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0.3 Changes History

Version 1.5 First issue to DERA.

The following notes relate to changes in this document to specifications previously located in
the ClawZ library [5].

e Correction to definition of : ,,, to cover negative ranges.
e Improved definition of dot_product.
e Widened domain of Matrix to permit unconditional rewrite.

e Definitions of sum and product revised to improve both readability and tractability.
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e Definition of bin2dec amended for a reasonably compromise between readability and
tractability.

Version 1.7 FEBRUARY 2002.
All arithmetic operators declared as left associative.

Version 1.9 JULY 2002.

Added section on Rounding Operators, and identified the matlab and fen floor and ceil functions
with floor and ceil defined here.

Version 10.1 AUGUST 2002.

Add subscript R to names of rounding operators.
Version 10.2 APRIL 2003.

Version 10.3 JANUARY 2004. Updates for changes in ProofPower version 2.7.3 (Z universal set
is now called U; “|” is now treated as a punctuation symbol).

Issue 10.4 JANUARY 2004. Incorporating new information about the syntax of exponentiation in
Fen expressions.

e Correction to definition of : ,,.

0.4 Changes Forecast

None.
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1 GENERAL

1.1 Scope

This document provides definitions of functions required either by the output from the ClawZ tool
or in writing specifications of Simulink library blocks (which may be referred to in the output of
ClawZ), together with the detailed design of support for reasoning about these functions, in the form
of theorems, conversions, tactics and proof contexts.

1.2 Introduction

1.2.1 Purpose and Background

This document is one of the deliverables for the Toolset Automation project. For the relevant
proposal see [3].

This document provides Z toolkit extensions required for ClawZ. The toolkit extensions are imple-
mented as a ProofPower-Z specification.

Its purpose is to provide functions in terms of which the Simulink library blocks can be specified.
The library blocks themselves are specified elsewhere, see [5].

It also specifies the basic proof support tools for the toolkit extensions. These tools comprise theo-
rems, conversions and proof contexts and are defined here in the same style as is used for ProofPower
proof facilities.

The theory C' LT _common specified by this document was previously provided as a part of the ClawZ
library in [4] and [5]. The revised and enhanced material is now described as the ClawZ Z toolkit to
distinguish it from the ClawZ Z library remaining in [4] and [5] which makes use of this theory in
providing formal specifications for Simulink library blocks.

In more detail, the structure of this document is as follows:
Section 2 discusses design issues and decisions which have been taken here;

Section 3 gives the Z specification aspects of the ClawZ toolkit;

Section 4 defines the ML structure which gives the interface for the facilities provided, defining the
theorems and conversions implemented.

1.2.2 Dependencies

The theory defined in this document is a child of the theory z_library defined in ProofPower and
of z_reals and cn, though dependency on ”cn” is to be minimised. The module is expected to be
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loaded into a ProofPower Compliance Tool database in typical use.

1.2.3 Possible Enhancements

Some aspects of the clawz library, for example the discrete components, are not yet supported by
the ClawZ toolkit. There are opportunities for improving the performance of the facilities provided,
if any of them should prove performance critical.

2 DESIGN ISSUES

2.1 Theory Hierarchy

)

The theory created by this document is called “C LT _common”. Its parents are the theory “z_library’
which gives access to the Z toolkit as provided in ProofPower, “cn” giving access to facilities related
to the Compliance Tool, and “z_reals”.

2.2 Proof Facilities

The proof facilities follow a pattern which is common in ProofPower.

First of all, in section 4.2, theorems are presented which allow basic semi-automatic reasoning about
the objects defined in a theory.

Secondly, in section 4.4, proof procedures which cannot be captured as theorems are given as derived
inference rules, typically conversions (i.e. proof rules which support equational reasoning by taking
a term tm as argument and proving a theorem of the form + tm = tm’).

Finally, in section 4.5 the more generally applicable theorems and proof procedures are packaged
together in proof contexts which make it convenient for a user to access a general purpose collection
of simplifications customised for the theory. These proof contexts typically come in two flavours:
component proof contexts containing only the simplifications for this theory for use in combination
with other proof contexts; and complete proof contexts which contain a comprehensive collection
of simplifications suitable for use when reasoning primarily about the constants introduced in the
theory.
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3 CLAWZ TOOLKIT

Specifications are in general preceded by some comments on their role and followed by remarks on
methods of reasoning relevant to the particular global variables introduced. It should be understood

that unless stated otherwise proof support mentioned will be available only in the C' LT _common
proof context.

3.1 Preamble

The following preamble creates the theory “CLT_common” as a child of “z_library” and makes the
theories “z_reals” and “cn” parents.

SML

force_delete_theory " CLT_common" handle Fail - => ();
open_theory "z_library",

push_pc "z_library";

val _ = set_flag ("z_type_check_only", false);

val - = set_flag ("z_use_axioms", true);

new_theory "CLT_common";

new_parent" z_reals";

new_parent" cn";

3.2 Conditionals and Coercions

Note that though the following definition of the conditional is not in standard Z, the conditional it
defines is in the Z standard. The conditional should be a part of the Z language, not of the Z toolkit,
and would require special action from the parser to ensure correct treatment of logical operators in
the condition. Since this feature has not been implemented the condition will sometimes have to be
enclosed in a “II” to prevent logical operators being construed as schema operations.

Z

‘ fun if _ then _ else _

=[X]

if _then _else - : (BOOL x X x X) — X

V b:BOOL; z,y:X o
(b = (if b then z else y) = z)
A (= b = (if bthen z else y) = y)
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Conditional clauses will be eliminated by rewriting or stripping if the condition evaluates to true oe
false. One way of forcing this to happen is to do a case split on the value of the conditional.

The following coercion is defined primarily for use in selecting elements from sequences using signal
values.

Vi:Z e (real i — i) € r2z

r2z will be eliminated by rewriting if it is applied to an expression of the form (real exp).

3.3 Slicing Vectors

The following function is used to select a slice from a vector in the synthesis of Demuz and BuseSe-
lector blocks. It is an integer variant of the similarly named matlab operator (defined below).

Z

‘ fun 2 leftassoc _:,_

Z

iy (L X Z) — seq Z
Va, y: Ze
T iy =
{i,2 :Z
| i=z—z+ 1
A r <z <y}
3.4 Bounds

The following definitions of bounds are required for defining the various simulink MinMax blocks.

‘rel_le_

lbg tR< PR

|
‘VT:R; sr: P Re
‘ rlbg sr < (V x:sre v <p 1)
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Z

glbp: PR + R

V sr: P R; glb: Re
(st +— glb) € glbr <
glb lbg sr A (Vib: R | b lbg sre b <p glb)

Z

rel _ ubgp _

Z

_ubp .. R~ PR

V r: R; sr: P Re
r ubg sr < (V z:sre r >p 1)

Z

lubr: PR - R

V sr: P R; lub: Re
(st +— lub) € lubp <
lub ubr sr A (Vub: R | ub ubg sre ub >pg lub)

A variety of theorems are available for general reasoning about bounds. For the special case of
equalities or inequalities involving bounds of set displays (including least upper and greatest lower) a
package of theorems is available in the component proof context 'C LT_Bounds which reduces these
to inequalities suitable for solution by linear arithmetic. This proof context contains an automatic
prover which applies the rewrites and then calls the linear arithmetic prover.

3.5 Relational Operators

These relational operations are used in defining the Simulink relational operator blocks.

