : U; s : U

• lub = lubR pZ ′Setd (Cons x s)q
⇔ lub ubR pZ ′Setd (Cons x s)q
∧ (∀ ub : U

| ub ubR pZ ′Setd (Cons x s)q
• ub ≥R lub)

cz eq glb setd thm
⊢ ∀ x , y , z : U; t : U

• x = glbR pZ ′Setd (Cons y (Cons z t))q
⇔ x = y ∧ x lbR pZ ′Setd (Cons z t)q
∨ x ≤R y ∧ x = glbR pZ ′Setd (Cons z t)q

cz glb setd eq thm
⊢ ∀ x , y , z : U; t : U

• glbR pZ ′Setd (Cons y (Cons z t))q = x

⇔ x = y ∧ x lbR pZ ′Setd (Cons z t)q
∨ x ≤R y ∧ x = glbR pZ ′Setd (Cons z t)q

cz eq lub setd thm
⊢ ∀ x , y , z : U; t : U

• x = lubR pZ ′Setd (Cons y (Cons z t))q
⇔ x = y ∧ x ubR pZ ′Setd (Cons z t)q
∨ y ≤R x ∧ x = lubR pZ ′Setd (Cons z t)q

cz lub setd eq thm
⊢ ∀ x , y , z : U; t : U

• lubR pZ ′Setd (Cons y (Cons z t))q = x

⇔ x = y ∧ x ubR pZ ′Setd (Cons z t)q
∨ y ≤R x ∧ x = lubR pZ ′Setd (Cons z t)q

cz le glb setd thm
⊢ ∀ x , z : U; t : U

• x ≤R glbR pZ ′Setd (Cons z t)q
⇔ x lbR pZ ′Setd (Cons z t)q

cz lub setd le thm
⊢ ∀ x , z : U; t : U

• lubR pZ ′Setd (Cons z t)q ≤R x

⇔ x ubR pZ ′Setd (Cons z t)q
cz glb setd le thm

⊢ ∀ x , y , z : U; t : U

• glbR pZ ′Setd (Cons y (Cons z t))q ≤R x

⇔ y ≤R x ∨ glbR pZ ′Setd (Cons z t)q ≤R x

cz le lub setd thm
⊢ ∀ x , y , z : U; t : U

• x ≤R lubR pZ ′Setd (Cons y (Cons z t))q
⇔ x ≤R y ∨ x ≤R lubR pZ ′Setd (Cons z t)q

liftrel thm
⊢ ∀ r : U; x : U; y : U

• (liftrelR r) (x , y)
= if (x , y) ∈ r then real 1 else real 0

cz relational clauses
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⊢ ∀ x , y : U

• x eqR y = BooleanR (x = y)
∧ x noteqR y = BooleanR (¬ x = y)
∧ x lessR y = BooleanR (x <R y)
∧ x less eqR y = BooleanR (x ≤R y)
∧ x greaterR y = BooleanR (x >R y)
∧ x greater eqR y = BooleanR (x ≥R y)

cz boolean clauses
⊢ trueR = BooleanR true

∧ falseR = BooleanR false

∧ (∀ p : U • notR BooleanR p = BooleanR (¬ p))
∧ (∀ p, q : U

• BooleanR p andR BooleanR q

= BooleanR (p ∧ q))
∧ (∀ p, q : U

• BooleanR p orR BooleanR q

= BooleanR (p ∨ q))
∧ (∀ p, q : U

• BooleanR p equivR BooleanR q

= BooleanR (p ⇔ q))
∧ (∀ p, q : U

• BooleanR p xorR BooleanR q

= BooleanR (¬ (p ⇔ q)))
∧ (∀ p, q : U • BooleanR p = BooleanR q ⇔ p ⇔ q)

cz boolean clauses1
⊢ (∀ p : U • notR p = BooleanR (p = falseR))

∧ (∀ p, q : U

• p andR q

= BooleanR (¬ p = falseR ∧ ¬ q = falseR))
∧ (∀ p, q : U

• p orR q

= BooleanR (¬ p = falseR ∨ ¬ q = falseR))
∧ (∀ p, q : U

• p equivR q

= BooleanR (p = falseR ⇔ q = falseR))
∧ (∀ p, q : U

• p xorR q

= BooleanR (p = falseR ⇔ ¬ q = falseR))
cz boolean real clauses

⊢ notR real 0 = BooleanR true

∧ notR real 1 = BooleanR false

∧ (∀ p : U

• real 1 andR p = BooleanR true andR p)
∧ (∀ p : U

• p andR real 1 = p andR BooleanR true)
∧ (∀ p : U • real 0 andR p = BooleanR false)
∧ (∀ p : U • p andR real 0 = BooleanR false)
∧ (∀ p : U • real 1 orR p = BooleanR true)
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∧ (∀ p : U • p orR real 1 = BooleanR true)
∧ (∀ p : U