Z

rel is_truep _
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Z

truer, falser: R;
1s_truerp _: P R;
Booleangr: BOOL — R

truer = real 1;
falser = real 0;
(Va:Ue is_truer © < — x = falser);

Vz:Ue Booleanr = = if x then truer else falser

Z
—[X,Y]
liftrelg: P (X x V) - (X x Y = R)

VrP (X x YY)z X;y: Ye
liftrelp v (z,y) = Booleangr ((z,y) € r)

Z

‘ fun 200 leftassoc _ eqr _, - noteqr _, _ lessp _, _ less_eqp _

Z

‘ fun 210 leftassoc _ greaterr _, _ greater_eqr -

_eqr -: R x R — R;

- noteqr -: R x R — R;
_lessp - R x R — R;
_less_eqr -: R x R — R;
_greaterp - R x R — R;

- greater_eqr -: R x R - R

_eqr-) = liftrelg {z,y:R | z = y};
_noteqr-) = liftrelg {z,y:R | z # y};
_lessp-) = liftrelp (-<g-);
_less_eqr-) = liftrelg (-<pg-);
_greaterp_) = liftrelp (->R-);

e e e N e Y

_greater_eqr_) = liftrelg (->g-)

These operators are automatically elimated by rewriting or stripping leaving the corresponding re-
lation over Z reals together with a coercion back to the appropriate real representative.
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3.6 Rounding Functions

Z
‘ﬂoorR:R—w"eal(IZ])
|

|

|

Ve :Rereal 0 <px —p floorp x <p real 1

Z

ceilp : R — real (Z )

Vzz:Rereal 0 <p ceilg t —gp x <pg real 1

Z

roundgr : R — real ( Z )

Va:R eroundr x = if real 0 <p z then floorg (z +r 5 e ~1) else ceilr (x —p 5 e ~1)

Z

fitr : R — real (Z)

Vz:Re fitg x = if real 0 <p z then floorr x else ceilg ©

3.7 Logical Operators

The following definitions support the specification of the Simulink Logical Operator blocks.
Z

‘ fun 10 leftassoc _ equivp _

Z

‘ fun 20 leftassoc _ xorp _

Z

‘ fun 30 leftassoc _ orp _

Z

‘ fun 40 leftassoc _ andp -

Z

‘ fun 50 notgr _

Logical operators always return trueg for true, but will accept as true any non-zero real. Conse-
quently, in the following specification and in some later theorems, when the value of an operator is
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known to be the same truth value as one of its operands the operand is twice negated before being
returned, to ensure that non standard truths are not propagated.

Z

notg - : R — R;

_andr - : R x R — R;

_orp - : R xR — R;

_—equivg - : R xR — R;

_xorp - :R xR —>R

VI:R emnotg |l =if is_trueg | then falser else truep;

Vi,r:R el andg r = if is_truer | then notg (notg ) else falser;
Vi,r:Relorgr=if is_truer | then truer else notr (notr r);
Vi, r:R el equivg v = if is_trueg | then notg (notg r) else notg r;
Vi,r:R el zorg r=notr (I equivg )

The supplied rewrites effect the translation of logical and relational expressions into Z formulae.

3.8 Matlab Operators

These function definitions are those of the Z names into which operators in Matlab expressions are
translated.

The standard operations might have been OK, but we redefine them anyway, so that if there are any
errors in the precedence they can be fixed in the library without having to change ClawZ.

Z

‘ fun 8 leftassoc _.+p_, —.—pm-

Z

‘ fun 4 leftassoc _spm_y —./m—y - \m-

= (-/r-)

> > > >

The following relations over reals (returning reals) are used as target for the corresponding operators
in both matlab and fcn expressions:
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Z

‘ fun 2 leftassoc _<p,_, ->m_, ->=pm_y <Zm_y c==m_, -~=pp_
Z
-<m - -Pme -2 Tme, < Emey, = =mey Y5 (R X R) — R

(c<m-) = (Llessg-)

A (->m-) = (_greaterp_)

A (>=m-) = (_greater_eqp-)

A (-<=m-) = (-less-eqr-)

A (==m) = Ceqn)

A (c~=m-) = (_noteqr-)

The following logical operators are used for the corresponding operators in matlab expressions:

Z

‘ fun 1 leftassoc _and,_, _or,_

_andpy, -, or,_: (R x R) = R

‘ fun 5 leftassoc _."p,_

m- (R xR)+-R

|
‘ dom (-."pm-) = R x (dom 122);

‘ Ve:R; y: dom r2ze x .~ y = x "z (122 )

The following are unary operators occurring in matlab expressions:

Z

‘ fun 5 mpg,_, mm,_

Z

‘ fun 6 ~p,_

13
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Z

MPyy —, MMy, ~_ - R — R

Vz: Remp,, © =z
A mmy, © = (real 0) —g x
A () = (notg )

Z

‘ fun 2 leftassoc _:p,_

Z

im- t (R X R) — seq R

Vz, y: Re
Ty =
{z:R; i:Z
| 2= +p (real i)
AN (¢ <pz<RpyY)
o(i + 1, 2)}

14

The matlab operators are eliminated in favour of the underlying operations over reals when an

expression is rewritten in the proof context C'LT _common.

3.9 Fcn Operators

These function definitions are those of the Z names into which operators in Fen expressions are

translated.

The standard operations over reals do not have high enough precedence for use in Fcn expressions.

Z

‘ fun & leftassoc _+p_, _—¢-_

Z

‘ fun 6 leftassoc _x¢_, _/f_

Z

- -|—f - - - -¥f-, _/f_ : (R X R) — R
(-+7-) = (+&r-)

A (o) = (R

A () = ()

A () =R
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The following relations and operations over reals are provided to give a distinct priority to occurrences
of these operations in Fcn expressions:

Z

‘ fun 4 leftassoc _<gp_, _>p_, >=j5_, <=j_

_ <_f - _>_f_, > f-s _<:f_: (R X R) — R
(<s) = (lessn)

A (o>f-) = (_greaterg._)

A (->=¢-) = (~greater_eqp-)

A (-<=f-) = (-less_eqR-)

Z

(-=¢-) = (-eqr-)
A (A) = (notegr.)
‘ fun 2 leftassoc _andg_

Z

‘ fun 1 leftassoc _ory_

dom (-"f-) = R x (dom r2z);
Vo:R; y: dom r2ze x Ty y = "z (122 y)
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The following are unary operators occurring in Fcn expressions:
Z

‘ fun 8 mpy_, mmg_

Z

‘ fun 7 notg_

Z

mpy -, mmyg_, noty. : R — R

Vr: Rempy 2 =z

A mmys x = (real 0) —g
A (noty_) = (notg -)

The matlab operators are eliminated in favour of the underlying operations over reals when an
expression is rewritten in the proof context C' LT _common.

3.10 Matlab Functions

The following specifications are place holders for the various functions used in translation of Matlab
expressions. They permit type checking but not reasoning which depends upon these functions.

Z

‘ fun 10 absy,_, acoS;y,_, asing_, atan,_, ceil,_

Z

‘ fun 10 coSy,_, co0Shy_, €xpy,_, fabsy, _, floor, _

Z

‘ fun 10 hypot,,_, logm,_, 1og10,,_, Sihy,_, Sinhy,_

Z

‘ fun 10 sqrtg,_, tan,_, tanh,_

abs,,_, acosm_, asiN,_, atan,, , ceil,,,_ : R + R;
COSy—, COShy,_, €Xpy,_, fabsy,_, floor,  : R - R;
hypot,,_, log,,_, logl0,,_, stn,,_, sinh,,_ : R - R;
sqrt,,_, tan,,_, tanh,,_. : R + R

(ceily,-) = ceilg;

(floory,-) = floorg
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Z

‘ fun 10 atan2,,_, power,,_, €M, _

Z

atan2,, , power,,_, rem;,_ : R x R - R

true

No proof support is available for the matlab functions.

3.11 Fcn Functions

The following specifications are place holders for the various functions used in translation of Fcn
expressions. They permit type checking but not reasoning which depends upon these functions.

Z

‘ fun 10 absy_, acosy_, asing_, atany_, ceils_

Z

‘ fun 10 cosy_, coshy_, expy_, fabsy_, floory_

Z

‘ Jun 10 hypots_, logs_, log10y_, sing_, sinhg_

Z

‘ fun 10 sqrtp_, tans_, tanhs_, Ing_, sgns_

Z

absyg_, acosy_, asing_, atanyg_, ceily_ : R + R;
cosy_, coshy_, expy_, fabsy_, floory_ : R + R;
hypots_, logys_, loglOys_, sing_, sinhy_ : R + R;
sqriy_, tany_, tanhy_, Iny_, sgny_ : R - R

(ceily_) = ceilg;
(floors_) = floorg

Z

‘ fun 10 atan2y_, powery_, remy_

Z

atan2;_, powery_, remy_ : R x R = R

true

No proof support is available for the fcn functions.
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3.12 Math

3.12.1 Combinatorial Logic

bin2dec is required for the Combinatorial Logic block. The following definition is a reasonable
compromise between simplicity and convenience for reasoning, and makes if feasible for bin2dec to
be evaluated by rewriting.

Z

bin2dec : (seq R) — Z

bin2dec () = 0,
V f: R; I: seq Re
bin2dec({f) ~ 1) = (bin2dec 1) + (if f = real 0 then 0 else 1) x (2 *x #I)

When applied to a sequence display bin2dec is eliminated by rewriting in favour of an expression
involving .

The following definition is used in expressing constraints on the input to DiscreteStateSpace and
Combinatorial Logic blocks.

Z

rel _ Matrix _

Z

- Matrix _ : (Z < (Z < R)) < Z x Z

Vs:(Z—(Z—R);mmn:Ze

s Matriz (m, n) <

s € (seq-) N #s=m

A (V ss:ran s @ ss € (seq_) N\ #ss = n)

When applied to a pair of numeric literals and a sequence display of sequence displays and which is
of the specified dimensions Matrixz will be eliminated by rewriting.

3.12.2 Dot Product

dot,roduct is required for several of the Simulink Disrete blocks.
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dot_product : (seq R) x (seq R) + R

dom dot_product = {In1?, In2? : seq R | #In1? = #In27};
dot_product ({), ()) = real 0;
YV h1,h2: R; t1,12: seq R | #11 = #t2 o

dot_product((h1) ™ t1, (h2) ™ t2) = h1 *p h2
+r dot_product(t1, t2)

The CLT_common proof context will evaluate dot products of pairs of sequence displays. If all the
elements are literals the result will be a literal, otherwise an expression involving real addition and
multiplication.

3.12.3 Product

Vectorised product blocks are defined using the following function:
Z

product : (seq R) — R

product () = real 1;
V h: R; t: seq Re
product((h) ~ t) = h xg product t

Products of sequence displays will be expanded out by the proof context and will be fully evaluated
if the elements are literals.

3.12.4 Sum

Vectorised sum blocks are defined using the following function:
Z

sum : (seq R) — R

sum () = real 0;
YV h:R; t:seq Re
sum ((h) ~ t) = h +gr (sum t)

Sums of sequence displays will be expanded out by the proof context and will be fully evaluated if
the elements are literals.
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4 THE STRUCTURE

4.1 Preamble

SML

stgnature CLT _common = sig

Description This is the signature for the toolkit extensions required to support the theory
CLT_common.

Theory Design

reqg_name "CLT_common" (Value "z_library");
req-language "Z";

req-parent "cn";

req_parent "z_reals";

req_parent " cache’ clawzlib";

set_flag("tc_thms_only", true);

Description The theory CLT_common defines functions required by the specifications of
Simulink library blocks, or by the Z specifications output by ClawZ. It is created in structure
CLT_common. The specification of the theory name, and the language of the theory is de-
fined using req_name and req_language. This conforms to the technique used in the rest of the
ProofPower design documentation for specifying the requirement for theories.

4.2 Theorems

Theorems are provided which allow systematic expansion of the objects in the theory in terms of the
7 toolkit operations. These theorems serve to support the proof procedures defined in section 4.4
below and may also be directly applied by the user.

In following, some theorems, which are intended primarily for insertion in proof contexts rather than
for direct use, are expressed in mixed language. In many cases unconditional rewriting over sequence
or set displays is possible by this means but cannot be expressed in pure Z (and is not valid over
sequences or sets in general). In this we exploit the fact that Z sequence and set displays are both
represented in the underlying ProofPower HOL by the application of a semantic constant (Z'() and
Z'Setd respectively) to an expression denoting a ProofPower HOL list (often formed using Cons,
which adds an element to the head of a list).
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4.2.1 Conditionals and Coercions

Theory Design
‘req_thm("cz_if_thm", ([, %

‘ Vz, y:Ue if true then x else y = x

‘ A if false then x else y = y7));

‘req_thm("cz_TZz_thm", (I, ZVi:Ue 172z (real i) = i A r2z (~p (real 7)) = ~ i"));

Description These theorems, permit conditional expressions and the partial inverse of real,to
be eliminated.

4.2.2 Bounds

Theory Design
req_thm("cz_ub_thm", ([], ,Vr:U; sr:Ue r ubgr sr < (V z:sre r >p x)7));
req_thm("cz_lb_thm", ([], ,Vr:U; sr:Ue r lbg sr < (¥ z:sre r <p z)7));

req-thm("cz_ge_ub_trans_thm", ([], ;Vz, y:U; 2:Ue y <p 2 A y ubgp z = z ubg 27));
req-thm("cz_le_lb_trans_thm", (||, }Vz, y:U; z2Ue 2 <p y A y lbp z = z lbg 27));

req_thm("cz_lb_ub_thm", ([J, 7V s : U; b : U e Ib lbg s
& ~p b ubg {x : s | true @ ~p x}7));

req_thm("cz_ub_lb_thm", ([], LV s : U; ub : U e ub ubp s
& ~p ub lbg {z : s | true @ ~p x}7));

req-thm("cz_lub_thm", ([], ,Viub:U; sr:Ue (sr — lub) € lubr <
lub ubp sr A (Vub: U | ub ubr sre ub >p lub)"));
req_thm("cz_glb_thm", ([], ,Vglb:U; sr:Ue (sr — glb) € glbp
< glb lbr sr A (Vib: U | Ib lbr sre b <p glb)"));

req-thm("cz_lub_sup_thm", ([], "Vs le [s +— | € lubr™ = | = Sup s7));

req_thm("cz_dom_lub_thm", ([], ;Vs:Ue (Jlub:Ue (s — lub) € lubg)
< s ={} A (Fub:Ue ub ubp s)7));

req_thm("cz_dom_glb_thm", ([], ;Vs:Ue (Jglb:Ue (s — glb) € glbg)
< s ={} A (3ib:Ue Ib lbg s)7));

req-thm("cz_lub_setd_-thm", ([], LV lub, z : U; s : U o lub = lubg "Z'Setd (Cons z s)7
< lub ubr "Z'Setd (Cons x s)7
ANV ub:U| ububg "Z'Setd (Cons x s)7 e ub >pg lub)"));
req-thm("cz_glb_setd_thm", ([], .V glb, © : U; s : U e glb = glbg "Z'Setd (Cons z s)”
< glb Ibg "Z'Setd (Cons = s)™
AN Ib:U | Iblbg "Z'Setd (Cons z 5)7 e Ib <p glb)7));

Description A collection of results about upper, lower, greatest lower and lowest upper bounds
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Theory Design

req-thm("cz_ub_empty_thm", ([|, LVub:Ue ub ubr {}7));
req_thm("cz_lb_empty_thm", ([|, LVib:Ue Ib lbg {}7));

req_thm("cz_lub_unit_thm", ([], ;Vz:Ue lubp {z} = z7));
req_thm("cz_glb_unit_thm", ([], ;Vz:Ue glbp {z} = z7));

req_thm("cz_ub_setd_thm", ([], LVz,y:U; t:Ue z ubg "Z'Setd (Cons y t)”
<y <px Az ubr "Z'Setd t77));

req-thm("cz_lb_setd_thm", ([], ,Vib,z:U; s:Ue b lbg "Z'Setd (Cons z s)”
ol <pazAlbilbp "2 Setd s7));

req_thm("cz_lub_setd_le_thm", ([|, }Vz,z:U; t:Ue lubp "Z'Setd (Cons z t)" <p z
&z ubg "Z'Setd (Cons z t)™17));

req-thm("cz_le_glb_setd_thm", ([], }Vz,2:U; t:Ue z <p glbg "Z'Setd (Cons z t)”
<z lbg "Z'Setd (Cons z t)77));

req-thm("cz_eq_lub_setd_thm", ([], ;Vz,y,z:U; t:Ue
x = lubg "Z'Setd (Cons y (Cons z t))”
&z =y Az ubg "Z'Setd (Cons z t)7
Vy<gpazAz=Ilubr "Z'Setd (Cons z t)77));
req-thm("cz_lub_setd_eq_-thm", ([], ,Vz,y,z:U; t:Ue
lubg "Z'Setd (Cons y (Cons z t))" = x
&z =y Az ubr "Z'Setd (Cons z t)7
Vy<gazAz=Ilubr "Z' Setd (Cons z t)77));
req-thm("cz_le_lub_setd_thm", (]|, ;Vz,y,2:U; ¢:Ue
x <p lubr "Z'Setd (Cons y (Cons z t))”
Sz <pyVaz<pglubr "Z'Setd (Cons z t)77));

req_thm("cz_eq_glb_setd_thm", ([], ,Vz,y,2:U; t:Ue
x = glbr "Z'Setd (Cons y (Cons z t))”
sz =yAzxlbgr "Z Setd (Cons z )7
Va<gpyAaz=glr"Z'Setd (Cons z t)™7));
req_thm("cz_glb_setd_eq_-thm", ([], ,Vz,y,2:U; t:Ue
glbg "Z'Setd (Cons y (Cons z t))" =z
sz =yAzxlbgr "Z'Setd (Cons z )7
Va<gpyAz=glr"Z'Setd (Cons z t)™7));
req_thm("cz_glb_setd_le_thm", (]|, ,Vz,y,2:U; t:Ue
glbg "Z'Setd (Cons y (Cons z t))! <g z
<y <pzVglbg "Z'Setd (Cons z t)7 < z7));

Description These theorems give rules for eliminating talk about bounds of set displays in
favour if inequalities, which may then be solvable using linear arithmetic.
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The following illustrates the effects of rewriting with the above theorems.