• real 0 orR p = BooleanR false orR p)
∧ (∀ p : U

• p orR real 0 = p orR BooleanR false)
∧ (∀ p : U

• real 1 equivR p = BooleanR true equivR p)
∧ (∀ p : U

• p equivR real 1 = p equivR BooleanR true)
∧ (∀ p : U • real 0 equivR p = notR p)
∧ (∀ p : U • p equivR real 0 = notR p)
∧ (∀ p : U • real 1 xorR p = notR p)
∧ (∀ p : U • p xorR real 1 = notR p)
∧ (∀ p : U

• real 0 xorR p = BooleanR false xorR p)
∧ (∀ p : U

• p xorR real 0 = p xorR BooleanR false)
cz boolean clauses2

⊢ (∀ b : U; r : U

• r andR BooleanR b

= BooleanR (¬ r = falseR ∧ b))
∧ (∀ b : U; r : U

• BooleanR b andR r

= BooleanR (b ∧ ¬ r = falseR))
∧ (∀ b : U; r : U

• r orR BooleanR b

= BooleanR (¬ r = falseR ∨ b))
∧ (∀ b : U; r : U

• BooleanR b orR r

= BooleanR (b ∨ ¬ r = falseR))
∧ (∀ b : U; r : U

• r equivR BooleanR b

= BooleanR (¬ r = falseR ⇔ b))
∧ (∀ b : U; r : U

• BooleanR b equivR r

= BooleanR (b ⇔ ¬ r = falseR))
∧ (∀ b : U; r : U

• r xorR BooleanR b

= BooleanR (r = falseR ⇔ b))
∧ (∀ b : U; r : U

• BooleanR b xorR r

= BooleanR (b ⇔ r = falseR))
cz matlab clauses

⊢ ( .+m ) = ( +R )
∧ ( .−m ) = ( −R )
∧ ( .∗m ) = ( ∗R )
∧ ( ./m ) = ( /R )
∧ (∀ x , y : U • x .\m y = y /R x )
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∧ ( <m ) = ( lessR )
∧ ( >m ) = ( greaterR )
∧ ( >=m ) = ( greater eqR )
∧ ( <=m ) = ( less eqR )
∧ ( ==m ) = ( eqR )
∧ ( ∼=m ) = ( noteqR )
∧ ( andm ) = ( andR )
∧ ( orm ) = ( orR )
∧ (∀ r : U; z : U • r .̂m real z = r ̂Z z )
∧ (∀ x : U • mpm x = x )
∧ (∀ x : U • mmm x = real 0 −R x )
∧ (∼m ) = (notR )

cz fcn clauses
⊢ ( +f ) = ( +R )

∧ ( −f ) = ( −R )
∧ ( ∗f ) = ( ∗R )
∧ ( /f ) = ( /R )
∧ ( <f ) = ( lessR )
∧ ( >f ) = ( greaterR )
∧ ( >=f ) = ( greater eqR )
∧ ( <=f ) = ( less eqR )
∧ ( =f ) = ( eqR )
∧ ( 6=f ) = ( noteqR )
∧ ( and f ) = ( andR )
∧ ( or f ) = ( orR )
∧ (∀ r : U; z : U • r ̂f real z = r ̂Z z )
∧ (∀ x : U • mpf x = x )
∧ (∀ x : U • mm f x = real 0 −R x )
∧ (not f ) = (notR )

cz bin2dec thm
⊢ bin2dec 〈〉 = 0

∧ (∀ f : U; l : U

• bin2dec p$”Z ′〈〉” (Cons f l)q
= bin2dec p$”Z ′〈〉” lq

+ (if f = real 0 then 0 else 1 )
∗ 2 ∗∗ # p$”Z ′〈〉” lq)

cz dot product empty thm
⊢ dot product (〈〉, 〈〉) = real 0

cz dot product thm
⊢ ∀ h1 , h2 : U; t1 , t2 : U

• pLength t1q = pLength t2q

⇒ dot product

(p$”Z ′〈〉” (Cons h1 t1 )q,
p$”Z ′〈〉” (Cons h2 t2 )q)

= h1 ∗R h2

+R dot product

(p$”Z ′〈〉” t1q, p$”Z ′〈〉” t2q)
cz product thm
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⊢ product 〈〉 = real 1

∧ (∀ h : U; t : U

• product p$”Z ′〈〉” (Cons h t)q
= h ∗R product p$”Z ′〈〉” tq)

cz sum thm ⊢ sum 〈〉 = real 0

∧ (∀ h : U; t : U

• sum p$”Z ′〈〉” (Cons h t)q
= h +R sum p$”Z ′〈〉” tq)
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