Rewriting Example

z = glbg {a,lubp{d,c}t}

1) ===>x=a Az lbg {lubg {b, c¢}} Vo < a Az = glbg {lubr {b, c}}
2) ===>z=a Az <plubgp {b,c} Nz lbrp {} Vo <pa Az =lubg {b, ¢}
3) ===>z=aA (z <p bV z <plubg {c}) A true

(x =b A xubg {c} Vb<pzAz=Ilubgr {c})
(z <p bV z<pc)A true
Ve<paA(@z=bANc<pzANzubgp {} Vb<gpzAz=c)
(x <R bV z<pc)Atrue
(r=bANc<gpzANtrueVb<pzxzAz=c)

4.2.3 Relational Operators

Theory Design

|req_thm("liftrel thm", ([, ;¥ r: Uz : U; y: Ue
‘ liftrelg v (x, y) = if (z, y) € r then real 1 else real 07));

Description This theorem permits liftrelr to be eliminated.

Theory Design

Vz,y:Ue x eqr y = Booleanpg

req_thm("cz_relational_clauses", ([],
T =y)
(

A z noteqr y = Booleang (II (- z = y))
A z lessgp y = Booleanp (x <g vy)

A z less_eqr y = Booleang (x <pg vy)

A z greaterr y = Booleanr (x >pr y)

A z greater_eqr y = Booleang (z >g )

)

Description The strategy for handling the relational operators is to convert them into expres-
sions of the form Boolean p, where p is an atomic Z predicate or the negation of one.

These theorems support this strategy. They use the universal set U to make them easier to
instantiate. The cast II is a purely syntactic device used to allow a propositional connective in a
function argument (see [1]).
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4.2.4 Logical Operators

Theory Design
req_-thm("cz_boolean_clauses", ([],
truer = Booleanpg true
A falsep = Booleanp false

A (Vp:Ue notr (Booleanr p) = Booleang (II(— p)))
A (Vp,q:Ue (Booleang p) andg (Booleanr q) = Booleanr (II(p A q)))
(Vp,q:Ue (Booleang p) orgr (Booleanr q) = Booleang (II(p V q)))
(Vp,q:Ue equivg (Booleanr q) = Booleanr (II(p < q)))
( zorg (Booleangr q) = Booleanr (II(—(p < q))))
(

= (Booleang q) < (p < q))

Booleang p

Vp,q:Ue (Booleangr p

(
(
(
(

~— — — ~—

Booleang p

)

Description The strategy for handling the boolean operators is to convert an expression in
notg, andg, org, equivg,and zorpg, into an expression of the form Booleanr p, where p is con-
structed using the Z propositional operators. When such expressions appear as the operands of
an equality, the whole predicate can be converted to a Z predicate not involving Boolean.

These theorems support this strategy. They use the universal set U to make them easier to
instantiate. The cast II is a purely syntactic device used to allow a propositional connective in a
function argument (see [1]).

See Also clawz_boolean_clausesl, clawz_boolean_clauses2.
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Theory Design
req_thm("cz_boolean_real_clauses", ([], Lnotr (real 0) = Booleang true
A notg (real 1) = Booleanp false

A (Vp:Ue (real 1) andg p = (Booleang true) andg p)

Vp:Ue p andp (real 1) = p andgr (Booleanp true))

Vp:Ue (real 0) andr p = Booleanp false)

Vp:Ue p andp (real 0) = Booleang false)

Vp:Ue (real 1) org p = Booleanp true)
Vp:Ue p org (real 1) = Booleanpg true)

A

(

(

( )
( (
(Vp:Ue (real 0) org p = (Booleany false) orgp p)
(Vp:Ue p org (real 0) = p orgr (Booleang false))
(Vp:Ue (real 1) equivg p = (Booleang true) equivg p)
(Vp:Ue p equivg (real 1) = p equivg (Booleang true))
(Vp:Ue (real 0) equivg p = notgy p)

(Vp:Ue p equivg (real 0) = notg p)

(Vp:Ue (real 1) zorg p = notgr p)

(Vp:Ue p zorg (real 1) = notgr p)

(
(

Vp:Ue (real 0) xorp p = (Booleang false) zorg p)

> > > > > > > > > > > > > >

Vp:Ue p zorg (real 0) = p xorp (Booleang false))

N);
Description General replacement of real literals 0 and 1 by their boolean equivalents is not

desirable, but without this theorem their use in boolean expressions would inhibit translation into
7 predicates.

This theorem eliminates occurrences of real 0 or real 1 when they appear as operands of the
clawz boolean operations.

Theory Design
req_thm("cz_boolean_clausesl", ([],
(Vp:Ue notr p = Booleangr (II(p = falser)))
A (Vp,q:Ue p andr q = Booleanr (II(— p = falser N\ — q = falseg)))
A (Vp,q:Ue p org q = Booleang (II(— p = falser V — q = falser)))
A (Vp,q:Ue p equivg ¢ = Booleangr (II(p = falser < q = falser)))
A (Vp,q:Ue p xzorp q = Booleang (II(p = falser < — q = falseg))

)

Rk

Description The strategy for handling the boolean operators is to convert an expression in not,
and, or, and xor, into an expression of the form Boolean p, where p is constructed using the Z
propositional operators. When such expressions appear as the operands of an equality, the whole
predicate can be converted to a Z predicate not involving Boolean (except applied to true).

This theorem, with cn_boolean_clauses2, support this strategy when one or both of the arguments
of a boolean operator are not of the form Boolean x for some z.
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Theory Design
req_thm("cz_boolean_clauses2", ([], &

(Vb:U; r:Ue 1 andp (Booleanr b) = Booleang (II(— r = falser A b)))

A (Vb:U; r:Ue (Booleanr b) andr r = Booleang (II(b N = r = falser)))
(Vb:U; r:Ue r org (Booleang b) = Booleang (II(— r = falser V b)))
A (Vb:U; r:Ue (Booleanr b) orr r = Booleanr (II(b V — r = falseg)))
A (Vb:U; r:Ue r equivg (Booleang b) = Booleang (II(— r = falser < b)))
A (Vb:U; r:Ue (Booleang b) equivg v = Booleang (II(b < — r = falseg)))
A (Vb:U; r:Ue r zorg (Booleang b) = Booleang (II(r = falser < b)))
A (Vb:U; r:Ue (Booleanr b) xorr r = Booleang (II(b < r = falser)))

)

Description See cn_boolean_clauses] for use.

The effect of rewriting with the theorems presented in this section and the previous section is shown
in the following example, in which we show how the expression:

‘N eqr (real 0) orr notr N lessg (real /) = trueg

is rewritten as “N = (real 0) V = N < g (real 4)”.

Rewriting Example

N eqr (real 0) org notg N lessg (real 4) = trueg

1) ===> Booleanp (N = (real 0)) orgr notr Booleanr (N <pg (real 4)) = Booleang true
2) ===> Booleany (N = (real 0)) orgr Booleanr (= N <pg (real 4)) = Booleanp true

3) ===> Booleanp (N = (real 0) V = N <p (real 4)) = Booleanp true

4) ===> N = (real 0) V = N <pg (real 4) < true

5) ===> N = (real 0) V = N <g (real 4)

Here in step 1 the theorem of this section starts thing off by turning the ClawZ atomic predicates
into Z expressions involving Booleang. In steps 2 and 3, the theorems of the previous section
turn the vocabulary of the theory C'LT_common into the Z toolkit vocabulary using the argument
of Booleangp to accumulate the result. At step 4 Booleang is eliminated. Finally a standard
ProofPower-Z simplification removes the unnecessary “ < true”.
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4.2.5 Matlab Operators

27

Theory Design

req_thm("cz_matlab_clauses", ([], §
(cc+m-) = (C+5o)

A (-=m-) = (-—&r-)

A (-#m-) = (*r-)

A (--/m-) = (-/r-)

A (Vr,y: Ue z \py y =y /R )

A (-<m-) = (Llessg-)

A (_>m-) = (Lgreatergp_)

A (>=p_) = (_greater_eqp_)

A (c<=m-) = (_less_eqp-)

A (-==m-) = (~eqr-)

A (~=m_) = (Lnoteqr_)

A (candy,-) = (Landg-)

A (corm-) = (corg-)

A (Vr:U;z:Ue r .7y, (real 2) =1 "z 2)

A (Vz: Ue mp,, © = z)

A (Vz: Ue mmy, z = (real 0) —p )

A (mm) = (notr )

)

Description This theorem permits the elimination of Matlab operators.




Lemma 1 Ltd. LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit

4.2.6 Fcn Operators

Theory Design

req-thm("cz_fen_clauses", ([], &
(-4s-) = («+r-)

A (_—f_) = (——R—)

A (_*f_) = (—*R—)

A (-/r-) = (/r-)

A (-<s-) = (_lessg-)

A (_>¢.) = (_greaterg_)

A (c>=f-) = (_greater_eqp-)

A (c<=f-) = (_less_eqr-)

A (_Zf_) = (-eqr-)

A (-#7-) = (-noteqp-)

A (cands_) = (Landg-)

A (cory-) = (~org-)

A (Vr:U;z:Ue r ~f (real z) =1 "z z)

A (Vz: Ue mpy z = )

A (Vz: Ue mmy z = (real 0) —p x)

A (noty_) = (notg -)

N);

Description This theorem permits the elimination of Fcn operators.

4.2.7 Product and Sum

Theory Design

req-thm("cz_bin2dec_thm", ([], Zbin2dec () = 0 N (V f: U; I: Ue
bin2dec("$" Z'()" (Cons f 1)7) = (bin2dec "$"Z'()" 1I7) +
(if f = real 0 then 0 else 1) * (2 xx # "$"Z'()" 7))
1);
req-thm("cz_dot_product_empty_thm", (|,  dot_product ({),()) = real 07));
req_thm("cz_dot_product_thm", ([|, LV h1,h2:U; t1,t2:Ue " Length t17 = " Length t27 =
dot_product ("$"Z'()" (Cons h1 t1)7, "$"Z'()" (Cons h2 t2)7)
= h1 xg h2 +gr (dot_product ("$"Z'()" ¢t17, "$"Z'()" t27))
);
req_thm("cz_product_thm", ([], Zproduct () = real 1 N (V¥ h:U; t:Ue
product "$"Z'()" (Cons h t)7 = h *xp (product "$"Z'()" t7))
);
req_thm("cz_sum_thm", ([], Zsum () = real 0 N (V¥ h:U; t:Ue
sum "$"Z'()" (Cons h t)7 = h +p (sum "$"Z'()" t7))
N);

Description These theorems supports evaluation of ”sum” on sequence displays.
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SML

val cz_ub_thm : THM,

val cz_lb_thm : THM;

val cz_ge_ub_trans_thm : THM;
val cz_le_lb_trans_-thm : THM;
val cz_lb_ub_thm : THM,

val cz_ub_lb_thm : THM,

val cz_lub_thm : THM,

val cz_glb_thm : THM,

val cz_lub_sup_thm :THM,

val cz_dom_lub_thm : THM;
val cz_dom_glb_thm : THM,
val cz_lub_setd_thm : THM;
val cz_glb_setd_thm : THM;

val cz_ub_empty_thm : THM;
val cz_lb_empty_thm : THM;
val cz_lub_unit_thm : THM,
val cz_glb_unit_thm : THM,
val cz_ub_setd_thm : THM;

val cz_lb_setd_thm : THM,

val cz_lub_setd_le_thm : THM,
val cz_le_glb_setd_thm : THM;
val cz_eq_lub_setd_thm : THM;
val cz_lub_setd_eq_thm : THM;
val cz_le_lub_setd_-thm : THM,
val cz_eq_glb_setd_thm : THM;
val cz_glb_setd_eq_thm : THM;
val cz_glb_setd_le_thm : THM;

Description These are the ML names for the theorems in the theory “C' LT _common”, which
contains extensions to the Z toolkit required to support the ClawZ tool output. These theorems

concern upper and lower, least upper and greatest lower bounds.
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SML

val cz_ef_thm : THM,

val cz_r2z_thm : THM;

val cz_boolean_clauses : THM;

val cz_boolean_clausesl : THM;

val cz_boolean_clauses2 : THM;

val cz_boolean_real_clauses : THM;
val cz_relational_clauses : THM;
val cz_matlab_clauses : THM;

val cz_fen_clauses : THM;

val cz_bin2dec_thm : THM;

val cz_dot_product_empty_thm : THM,
val cz_dot_product_thm : THM,

val cz_product_thm : THM;

val cz_sum_thm : THM;

Description These are the ML names for the theorems in the theory “C LT _common”, which
contains extensions to the Z toolkit required to support the ClawZ tool output. These theorems
cover expansion of conditionals, boolean expressions, relations, matlab and fcn expressions, binary
to decimal, dot product, and sequence product and sum evaluation.

4.4 ML Bindings for Proof Procedures

SML

‘ val cz-matrix_conv : CONV;,

Description Conversions for the clawz library. cz_matriz_conv applies to terms of the form
smatriz(n,m), where s is a sequence display of n sequence displays each of length m, and n and
m are numeric literals. In this case the result is ;s matrix (n,m) < true”, any other case fails.

cz_dot_product_conv

Description applies to terms of the form dot_product(sl, s2), where sl and s2 are non-empty
sequence displays of equal length. It does the first step in evaluation of such a product, but
pulling out the first element of each list and returning the sum of their product and a shorter dot
product. This conversion is not suitable for use by end users because it only solves part of the
problem (of evaluating dot products) and is therefore supplied only in proof contexts (in which
context the whole problem is solved). An improved version suitable for direct use by end users
may be made available in later releases.

Errors
52800070 is not a rectangular matriz display of size 71 by 72
52800170 is not of the form ,md Matriz (r,c)” where md is
a sequence display of r sequence displays each of length c.
52800270 is not of the form Y dot_product (d1, d2)" where d1 and d2
are sequence displays of equal length.
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4.5 PROOF CONTEXTS

NOTE: The proof contexts 'C LT_common etc. are actually defined in [2]. They are also described
here for convenience of the user reading this document, and to make it unnecessary for users to
consult [2].
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SML

‘(* Proof Context: 'CLT_common x)

Description Component proof contexts for the theory C' LT _common which supports reasoning
about specifications produced by ClawZ.

The main purpose of the ’CLT_common proof context is to automate the elimination of the
vocabulary of the theory C' LT _common in favour of plain Z toolkit constructs wherever this is
possible without introducing excessive complexity.

The "CLT_bounds proof context provides extra facilities for reducing claims about bounds of set
displays to inequalities for solution using linear arithmetic.

Vocabulary concerning upper and lower bounds is left untouched.
Contents
Rewriting:

cz_if _thm

cz_r2z_thm

cz_boolean_ clauses
cz_boolean_real_clauses
cz_relational_ clauses
cz_matlab_clauses
cz_fen_clauses
cz_product_thm
cz_sum_thm
cz_matrix _conv
cz_dot_product_empty_thm
cz_dot_product_conv

Stripping theorems:

cz_if _thm

cz_r2z_thm

cz_boolean_ clauses
cz_boolean_real_clauses
cz_relational_ clauses
cz_matlab_clauses
cz_fen_clauses
cz_product_thm
cz_sum_thm
cz_matrix _conv
cz_dot_product_empty_thm

cz_dot_product_conv

See Also ’'CLT_bounds
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SML

‘(* Proof Context: 'CLT _bounds )

Description Component proof context for the theory C' LT _common which supports the ClawZ
library.

The purpose of the proof context is to automate the proof of claims about the bounds of set
displays.

This proof context will typically be used in conjunction with the Z real linear arithmetic proof
context 'z_R_lin_arith.

set_merge_pcs[" CLT _common", "' z_reals", "z_library"];
Contents
Rewriting and stripping:

cz_ub_empty_thm,
cz_lb_empty_thm,
cz_lub_unit_thm,
cz_glb_unit_thm,
cz_ub_setd_thm,
cz_lb_setd_thm,
cz_lub_setd_le_thm,
cz_le_glb_setd_thm,
cz_eq_lub_setd_thm,
cz_lub_setd_eq_thm,
cz_le_lub_setd_thm,
cz_eq_qglb_setd_thm,
cz_glb_setd_eq_thm,
cz_glb_setd_le_thm

Automatic proof:

fn thms => rewrite_tac|]
THEN PC_T1 "“'z_R_lin_arith" asm_proof _tac thms

See Also 'CLT_common, CLT _seq
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SML

‘(* Proof Context: 'CLT _seq x)

Description The purpose of the proof context is to automate the proof of claims about sequence
displays. This includes:

e evaluation of the length of sequence displays.
e evaluation of the domain and range of sequence displays.

e evaluation of selection from sequence displays by application to a numeric literal.

Contents
Rewriting:

z_seqd_€_seq_thm,
z_dom_seqd_thm,
z_ran_seqd_thm,
z_seqd_"_()_clauses,
z_size_seqd_conv,
z_seqd_app_ conv

Stripping:

z_seqd_€_seq_thm,
z_dom_seqd_thm,
z_ran_seqd_thm,
z_seqd_""_()_clauses,
z_size_seqd_conv,

z_seqd_app_ conv

See Also 'CLT_common,'CLT _bounds

4.6 Epilogue

SML

‘end (x end of signature CLT_common x);

SML

‘ reset_flag ("z_type_check_only");
‘ reset_flag ("z_use_axioms");

‘ reset_flag ("standard_z_paras");

5 TEST POLICY

The tests include most of the endproof goals supplied by DERA.
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6 THE THEORY CLT_common

7 THE Z THEORY CLT_common

7.1 Parents

cache’ clawzlib z_reals
cn z_library

7.2 Global Variables

(if - then _ else _)[X]
BOOL x X x X < X

r2z R« Z
(- 2 2) ZX7—7—17
(- Ibr ) R~PR
glbr PR« R
(- ubr ) R~<PR
lubgp PR« R
Booleang BOOL < R
(ts_truer -)

PR
truegr R
falsen R

liftrelg[X, Y]

(- greater_eqr -)

R xR~ R
(- greaterg _)

RxR~R
(- less_eqr -)

R xR~ R
(- lessr -)

R xR~ R
(- noteqr -)

R xR~ R
(- eqr -) RxR<R
floorgp R < R
cetlp R« R
roundgr R«<R
fixr R < R
(- worg -)

R xR~ R
(- equivg -)

R xR~ R

(- orr -) R xR~ R

35
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(- andgr )

(noty _)
(sqrty, -)
(tan,, -)
(tanhq,, )
(hypot., -)

(logm -)
(log10,, -)

(stng, -)
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RxR«~<R

R «~ R
R < R
R < R
R < R
R < R
R < R
R < R
R <~ R
R < R
R <~ R
R < R

X

AARRARARARARA
X X X X X X X X X X

xR« R
x R < R
— R
— R

R« Z
R < R
R <~ R
R < R
R <~ R
R < R
R <~ R
R < R
R <~ R
R <~ R
R < R

X

AR RARRERRERRRRABIRRE RS

X X X X X X X X X X

R+~ R
R <R

R <R
R~ R
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(sinhy, -)
(cosm -)
(coshy, -)
(expm -)
(fabsm -)
(floor, -)

(absm, -)
(acosm -)
(asing, -)
(atan., -)
(ceily, )
(atan2,, -)

(power,, -)

(remp, -)
(sqrty _)
(tany )
(tanhf _)
(Ing -)
(sgny -)
(hypoty )

(logys -)
(log10¢ )

(sing )
(sinhy )
(cosy )
(coshy )
(capy -)
(fabsf _)
(floorys _)

(absy )
(acosy )
(asing _)
(atany _)
(ceily _)
(atan2y _)

(powerys _)

(remy _)
bin2dec
(- Matrix _)
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R < R
R« R
R < R
R« R
R < R

R < R
R« R
R« R
R < R
R« R
R < R

RxRe~R

R xR+« R
RxR«~<R
R < R
R« R
R« R
R < R
R« R

R~ R
R <R

R < R
R« R
R < R
R« R
R« R
R < R
R« R

R« R
R < R
R« R
R < R
R« R
R < R

RxR«~R
RxR~<R
RxR«<R
(Z < R) - Z

(Z - Z - R)—ZxXZ
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dot_product

(Z < R)x (Z—R)<R

product (Z <+ R) <R
sum (Z < R) <« R
7.3 Fixity

fun 0 rightassoc

fun

fun

fun

fun

fun

fun

fun

fun

fun

fun

(if - then _ else _)

1 leftassoc
(- andy, =) (- ory 2) (- orm )

2 leftassoc
(- andy _) (-2 ) <m -) (- >=m -) (- ~=m -)
(- im -) (- <=m -) (- ==m -) (- >m -)

3 leftassoc

CoAms)  Commo) L= C#0)

4 leftassoc
Coms) a0 30
(- /m-) <=2 (>=-)

5 leftassoc

(- 47 -) (- =1 -) (- "m )

5 rightassoc
(mmm, ) (mpm -)

6 leftassoc

(= -) (- /f-)

6 rightassoc

(Nm —)

7 rightassoc
(noty -)

8 rightassoc
(mmy ) (mpy -)
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fun 9 leftassoc

(- 77 -)

fun 10 leftassoc
(- equivg _)

fun 10 rightassoc

(absy -) (atan, -) (fabsy -) (logs -)
(absy, -) (ceily _) (fabs,, -) (logm -)
(acosy ) (ceily, -) (floory ) (powery )
(acospy -) (coshy ) (floory, -) (power, _)
(asing _) (coshp, -) (hypots ) (remy _)
(asing, -) (cosy -) (hypot, -) (remy, -)
(atan2; _) (cosm -) (Ing ) (sgns -) (tany -
(atan2,, _)  (exps -) (log10y _) (sinhs _)
(atang ) (expm -) (log10,, -) (sinhy, -)

fun 20 leftassoc
(- zorg -)

fun 30 leftassoc
(- org -)

fun 40 leftassoc
(- andg -)

fun 50 rightassoc
(notg -)

fun 200 leftassoc
(- eqr -) (- lessg -)

fun

rel

(- less_eqr -) (- noteqr -)

210 leftassoc

(- greater_eqr -)

(is_truegr -)
(- lbg -)

(- greaterp -)

(- Matriz )
(- ubg -)

LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit

39



Lemma 1 Ltd. LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit

7.4 Axioms

if _ then _ else _
F [X]((if - then _ else _)[X] € BOOL x X x X — X
AN (VY b:BOOL; z,y : X
o (b = (if _ then _ else _)[X] (b, z, y) = x)

A (
b
= (if _ then _ else )[X] (b, z, y) = y)))
r2z Fr2zeR-+-ZANNi:Zereal i— i€ rlz)
C oty F(w-)€ZXZ— seqZ
NNz, y:Z
® T Y
={i,2z:7Z
li=z—z+1ANz<zAz<y})
_Ilbr _ F(lr_-)eR<-PR

ANNVr:Rsr:PR

erilbpsr<s (Va:srer<puz))
glbg - glbr €PR - R

ANV sr:PR;glh:R

o sT +— glb € glbg

& glb lbg sr
ANNVIb:R|IbIlbg srelb<p gl))
_ ubg - F(_ubr_) €ER < PR

ANNVr:Rsr:PR
o rubp sr < (Vao:srer>pu))
lubg Flubp e PR+ R
ANV sr:PR;ub: R
e sr — lub € lubp
< lub ubg sr
ANV ub:R | ub ubp sr e ub >p lub))

Booleang
is_truepr _
truepn
falser F ({truer, falseg} C R
A (is_truer -) € PR
N Booleanp € BOOL — R)
A trueg = real 1
A falsep = real 0
ANV z:Ueis_trueg x <& — x = falser)
ANNVz:U
e Booleany © = if x then trueg else falser)
liftrelp F X,

Y](liftrelg[X, Y] €P (X x ¥) — X x ¥ — R
AVMr:PXxY)yz:X;y:Y
o (liftrelg[X, Y] r) (z, y)
= Booleang ((z, y) € r)))
_ greater_eqpr -
_ greaterp _
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_ less_eqpr -
_lessp _
_ noteqpr _
_ eqRr - F(-er-)eRxR—-R
A (- notegqpr -) e R x R — R
A (- lessg -) e R x R =R
A (- less_eqpr -) € R x R = R
A (- greaterp ) e R x R - R
A (= greater_eqr ) € R x R — R)
A (- eqr =) = liftrelg {z, y : R | z = y}
A (- noteqr -) = liftrelg {z, y : R | z # y}
A (- lessp -) = liftrelr (- <gr -)
A (- less_eqr -) = liftrely (- <g -)
A (= greaterr _) = liftrelr (- >gr -)
A (= greater_eqr _) = liftrelp (- >pg -)
floorr F floorp € R — real (Z)
ANNVz:R
e real 0 <gp x —g floorg x
A x —g floorgp © <p real 1)
ceilp F ceilp € R — real (Z )
ANz R
e real 0 <p ceilp x —p
A ceilp x —rp © <pg real 1)
roundg F roundg € R — real (Z )
ANz R
e roundgr T
= ’if
real 0 <g x then
floorgr (x +r 5 e (~ 1)) else
ceilp (x —g & e (~ 1))
fixg F fixtr € R — real (Z)
ANz R
o fitp x
= if real 0 <p x then floorg = else ceilg x)
- LOTR -
_ equivpR _
- OTrRp -
_ andpr _
notg _ F ((notg -) e R = R

= if is_truer [ then falser else truep)
NN r:R
e[ andg r
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vt

F— m -

kg, -

S -
~ A\m -

LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit

= if
is_truer | then
notr notg r else
falser)
NI r:R
el orpr
= if
is_truer [ then
truep else
notg notg )
ANNILr:R
e | equivg T
= if
is_truer | then
notr notg r else
notg 1)
NI r:Relzorg r= noty (I equivy r))

A Am ),

(— -m —)7

(- *m -),

(- -/m -);

(- \m )}

CRxR—-R
ACtm )= +r )
ACmm )= —r )
AC ot ) = (%r )
ACom )= fr )
ANVaz,y:Rex \ny=y/r2)

L <m0,

Com o),

(- >=m -),

(- <=m -);

(— - m —)7

(- ~=m )}

CRxR-—-R
AN <m-)=(-lessp -)
A (- >m -) = (- greaterr )
A (- >=p -) = (- greater_eqr -)
A (- <=m-) = (- less_eqr )
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_and,, _
_ 0T -

MPy -
MMy —

- andy _
- OTf -
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AC==m-) = eqr-)
A ~=m -) = ( notegg -)

A dom (- " -) = R x dom r2z
ANNVz:Ryy:domr2z ez " y=2x "z r2y)

EA(mpp ), (mmp ), (vm )} SR — R
ANNVz:R
*MPy, T =T
AN mmy, ¢ =real 0 —p x
A (~m ) = (notr )
Fm-) €ERXxR—segR
ANNVz,y:R
*T iy Y
={z:Ryi:Z
| 2=z 4+gpreal i Nx <pzANz<py
o i+ 1, 2)})

F{C<r ) C>p ) C>=p) (<= o))
- x R — R

Ay ) = ( des )

A (- >f -) = (- greaterr _)

A (2 >=f _) = (_ greater_eqp _)

A (- <=5 _) = ( less_eqr -)

“{= ), (A D CRxXR-R
NC =) = ( ean )

AC #r ) = ( notear )

F{(C ands _), (- orf )} CR xR >R
A (- andf ) = ( andp _)
A (- orp_)=(-org-)
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mpf _
mmy _
notf _

sqrit,, -
tan,, _
tanh,, _
hypot,, _
logy, -
log10,, _
Sty -
sinh,, _
COSy -
cosh,, -
exPym, -
fabs,, _
floor,, _
abs,, _
acos,, _
asiNg, -
atan,, -
cetl,, _
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FCro)eRxR+R
A dom (- "f -) =R x dom 72z
ANNVz:Ryy:domr2zex yy=u1x"z71r22Y)

EA{(mpy -), (mmy ), (noty )} CR — R
ANNVaz:R
e mMpf r = 1T
AN mmsx =real 0 —g T
A (noty _) = (notgr _))

= {(absm -),
(acosm -),
(asing, -),
(atan,, -)
(ceilm -)}
CR+R
A {(cosy _),
(coshm, -),
(expm -).
(fabsm -),
(oot )}
CR+R
A {(hypotm, -),
logm -),

9

ceily, -) = ceilp
floor,, -) = floorg
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atan2,, _
power,, _
TEMy, - F {(atan2,, -), (powery, _), (remmy )} CTR xR + R
N true
sqrty _
tanyg _
tanhy _
lnf -
sgnys _
hypoty _
logf -
log10y _
sing _
sinhy _
cosy _
coshy _
ETPf -
fabsy _
floory _
abe -
acosy _
asing _
atany _
ceily _ F ({(abss -),
(acosy _),
(asing _),
(atang ),
(ceily -)}
CR-+R
A {(coss -),
(coshy -),
(ezps -),
(fabsy -),
(floory )}
CR+R
A {(hypots _),
(logs -),
(log10¢ ),
(sing _),
(sinhy )}
CR+R
A {(sarty -),
(tang ),
(tanhy ),
(Inf -),
(sgns )}
CR -+ R)
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atan2y _
powery _
remy _

bin2dec

_ Matrixz _

dot_product

product

sum
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A (floory _) = floorg

F {(atan2; _), (powery _), (remy )} CTR x R + R
A true
F bin2dec € seq R — Z
A bin2dec () = 0
N[ R L:seqR
e bin2dec ((f) 1)
= bin2dec |
+ (if f = real 0 then 0 else 1) x 2 *x # 1)
F (. Matriz .) € (Z - Z <~ R) > Z xZ
ANVs:Z—Z—R, mmn:Z
e s Matriz (m, n)
& s € (seq -)
AN# s=m
AN (Vss:ran s ® ss € (seq -) N\ # ss = n))

F dot_product € (seq R) x (seq R) - R
A dom dot_product
= {In1?, In2? : seq R
| # In1? = # In27}
A dot_product (), ()) = real 0
A (Y hi, h2 : R; t1, t2 : seq R
| # t1 = # 2
e dot_product ((h1) ™ t1, (h2) ™ t2)
= h1 xr h2 +pr dot_product (t1, t2))
F product € seq R — R
A product () = real 1
ANNh:R;jt:seqR
e product ((h) 7 t) = h xgr product t)
Fsum € seg R - R
A sum () = real 0
ANNh:R;t:seqR
e sum ((h) ©t) = h +g sum t)

7.5 Theorems

cz_1f_thm

cz_r2z_thm
cz_ub_thm
cz_lb_thm
cz_lub_thm

FVYaz, y:U

o if true then x else y = x

A if false then x else y = y
FVi:Uer2 (real i) =i A 122 (~pg real i) = ~ i
FVYr:Usr:Uerubgsr< (Va:srer>pux)
FVYr:Uysr:Uerlbpsrs (Vo:srer <puz)
FYilub:U; sr:U

o sr— lub € lubp

< lub ubg sr
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ANV ub:U/| ub ubp sr e ub >p lub)
cz_glb_thm FVYglh:U; sr:U
o sr — glb € glbp
< glb by sr
ANNI:U|IbIlbg srelb <p glb)
cz_lub_sup_thm
F'Vslels— 1€ blubg = 1 = Sup s’
cz_ub_lb_thm
FVs:U,ub:U
o ub ubr s & ~p ub lbgp {z : s | true « ~p z}
cz_lb_ub_thm
FVs:U;b:U
o lblbr s < ~plbubg {zx : s | true e ~p z}
cz_dom_lub_thm
FVs:U
o (Flub:U e s+ lub € lubr)
S as={}AN(Fub:U e ububp s)
cz_dom_glb_thm
FVYs:U
o (Fglb:U e s— glb € glhp)
Sas={}ANEb:Ueliblbg s)
cz_le_Ib_trans_thm
FVYz,y:U,2z:Uex<pyAylbrz= zlbg 2
cz_ge_ub_trans_thm
FVa,y:U;z:Uey<pazAyubg z = x ubgp 2
cz_lb_empty_thm
FVIib:Uelbibg {}
cz_ub_empty_thm
FVub:Ue ububg {}
cz_lub_unit_thm
FVa:Uelubr {z} ==
cz_glb_unit_thm
FVa:Ueglbr {z} ==
cz_lb_setd_thm
FVYib,x:U;s:0
o lb lbp "Z'Setd (Cons x s)7
< b <pax Alblbgr "Z'Setd s
cz_ub_setd_thm
FVYz,y:U;t:0
o z ubp "Z'Setd (Cons y t)7
&y <gpx Axubr "Z'Setd t7
cz_glb_setd_thm
FYglb,x:U;s:U
o glb = glbgp "Z'Setd (Cons x s)7
& glb Ibg "Z'Setd (Cons z )™
ANNIb:TU
| Ib lbr "Z'Setd (Cons x s)7
o Ib <p glb)
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cz_lub_setd_thm
FYiub, x:U;s:U
o lub = lubr "Z'Setd (Cons z s)7
< lub ubg "Z'Setd (Cons z s)”
ANV ub:U
| ub ubp "Z'Setd (Cons x s)7
o ub >p lub)
cz_eq_glb_setd_thm
FVYz, yz2:0;t:0
oz = glbr "Z'Setd (Cons y (Cons z t))7
& x=yAxlbg "7 Setd (Cons z t)”
Va<gpyAz=glbr "Z'Setd (Cons z t)”
cz_glb_setd_eq_-thm
FYaz, y 2:U0;t:0U
o glbp "Z'Setd (Cons y (Cons z 1)) =z
sz =yAzxlbgr "Z Setd (Cons z t)7
Vio<pyAxz=glbgr "Z'Setd (Cons z t)”
cz_eq_lub_setd_thm
FVz, vy z2:0;t:0
oz = lubg "Z'Setd (Cons y (Cons z t))”
&z =y Az ubr "Z'Setd (Cons z t)7
Vy<gpzAz=lubg "Z'Setd (Cons z t)”
cz_lub_setd_eq_thm
FVz, vy z2:0;t:0
o lubp "Z'Setd (Cons y (Cons z 1)) = x
< x =y Axubg "Z'Setd (Cons z t)
Vy<gpzAz=Ilubr "Z'Setd (Cons z t)7
cz_le_glb_setd_thm
FVz 2:0;¢t:0
oz <p glbp "Z'Setd (Cons z t)
< x lbg "Z'Setd (Cons z t)”
cz_lub_setd_le_thm
FVz 2:0;¢t:0
o lubp "Z'Setd (Cons z t)7 <p z
< x ubg "Z'Setd (Cons z t)7
cz_glb_setd_le_thm
FVz, yz2:0;t:0
o glbp "Z'Setd (Cons y (Cons z t))! <gp z
&y <pxVglbgr "Z'Setd (Cons z t)" <g z
cz_le_lub_setd_thm
FVz,yz2:0;t:0
oz <p lubr "Z'Setd (Cons y (Cons z t))”
sz <pyVaz<plubg "Z'Setd (Cons z t)”
liftrel_thm
FYr :Uzx:U;y:U
o (liftrelp ) (z, y)
= if (z, y) € r then real 1 else real 0
cz_relational_clauses
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FVYaz y:U
e x eqr y = Booleanp (x = y)
A z noteqr y = Booleanp (- = = y)
A z lessg y = Booleanp (x <g vy)
A z less_eqr y = Booleang (z <pg vy)
A x greaterr y = Booleanp (x >pg y)
A z greater_eqr y = Booleang (z >g vy)
cz_boolean_clauses
F truegr = Booleanpg true
A falsep = Booleanp false
A (VY p: U e notg Booleang p = Booleangr (— p))
ANNp,qg:U
e Booleanp p andr Booleanp q
= Booleanr (p N q))
ANNp,q:U
e Booleang p orr Booleangr q
= Booleangp (p V q))
ANNp,qg:U
e Booleanp p equivg Booleangr q
= Booleang (p < q))
ANNp,qg:U
e Booleanp p rorgr Booleanp q
= Booleanr (= (p & q)))
A (Y p, q : U e Booleang p = Booleanp q < p < q)
cz_boolean_clausesl
F(Vp:Uenotg p = Booleangr (p = falser))
ANNp,qg:U
e p andp q
= Booleanp (= p = falsep N = q = falseg))
ANNp,q:U
e p oOrg q
= Booleanp (= p = falsep V = q = falseg))
ANNp,q:U
® D equivR ¢
= Booleany (p = falser < q = falser))
ANNp,qg:U
® p ZOTR ¢
= Booleanp (p = falser < — q = falser))
cz_boolean_real_clauses
F notg real 0 = Booleanpg true
A notg real 1 = Booleanpg false

ANNVp:U
e real 1 andpr p = Booleang true andpg p)
ANNVp:U

e p andp real 1 = p andp Booleanpy true)
AN(Vp:Uerel 0 andg p = Booleany false)
ANV p:Uepandgr real 0 = Booleanp false)
AN(Vp:Uereal 1 org p = Booleanp true)
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AN (VY p:Ueporg real 1 = Booleang true)

ANNVp:U

e real 0 orrp p = Booleang false org p)
ANNVp:U

e p org real 0 = p org Booleang false)
ANNVp:U

e real 1 equivg p = Booleanp true equivgp p)
ANNVp:U

e p equivg real 1 = p equivg Booleanp true)

AN (Y p:Uereal 0 equivg p = notg p)
AN (VY p:Uep equivg real 0 = notg p)
A (Y p U e real 1 zorg p = notg p)
AN (VY p:Uepxorg real 1 = notg p)
A (Y p U
e real 0 zorg p = Booleany false xorg p)
ANNVp:U

e p zorg real 0 = p zorg Booleany false)
cz_boolean_clauses2
FNVb:U;r:U
e 7 andr Booleang b
= Booleanp (= r = falser N b))
ANNVb:U;r:U
e Booleang b andp r
= Booleang (b N = r = falseg))
ANVMbL:U;r:U
e 7 orp Booleangr b
= Booleanp (= r = falser V b))
ANNVb:U;r:U
e Booleang b org r
= Booleang (b V = r = falseg))
ANNVb:U;r:U
e 1 equivg Booleang b
= Booleang (- r = falsep < b))
ANVMbL:U;r:U
e Booleanp b equivp r
= Booleanp (b < — r = falser))
ANNVb:U;r:U
e r zorgr Booleanp b
= Booleany (r = falsep < b))
ANNVb:U;r:U
e Booleang b worg r
= Booleanp (b < r = falser))
cz_matlab_clauses

G tm )= +r )

P
AC m ) = (g )
ACm )= /o)
AV oy Usea\my=y/ra)
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AN <m-)=(-lessp -)

A (- >m -) = (- greaterr )

A (- >=p -) = (- greater_eqr -)

A (- <=m-) = (- less_eqr )

N ( ==m —) = (— €4dR —)

A (- ~=m -) = (- noteqr -)

A (- andy, ) = (- andg -)

A (- orm_):(_ orR -)

A (Y Uer ypreal 2z =1 "z 2)

/\(V:v [Uompmx—x)

ANNz:Uemmy,z=rel 0 —g x)

A (v ) = (ot )
cz_fen_clauses

FC )= +r-)

ANCS ) =C—r )

AC )= ()

ANl =C/r )

AN (- <p-)=(-lessp -)

A (- >p -) = (- greaterr _)

A (- >=f _) = (- greater_eqg -)

A (2 <:f -) = (- less_eqr -)

ANC= ) = ( eqn )

A #r ) = ( notegn )

A (- andf )= (- andp -)

N ory ) = ( orn )

A (Y :Uer"preal z =1 "z z)

/\(V:v [Uompfx—x)

ANNVz:Uemmsa=real 0 —p x)

A (noty ) = (notg _)

cz_bin2dec_thm
F bin2dec () = 0
ANNVf:U1:0
e bin2dec "8 Z'()” (Cons f 1)”
= bin2dec "$Z' ()" 1"
+ (if f = real 0 then 0 else 1)
x 2 xx # T Z()7 1)
cz_dot_product_empty_thm
F dot_product ({), ()) = real 0
cz_dot_product_thm
FY hi,h2 :U;t1,t2:U0U
e "Length t17 = " Length t27
= dot_product
("$7Z'()” (Cons h1 t1)7,
r$7Z'()” (Cons h2 t2)7)
= hl xR h2
+gr dot_product
("$7Z' ()7 t17, T§ Z()7 t27)
cz_product_thm
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cz_sum_thm

LEMMA1/DAZ/DTD528: Detailed Design: ClawZ Toolkit

F product () = real 1
ANNh:U;t:U
e product "$”Z'()” (Cons h t)”
= h xg product "$"Z'()" t7)
F sum () = real 0
ANNVh:U;t:U
e sum "$°Z'()” (Cons h t)7
=h +g sum "$°Z'()” t7)
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8 INDEX

AbSf .o 17
(@bsy _) oo 37
absy oo 45
ADSpy o 16
(@DSm =) o 37
AbSy 44
ACOSF oottt 17
(@COSF ) oo 37
ACOSF — ove et 45
QCOSI « v v v v e e e e e e e e e 16
(@COSm, ) v 37
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